/* * Channel subsystem base support. * * Copyright 2012 IBM Corp. * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com> * * This work is licensed under the terms of the GNU GPL, version 2 or (at * your option) any later version. See the COPYING file in the top-level * directory. */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qapi/visitor.h" #include "qemu/bitops.h" #include "qemu/error-report.h" #include "exec/address-spaces.h" #include "hw/s390x/ioinst.h" #include "hw/qdev-properties.h" #include "hw/s390x/css.h" #include "trace.h" #include "hw/s390x/s390_flic.h" #include "hw/s390x/s390-virtio-ccw.h" #include "hw/s390x/s390-ccw.h" typedef struct CrwContainer { CRW crw; QTAILQ_ENTRY(CrwContainer) sibling; } CrwContainer; static const VMStateDescription vmstate_crw = { .name = "s390_crw", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT16(flags, CRW), VMSTATE_UINT16(rsid, CRW), VMSTATE_END_OF_LIST() }, }; static const VMStateDescription vmstate_crw_container = { .name = "s390_crw_container", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_STRUCT(crw, CrwContainer, 0, vmstate_crw, CRW), VMSTATE_END_OF_LIST() }, }; typedef struct ChpInfo { uint8_t in_use; uint8_t type; uint8_t is_virtual; } ChpInfo; static const VMStateDescription vmstate_chp_info = { .name = "s390_chp_info", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(in_use, ChpInfo), VMSTATE_UINT8(type, ChpInfo), VMSTATE_UINT8(is_virtual, ChpInfo), VMSTATE_END_OF_LIST() } }; typedef struct SubchSet { SubchDev *sch[MAX_SCHID + 1]; unsigned long schids_used[BITS_TO_LONGS(MAX_SCHID + 1)]; unsigned long devnos_used[BITS_TO_LONGS(MAX_SCHID + 1)]; } SubchSet; static const VMStateDescription vmstate_scsw = { .name = "s390_scsw", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT16(flags, SCSW), VMSTATE_UINT16(ctrl, SCSW), VMSTATE_UINT32(cpa, SCSW), VMSTATE_UINT8(dstat, SCSW), VMSTATE_UINT8(cstat, SCSW), VMSTATE_UINT16(count, SCSW), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_pmcw = { .name = "s390_pmcw", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(intparm, PMCW), VMSTATE_UINT16(flags, PMCW), VMSTATE_UINT16(devno, PMCW), VMSTATE_UINT8(lpm, PMCW), VMSTATE_UINT8(pnom, PMCW), VMSTATE_UINT8(lpum, PMCW), VMSTATE_UINT8(pim, PMCW), VMSTATE_UINT16(mbi, PMCW), VMSTATE_UINT8(pom, PMCW), VMSTATE_UINT8(pam, PMCW), VMSTATE_UINT8_ARRAY(chpid, PMCW, 8), VMSTATE_UINT32(chars, PMCW), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_schib = { .name = "s390_schib", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_STRUCT(pmcw, SCHIB, 0, vmstate_pmcw, PMCW), VMSTATE_STRUCT(scsw, SCHIB, 0, vmstate_scsw, SCSW), VMSTATE_UINT64(mba, SCHIB), VMSTATE_UINT8_ARRAY(mda, SCHIB, 4), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_ccw1 = { .name = "s390_ccw1", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(cmd_code, CCW1), VMSTATE_UINT8(flags, CCW1), VMSTATE_UINT16(count, CCW1), VMSTATE_UINT32(cda, CCW1), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_ciw = { .name = "s390_ciw", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(type, CIW), VMSTATE_UINT8(command, CIW), VMSTATE_UINT16(count, CIW), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_sense_id = { .name = "s390_sense_id", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(reserved, SenseId), VMSTATE_UINT16(cu_type, SenseId), VMSTATE_UINT8(cu_model, SenseId), VMSTATE_UINT16(dev_type, SenseId), VMSTATE_UINT8(dev_model, SenseId), VMSTATE_UINT8(unused, SenseId), VMSTATE_STRUCT_ARRAY(ciw, SenseId, MAX_CIWS, 0, vmstate_ciw, CIW), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_orb = { .name = "s390_orb", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(intparm, ORB), VMSTATE_UINT16(ctrl0, ORB), VMSTATE_UINT8(lpm, ORB), VMSTATE_UINT8(ctrl1, ORB), VMSTATE_UINT32(cpa, ORB), VMSTATE_END_OF_LIST() } }; static bool vmstate_schdev_orb_needed(void *opaque) { return css_migration_enabled(); } static const VMStateDescription vmstate_schdev_orb = { .name = "s390_subch_dev/orb", .version_id = 1, .minimum_version_id = 1, .needed = vmstate_schdev_orb_needed, .fields = (VMStateField[]) { VMSTATE_STRUCT(orb, SubchDev, 1, vmstate_orb, ORB), VMSTATE_END_OF_LIST() } }; static int subch_dev_post_load(void *opaque, int version_id); static int subch_dev_pre_save(void *opaque); const char err_hint_devno[] = "Devno mismatch, tried to load wrong section!" " Likely reason: some sequences of plug and unplug can break" " migration for machine versions prior to 2.7 (known design flaw)."; const VMStateDescription vmstate_subch_dev = { .name = "s390_subch_dev", .version_id = 1, .minimum_version_id = 1, .post_load = subch_dev_post_load, .pre_save = subch_dev_pre_save, .fields = (VMStateField[]) { VMSTATE_UINT8_EQUAL(cssid, SubchDev, "Bug!"), VMSTATE_UINT8_EQUAL(ssid, SubchDev, "Bug!"), VMSTATE_UINT16(migrated_schid, SubchDev), VMSTATE_UINT16_EQUAL(devno, SubchDev, err_hint_devno), VMSTATE_BOOL(thinint_active, SubchDev), VMSTATE_STRUCT(curr_status, SubchDev, 0, vmstate_schib, SCHIB), VMSTATE_UINT8_ARRAY(sense_data, SubchDev, 32), VMSTATE_UINT64(channel_prog, SubchDev), VMSTATE_STRUCT(last_cmd, SubchDev, 0, vmstate_ccw1, CCW1), VMSTATE_BOOL(last_cmd_valid, SubchDev), VMSTATE_STRUCT(id, SubchDev, 0, vmstate_sense_id, SenseId), VMSTATE_BOOL(ccw_fmt_1, SubchDev), VMSTATE_UINT8(ccw_no_data_cnt, SubchDev), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription * []) { &vmstate_schdev_orb, NULL } }; typedef struct IndAddrPtrTmp { IndAddr **parent; uint64_t addr; int32_t len; } IndAddrPtrTmp; static int post_load_ind_addr(void *opaque, int version_id) { IndAddrPtrTmp *ptmp = opaque; IndAddr **ind_addr = ptmp->parent; if (ptmp->len != 0) { *ind_addr = get_indicator(ptmp->addr, ptmp->len); } else { *ind_addr = NULL; } return 0; } static int pre_save_ind_addr(void *opaque) { IndAddrPtrTmp *ptmp = opaque; IndAddr *ind_addr = *(ptmp->parent); if (ind_addr != NULL) { ptmp->len = ind_addr->len; ptmp->addr = ind_addr->addr; } else { ptmp->len = 0; ptmp->addr = 0L; } return 0; } const VMStateDescription vmstate_ind_addr_tmp = { .name = "s390_ind_addr_tmp", .pre_save = pre_save_ind_addr, .post_load = post_load_ind_addr, .fields = (VMStateField[]) { VMSTATE_INT32(len, IndAddrPtrTmp), VMSTATE_UINT64(addr, IndAddrPtrTmp), VMSTATE_END_OF_LIST() } }; const VMStateDescription vmstate_ind_addr = { .name = "s390_ind_addr_tmp", .fields = (VMStateField[]) { VMSTATE_WITH_TMP(IndAddr*, IndAddrPtrTmp, vmstate_ind_addr_tmp), VMSTATE_END_OF_LIST() } }; typedef struct CssImage { SubchSet *sch_set[MAX_SSID + 1]; ChpInfo chpids[MAX_CHPID + 1]; } CssImage; static const VMStateDescription vmstate_css_img = { .name = "s390_css_img", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { /* Subchannel sets have no relevant state. */ VMSTATE_STRUCT_ARRAY(chpids, CssImage, MAX_CHPID + 1, 0, vmstate_chp_info, ChpInfo), VMSTATE_END_OF_LIST() } }; typedef struct IoAdapter { uint32_t id; uint8_t type; uint8_t isc; uint8_t flags; } IoAdapter; typedef struct ChannelSubSys { QTAILQ_HEAD(, CrwContainer) pending_crws; bool sei_pending; bool do_crw_mchk; bool crws_lost; uint8_t max_cssid; uint8_t max_ssid; bool chnmon_active; uint64_t chnmon_area; CssImage *css[MAX_CSSID + 1]; uint8_t default_cssid; /* don't migrate, see css_register_io_adapters */ IoAdapter *io_adapters[CSS_IO_ADAPTER_TYPE_NUMS][MAX_ISC + 1]; /* don't migrate, see get_indicator and IndAddrPtrTmp */ QTAILQ_HEAD(, IndAddr) indicator_addresses; } ChannelSubSys; static const VMStateDescription vmstate_css = { .name = "s390_css", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_QTAILQ_V(pending_crws, ChannelSubSys, 1, vmstate_crw_container, CrwContainer, sibling), VMSTATE_BOOL(sei_pending, ChannelSubSys), VMSTATE_BOOL(do_crw_mchk, ChannelSubSys), VMSTATE_BOOL(crws_lost, ChannelSubSys), /* These were kind of migrated by virtio */ VMSTATE_UINT8(max_cssid, ChannelSubSys), VMSTATE_UINT8(max_ssid, ChannelSubSys), VMSTATE_BOOL(chnmon_active, ChannelSubSys), VMSTATE_UINT64(chnmon_area, ChannelSubSys), VMSTATE_ARRAY_OF_POINTER_TO_STRUCT(css, ChannelSubSys, MAX_CSSID + 1, 0, vmstate_css_img, CssImage), VMSTATE_UINT8(default_cssid, ChannelSubSys), VMSTATE_END_OF_LIST() } }; static ChannelSubSys channel_subsys = { .pending_crws = QTAILQ_HEAD_INITIALIZER(channel_subsys.pending_crws), .do_crw_mchk = true, .sei_pending = false, .crws_lost = false, .chnmon_active = false, .indicator_addresses = QTAILQ_HEAD_INITIALIZER(channel_subsys.indicator_addresses), }; static int subch_dev_pre_save(void *opaque) { SubchDev *s = opaque; /* Prepare remote_schid for save */ s->migrated_schid = s->schid; return 0; } static int subch_dev_post_load(void *opaque, int version_id) { SubchDev *s = opaque; /* Re-assign the subchannel to remote_schid if necessary */ if (s->migrated_schid != s->schid) { if (css_find_subch(true, s->cssid, s->ssid, s->schid) == s) { /* * Cleanup the slot before moving to s->migrated_schid provided * it still belongs to us, i.e. it was not changed by previous * invocation of this function. */ css_subch_assign(s->cssid, s->ssid, s->schid, s->devno, NULL); } /* It's OK to re-assign without a prior de-assign. */ s->schid = s->migrated_schid; css_subch_assign(s->cssid, s->ssid, s->schid, s->devno, s); } if (css_migration_enabled()) { /* No compat voodoo to do ;) */ return 0; } /* * Hack alert. If we don't migrate the channel subsystem status * we still need to find out if the guest enabled mss/mcss-e. * If the subchannel is enabled, it certainly was able to access it, * so adjust the max_ssid/max_cssid values for relevant ssid/cssid * values. This is not watertight, but better than nothing. */ if (s->curr_status.pmcw.flags & PMCW_FLAGS_MASK_ENA) { if (s->ssid) { channel_subsys.max_ssid = MAX_SSID; } if (s->cssid != channel_subsys.default_cssid) { channel_subsys.max_cssid = MAX_CSSID; } } return 0; } void css_register_vmstate(void) { vmstate_register(NULL, 0, &vmstate_css, &channel_subsys); } IndAddr *get_indicator(hwaddr ind_addr, int len) { IndAddr *indicator; QTAILQ_FOREACH(indicator, &channel_subsys.indicator_addresses, sibling) { if (indicator->addr == ind_addr) { indicator->refcnt++; return indicator; } } indicator = g_new0(IndAddr, 1); indicator->addr = ind_addr; indicator->len = len; indicator->refcnt = 1; QTAILQ_INSERT_TAIL(&channel_subsys.indicator_addresses, indicator, sibling); return indicator; } static int s390_io_adapter_map(AdapterInfo *adapter, uint64_t map_addr, bool do_map) { S390FLICState *fs = s390_get_flic(); S390FLICStateClass *fsc = s390_get_flic_class(fs); return fsc->io_adapter_map(fs, adapter->adapter_id, map_addr, do_map); } void release_indicator(AdapterInfo *adapter, IndAddr *indicator) { assert(indicator->refcnt > 0); indicator->refcnt--; if (indicator->refcnt > 0) { return; } QTAILQ_REMOVE(&channel_subsys.indicator_addresses, indicator, sibling); if (indicator->map) { s390_io_adapter_map(adapter, indicator->map, false); } g_free(indicator); } int map_indicator(AdapterInfo *adapter, IndAddr *indicator) { int ret; if (indicator->map) { return 0; /* already mapped is not an error */ } indicator->map = indicator->addr; ret = s390_io_adapter_map(adapter, indicator->map, true); if ((ret != 0) && (ret != -ENOSYS)) { goto out_err; } return 0; out_err: indicator->map = 0; return ret; } int css_create_css_image(uint8_t cssid, bool default_image) { trace_css_new_image(cssid, default_image ? "(default)" : ""); /* 255 is reserved */ if (cssid == 255) { return -EINVAL; } if (channel_subsys.css[cssid]) { return -EBUSY; } channel_subsys.css[cssid] = g_new0(CssImage, 1); if (default_image) { channel_subsys.default_cssid = cssid; } return 0; } uint32_t css_get_adapter_id(CssIoAdapterType type, uint8_t isc) { if (type >= CSS_IO_ADAPTER_TYPE_NUMS || isc > MAX_ISC || !channel_subsys.io_adapters[type][isc]) { return -1; } return channel_subsys.io_adapters[type][isc]->id; } /** * css_register_io_adapters: Register I/O adapters per ISC during init * * @swap: an indication if byte swap is needed. * @maskable: an indication if the adapter is subject to the mask operation. * @flags: further characteristics of the adapter. * e.g. suppressible, an indication if the adapter is subject to AIS. * @errp: location to store error information. */ void css_register_io_adapters(CssIoAdapterType type, bool swap, bool maskable, uint8_t flags, Error **errp) { uint32_t id; int ret, isc; IoAdapter *adapter; S390FLICState *fs = s390_get_flic(); S390FLICStateClass *fsc = s390_get_flic_class(fs); /* * Disallow multiple registrations for the same device type. * Report an error if registering for an already registered type. */ if (channel_subsys.io_adapters[type][0]) { error_setg(errp, "Adapters for type %d already registered", type); } for (isc = 0; isc <= MAX_ISC; isc++) { id = (type << 3) | isc; ret = fsc->register_io_adapter(fs, id, isc, swap, maskable, flags); if (ret == 0) { adapter = g_new0(IoAdapter, 1); adapter->id = id; adapter->isc = isc; adapter->type = type; adapter->flags = flags; channel_subsys.io_adapters[type][isc] = adapter; } else { error_setg_errno(errp, -ret, "Unexpected error %d when " "registering adapter %d", ret, id); break; } } /* * No need to free registered adapters in kvm: kvm will clean up * when the machine goes away. */ if (ret) { for (isc--; isc >= 0; isc--) { g_free(channel_subsys.io_adapters[type][isc]); channel_subsys.io_adapters[type][isc] = NULL; } } } static void css_clear_io_interrupt(uint16_t subchannel_id, uint16_t subchannel_nr) { Error *err = NULL; static bool no_clear_irq; S390FLICState *fs = s390_get_flic(); S390FLICStateClass *fsc = s390_get_flic_class(fs); int r; if (unlikely(no_clear_irq)) { return; } r = fsc->clear_io_irq(fs, subchannel_id, subchannel_nr); switch (r) { case 0: break; case -ENOSYS: no_clear_irq = true; /* * Ignore unavailability, as the user can't do anything * about it anyway. */ break; default: error_setg_errno(&err, -r, "unexpected error condition"); error_propagate(&error_abort, err); } } static inline uint16_t css_do_build_subchannel_id(uint8_t cssid, uint8_t ssid) { if (channel_subsys.max_cssid > 0) { return (cssid << 8) | (1 << 3) | (ssid << 1) | 1; } return (ssid << 1) | 1; } uint16_t css_build_subchannel_id(SubchDev *sch) { return css_do_build_subchannel_id(sch->cssid, sch->ssid); } void css_inject_io_interrupt(SubchDev *sch) { uint8_t isc = (sch->curr_status.pmcw.flags & PMCW_FLAGS_MASK_ISC) >> 11; trace_css_io_interrupt(sch->cssid, sch->ssid, sch->schid, sch->curr_status.pmcw.intparm, isc, ""); s390_io_interrupt(css_build_subchannel_id(sch), sch->schid, sch->curr_status.pmcw.intparm, isc << 27); } void css_conditional_io_interrupt(SubchDev *sch) { /* * If the subchannel is not enabled, it is not made status pending * (see PoP p. 16-17, "Status Control"). */ if (!(sch->curr_status.pmcw.flags & PMCW_FLAGS_MASK_ENA)) { return; } /* * If the subchannel is not currently status pending, make it pending * with alert status. */ if (!(sch->curr_status.scsw.ctrl & SCSW_STCTL_STATUS_PEND)) { uint8_t isc = (sch->curr_status.pmcw.flags & PMCW_FLAGS_MASK_ISC) >> 11; trace_css_io_interrupt(sch->cssid, sch->ssid, sch->schid, sch->curr_status.pmcw.intparm, isc, "(unsolicited)"); sch->curr_status.scsw.ctrl &= ~SCSW_CTRL_MASK_STCTL; sch->curr_status.scsw.ctrl |= SCSW_STCTL_ALERT | SCSW_STCTL_STATUS_PEND; /* Inject an I/O interrupt. */ s390_io_interrupt(css_build_subchannel_id(sch), sch->schid, sch->curr_status.pmcw.intparm, isc << 27); } } int css_do_sic(CPUS390XState *env, uint8_t isc, uint16_t mode) { S390FLICState *fs = s390_get_flic(); S390FLICStateClass *fsc = s390_get_flic_class(fs); int r; if (env->psw.mask & PSW_MASK_PSTATE) { r = -PGM_PRIVILEGED; goto out; } trace_css_do_sic(mode, isc); switch (mode) { case SIC_IRQ_MODE_ALL: case SIC_IRQ_MODE_SINGLE: break; default: r = -PGM_OPERAND; goto out; } r = fsc->modify_ais_mode(fs, isc, mode) ? -PGM_OPERATION : 0; out: return r; } void css_adapter_interrupt(CssIoAdapterType type, uint8_t isc) { S390FLICState *fs = s390_get_flic(); S390FLICStateClass *fsc = s390_get_flic_class(fs); uint32_t io_int_word = (isc << 27) | IO_INT_WORD_AI; IoAdapter *adapter = channel_subsys.io_adapters[type][isc]; if (!adapter) { return; } trace_css_adapter_interrupt(isc); if (fs->ais_supported) { if (fsc->inject_airq(fs, type, isc, adapter->flags)) { error_report("Failed to inject airq with AIS supported"); exit(1); } } else { s390_io_interrupt(0, 0, 0, io_int_word); } } static void sch_handle_clear_func(SubchDev *sch) { SCHIB *schib = &sch->curr_status; int path; /* Path management: In our simple css, we always choose the only path. */ path = 0x80; /* Reset values prior to 'issuing the clear signal'. */ schib->pmcw.lpum = 0; schib->pmcw.pom = 0xff; schib->scsw.flags &= ~SCSW_FLAGS_MASK_PNO; /* We always 'attempt to issue the clear signal', and we always succeed. */ sch->channel_prog = 0x0; sch->last_cmd_valid = false; schib->scsw.ctrl &= ~SCSW_ACTL_CLEAR_PEND; schib->scsw.ctrl |= SCSW_STCTL_STATUS_PEND; schib->scsw.dstat = 0; schib->scsw.cstat = 0; schib->pmcw.lpum = path; } static void sch_handle_halt_func(SubchDev *sch) { SCHIB *schib = &sch->curr_status; hwaddr curr_ccw = sch->channel_prog; int path; /* Path management: In our simple css, we always choose the only path. */ path = 0x80; /* We always 'attempt to issue the halt signal', and we always succeed. */ sch->channel_prog = 0x0; sch->last_cmd_valid = false; schib->scsw.ctrl &= ~SCSW_ACTL_HALT_PEND; schib->scsw.ctrl |= SCSW_STCTL_STATUS_PEND; if ((schib->scsw.ctrl & (SCSW_ACTL_SUBCH_ACTIVE | SCSW_ACTL_DEVICE_ACTIVE)) || !((schib->scsw.ctrl & SCSW_ACTL_START_PEND) || (schib->scsw.ctrl & SCSW_ACTL_SUSP))) { schib->scsw.dstat = SCSW_DSTAT_DEVICE_END; } if ((schib->scsw.ctrl & (SCSW_ACTL_SUBCH_ACTIVE | SCSW_ACTL_DEVICE_ACTIVE)) || (schib->scsw.ctrl & SCSW_ACTL_SUSP)) { schib->scsw.cpa = curr_ccw + 8; } schib->scsw.cstat = 0; schib->pmcw.lpum = path; } /* * As the SenseId struct cannot be packed (would cause unaligned accesses), we * have to copy the individual fields to an unstructured area using the correct * layout (see SA22-7204-01 "Common I/O-Device Commands"). */ static void copy_sense_id_to_guest(uint8_t *dest, SenseId *src) { int i; dest[0] = src->reserved; stw_be_p(dest + 1, src->cu_type); dest[3] = src->cu_model; stw_be_p(dest + 4, src->dev_type); dest[6] = src->dev_model; dest[7] = src->unused; for (i = 0; i < ARRAY_SIZE(src->ciw); i++) { dest[8 + i * 4] = src->ciw[i].type; dest[9 + i * 4] = src->ciw[i].command; stw_be_p(dest + 10 + i * 4, src->ciw[i].count); } } static CCW1 copy_ccw_from_guest(hwaddr addr, bool fmt1) { CCW0 tmp0; CCW1 tmp1; CCW1 ret; if (fmt1) { cpu_physical_memory_read(addr, &tmp1, sizeof(tmp1)); ret.cmd_code = tmp1.cmd_code; ret.flags = tmp1.flags; ret.count = be16_to_cpu(tmp1.count); ret.cda = be32_to_cpu(tmp1.cda); } else { cpu_physical_memory_read(addr, &tmp0, sizeof(tmp0)); if ((tmp0.cmd_code & 0x0f) == CCW_CMD_TIC) { ret.cmd_code = CCW_CMD_TIC; ret.flags = 0; ret.count = 0; } else { ret.cmd_code = tmp0.cmd_code; ret.flags = tmp0.flags; ret.count = be16_to_cpu(tmp0.count); } ret.cda = be16_to_cpu(tmp0.cda1) | (tmp0.cda0 << 16); } return ret; } /** * If out of bounds marks the stream broken. If broken returns -EINVAL, * otherwise the requested length (may be zero) */ static inline int cds_check_len(CcwDataStream *cds, int len) { if (cds->at_byte + len > cds->count) { cds->flags |= CDS_F_STREAM_BROKEN; } return cds->flags & CDS_F_STREAM_BROKEN ? -EINVAL : len; } static inline bool cds_ccw_addrs_ok(hwaddr addr, int len, bool ccw_fmt1) { return (addr + len) < (ccw_fmt1 ? (1UL << 31) : (1UL << 24)); } static int ccw_dstream_rw_noflags(CcwDataStream *cds, void *buff, int len, CcwDataStreamOp op) { int ret; ret = cds_check_len(cds, len); if (ret <= 0) { return ret; } if (!cds_ccw_addrs_ok(cds->cda, len, cds->flags & CDS_F_FMT)) { return -EINVAL; /* channel program check */ } if (op == CDS_OP_A) { goto incr; } if (!cds->do_skip) { ret = address_space_rw(&address_space_memory, cds->cda, MEMTXATTRS_UNSPECIFIED, buff, len, op); } else { ret = MEMTX_OK; } if (ret != MEMTX_OK) { cds->flags |= CDS_F_STREAM_BROKEN; return -EINVAL; } incr: cds->at_byte += len; cds->cda += len; return 0; } /* returns values between 1 and bsz, where bsz is a power of 2 */ static inline uint16_t ida_continuous_left(hwaddr cda, uint64_t bsz) { return bsz - (cda & (bsz - 1)); } static inline uint64_t ccw_ida_block_size(uint8_t flags) { if ((flags & CDS_F_C64) && !(flags & CDS_F_I2K)) { return 1ULL << 12; } return 1ULL << 11; } static inline int ida_read_next_idaw(CcwDataStream *cds) { union {uint64_t fmt2; uint32_t fmt1; } idaw; int ret; hwaddr idaw_addr; bool idaw_fmt2 = cds->flags & CDS_F_C64; bool ccw_fmt1 = cds->flags & CDS_F_FMT; if (idaw_fmt2) { idaw_addr = cds->cda_orig + sizeof(idaw.fmt2) * cds->at_idaw; if (idaw_addr & 0x07 || !cds_ccw_addrs_ok(idaw_addr, 0, ccw_fmt1)) { return -EINVAL; /* channel program check */ } ret = address_space_read(&address_space_memory, idaw_addr, MEMTXATTRS_UNSPECIFIED, &idaw.fmt2, sizeof(idaw.fmt2)); cds->cda = be64_to_cpu(idaw.fmt2); } else { idaw_addr = cds->cda_orig + sizeof(idaw.fmt1) * cds->at_idaw; if (idaw_addr & 0x03 || !cds_ccw_addrs_ok(idaw_addr, 0, ccw_fmt1)) { return -EINVAL; /* channel program check */ } ret = address_space_read(&address_space_memory, idaw_addr, MEMTXATTRS_UNSPECIFIED, &idaw.fmt1, sizeof(idaw.fmt1)); cds->cda = be64_to_cpu(idaw.fmt1); if (cds->cda & 0x80000000) { return -EINVAL; /* channel program check */ } } ++(cds->at_idaw); if (ret != MEMTX_OK) { /* assume inaccessible address */ return -EINVAL; /* channel program check */ } return 0; } static int ccw_dstream_rw_ida(CcwDataStream *cds, void *buff, int len, CcwDataStreamOp op) { uint64_t bsz = ccw_ida_block_size(cds->flags); int ret = 0; uint16_t cont_left, iter_len; ret = cds_check_len(cds, len); if (ret <= 0) { return ret; } if (!cds->at_idaw) { /* read first idaw */ ret = ida_read_next_idaw(cds); if (ret) { goto err; } cont_left = ida_continuous_left(cds->cda, bsz); } else { cont_left = ida_continuous_left(cds->cda, bsz); if (cont_left == bsz) { ret = ida_read_next_idaw(cds); if (ret) { goto err; } if (cds->cda & (bsz - 1)) { ret = -EINVAL; /* channel program check */ goto err; } } } do { iter_len = MIN(len, cont_left); if (op != CDS_OP_A) { if (!cds->do_skip) { ret = address_space_rw(&address_space_memory, cds->cda, MEMTXATTRS_UNSPECIFIED, buff, iter_len, op); } else { ret = MEMTX_OK; } if (ret != MEMTX_OK) { /* assume inaccessible address */ ret = -EINVAL; /* channel program check */ goto err; } } cds->at_byte += iter_len; cds->cda += iter_len; len -= iter_len; if (!len) { break; } ret = ida_read_next_idaw(cds); if (ret) { goto err; } cont_left = bsz; } while (true); return ret; err: cds->flags |= CDS_F_STREAM_BROKEN; return ret; } void ccw_dstream_init(CcwDataStream *cds, CCW1 const *ccw, ORB const *orb) { /* * We don't support MIDA (an optional facility) yet and we * catch this earlier. Just for expressing the precondition. */ g_assert(!(orb->ctrl1 & ORB_CTRL1_MASK_MIDAW)); cds->flags = (orb->ctrl0 & ORB_CTRL0_MASK_I2K ? CDS_F_I2K : 0) | (orb->ctrl0 & ORB_CTRL0_MASK_C64 ? CDS_F_C64 : 0) | (orb->ctrl0 & ORB_CTRL0_MASK_FMT ? CDS_F_FMT : 0) | (ccw->flags & CCW_FLAG_IDA ? CDS_F_IDA : 0); cds->count = ccw->count; cds->cda_orig = ccw->cda; /* skip is only effective for read, read backwards, or sense commands */ cds->do_skip = (ccw->flags & CCW_FLAG_SKIP) && ((ccw->cmd_code & 0x0f) == CCW_CMD_BASIC_SENSE || (ccw->cmd_code & 0x03) == 0x02 /* read */ || (ccw->cmd_code & 0x0f) == 0x0c /* read backwards */); ccw_dstream_rewind(cds); if (!(cds->flags & CDS_F_IDA)) { cds->op_handler = ccw_dstream_rw_noflags; } else { cds->op_handler = ccw_dstream_rw_ida; } } static int css_interpret_ccw(SubchDev *sch, hwaddr ccw_addr, bool suspend_allowed) { int ret; bool check_len; int len; CCW1 ccw; if (!ccw_addr) { return -EINVAL; /* channel-program check */ } /* Check doubleword aligned and 31 or 24 (fmt 0) bit addressable. */ if (ccw_addr & (sch->ccw_fmt_1 ? 0x80000007 : 0xff000007)) { return -EINVAL; } /* Translate everything to format-1 ccws - the information is the same. */ ccw = copy_ccw_from_guest(ccw_addr, sch->ccw_fmt_1); /* Check for invalid command codes. */ if ((ccw.cmd_code & 0x0f) == 0) { return -EINVAL; } if (((ccw.cmd_code & 0x0f) == CCW_CMD_TIC) && ((ccw.cmd_code & 0xf0) != 0)) { return -EINVAL; } if (!sch->ccw_fmt_1 && (ccw.count == 0) && (ccw.cmd_code != CCW_CMD_TIC)) { return -EINVAL; } /* We don't support MIDA. */ if (ccw.flags & CCW_FLAG_MIDA) { return -EINVAL; } if (ccw.flags & CCW_FLAG_SUSPEND) { return suspend_allowed ? -EINPROGRESS : -EINVAL; } check_len = !((ccw.flags & CCW_FLAG_SLI) && !(ccw.flags & CCW_FLAG_DC)); if (!ccw.cda) { if (sch->ccw_no_data_cnt == 255) { return -EINVAL; } sch->ccw_no_data_cnt++; } /* Look at the command. */ ccw_dstream_init(&sch->cds, &ccw, &(sch->orb)); switch (ccw.cmd_code) { case CCW_CMD_NOOP: /* Nothing to do. */ ret = 0; break; case CCW_CMD_BASIC_SENSE: if (check_len) { if (ccw.count != sizeof(sch->sense_data)) { ret = -EINVAL; break; } } len = MIN(ccw.count, sizeof(sch->sense_data)); ret = ccw_dstream_write_buf(&sch->cds, sch->sense_data, len); sch->curr_status.scsw.count = ccw_dstream_residual_count(&sch->cds); if (!ret) { memset(sch->sense_data, 0, sizeof(sch->sense_data)); } break; case CCW_CMD_SENSE_ID: { /* According to SA22-7204-01, Sense-ID can store up to 256 bytes */ uint8_t sense_id[256]; copy_sense_id_to_guest(sense_id, &sch->id); /* Sense ID information is device specific. */ if (check_len) { if (ccw.count != sizeof(sense_id)) { ret = -EINVAL; break; } } len = MIN(ccw.count, sizeof(sense_id)); /* * Only indicate 0xff in the first sense byte if we actually * have enough place to store at least bytes 0-3. */ if (len >= 4) { sense_id[0] = 0xff; } else { sense_id[0] = 0; } ret = ccw_dstream_write_buf(&sch->cds, sense_id, len); if (!ret) { sch->curr_status.scsw.count = ccw_dstream_residual_count(&sch->cds); } break; } case CCW_CMD_TIC: if (sch->last_cmd_valid && (sch->last_cmd.cmd_code == CCW_CMD_TIC)) { ret = -EINVAL; break; } if (ccw.flags || ccw.count) { /* We have already sanitized these if converted from fmt 0. */ ret = -EINVAL; break; } sch->channel_prog = ccw.cda; ret = -EAGAIN; break; default: if (sch->ccw_cb) { /* Handle device specific commands. */ ret = sch->ccw_cb(sch, ccw); } else { ret = -ENOSYS; } break; } sch->last_cmd = ccw; sch->last_cmd_valid = true; if (ret == 0) { if (ccw.flags & CCW_FLAG_CC) { sch->channel_prog += 8; ret = -EAGAIN; } } return ret; } static void sch_handle_start_func_virtual(SubchDev *sch) { SCHIB *schib = &sch->curr_status; int path; int ret; bool suspend_allowed; /* Path management: In our simple css, we always choose the only path. */ path = 0x80; if (!(schib->scsw.ctrl & SCSW_ACTL_SUSP)) { /* Start Function triggered via ssch, i.e. we have an ORB */ ORB *orb = &sch->orb; schib->scsw.cstat = 0; schib->scsw.dstat = 0; /* Look at the orb and try to execute the channel program. */ schib->pmcw.intparm = orb->intparm; if (!(orb->lpm & path)) { /* Generate a deferred cc 3 condition. */ schib->scsw.flags |= SCSW_FLAGS_MASK_CC; schib->scsw.ctrl &= ~SCSW_CTRL_MASK_STCTL; schib->scsw.ctrl |= (SCSW_STCTL_ALERT | SCSW_STCTL_STATUS_PEND); return; } sch->ccw_fmt_1 = !!(orb->ctrl0 & ORB_CTRL0_MASK_FMT); schib->scsw.flags |= (sch->ccw_fmt_1) ? SCSW_FLAGS_MASK_FMT : 0; sch->ccw_no_data_cnt = 0; suspend_allowed = !!(orb->ctrl0 & ORB_CTRL0_MASK_SPND); } else { /* Start Function resumed via rsch */ schib->scsw.ctrl &= ~(SCSW_ACTL_SUSP | SCSW_ACTL_RESUME_PEND); /* The channel program had been suspended before. */ suspend_allowed = true; } sch->last_cmd_valid = false; do { ret = css_interpret_ccw(sch, sch->channel_prog, suspend_allowed); switch (ret) { case -EAGAIN: /* ccw chain, continue processing */ break; case 0: /* success */ schib->scsw.ctrl &= ~SCSW_ACTL_START_PEND; schib->scsw.ctrl &= ~SCSW_CTRL_MASK_STCTL; schib->scsw.ctrl |= SCSW_STCTL_PRIMARY | SCSW_STCTL_SECONDARY | SCSW_STCTL_STATUS_PEND; schib->scsw.dstat = SCSW_DSTAT_CHANNEL_END | SCSW_DSTAT_DEVICE_END; schib->scsw.cpa = sch->channel_prog + 8; break; case -EIO: /* I/O errors, status depends on specific devices */ break; case -ENOSYS: /* unsupported command, generate unit check (command reject) */ schib->scsw.ctrl &= ~SCSW_ACTL_START_PEND; schib->scsw.dstat = SCSW_DSTAT_UNIT_CHECK; /* Set sense bit 0 in ecw0. */ sch->sense_data[0] = 0x80; schib->scsw.ctrl &= ~SCSW_CTRL_MASK_STCTL; schib->scsw.ctrl |= SCSW_STCTL_PRIMARY | SCSW_STCTL_SECONDARY | SCSW_STCTL_ALERT | SCSW_STCTL_STATUS_PEND; schib->scsw.cpa = sch->channel_prog + 8; break; case -EINPROGRESS: /* channel program has been suspended */ schib->scsw.ctrl &= ~SCSW_ACTL_START_PEND; schib->scsw.ctrl |= SCSW_ACTL_SUSP; break; default: /* error, generate channel program check */ schib->scsw.ctrl &= ~SCSW_ACTL_START_PEND; schib->scsw.cstat = SCSW_CSTAT_PROG_CHECK; schib->scsw.ctrl &= ~SCSW_CTRL_MASK_STCTL; schib->scsw.ctrl |= SCSW_STCTL_PRIMARY | SCSW_STCTL_SECONDARY | SCSW_STCTL_ALERT | SCSW_STCTL_STATUS_PEND; schib->scsw.cpa = sch->channel_prog + 8; break; } } while (ret == -EAGAIN); } static IOInstEnding sch_handle_halt_func_passthrough(SubchDev *sch) { int ret; ret = s390_ccw_halt(sch); if (ret == -ENOSYS) { sch_handle_halt_func(sch); return IOINST_CC_EXPECTED; } /* * Some conditions may have been detected prior to starting the halt * function; map them to the correct cc. * Note that we map both -ENODEV and -EACCES to cc 3 (there's not really * anything else we can do.) */ switch (ret) { case -EBUSY: return IOINST_CC_BUSY; case -ENODEV: case -EACCES: return IOINST_CC_NOT_OPERATIONAL; default: return IOINST_CC_EXPECTED; } } static IOInstEnding sch_handle_clear_func_passthrough(SubchDev *sch) { int ret; ret = s390_ccw_clear(sch); if (ret == -ENOSYS) { sch_handle_clear_func(sch); return IOINST_CC_EXPECTED; } /* * Some conditions may have been detected prior to starting the clear * function; map them to the correct cc. * Note that we map both -ENODEV and -EACCES to cc 3 (there's not really * anything else we can do.) */ switch (ret) { case -ENODEV: case -EACCES: return IOINST_CC_NOT_OPERATIONAL; default: return IOINST_CC_EXPECTED; } } static IOInstEnding sch_handle_start_func_passthrough(SubchDev *sch) { SCHIB *schib = &sch->curr_status; ORB *orb = &sch->orb; if (!(schib->scsw.ctrl & SCSW_ACTL_SUSP)) { assert(orb != NULL); schib->pmcw.intparm = orb->intparm; } return s390_ccw_cmd_request(sch); } /* * On real machines, this would run asynchronously to the main vcpus. * We might want to make some parts of the ssch handling (interpreting * read/writes) asynchronous later on if we start supporting more than * our current very simple devices. */ IOInstEnding do_subchannel_work_virtual(SubchDev *sch) { SCHIB *schib = &sch->curr_status; if (schib->scsw.ctrl & SCSW_FCTL_CLEAR_FUNC) { sch_handle_clear_func(sch); } else if (schib->scsw.ctrl & SCSW_FCTL_HALT_FUNC) { sch_handle_halt_func(sch); } else if (schib->scsw.ctrl & SCSW_FCTL_START_FUNC) { /* Triggered by both ssch and rsch. */ sch_handle_start_func_virtual(sch); } css_inject_io_interrupt(sch); /* inst must succeed if this func is called */ return IOINST_CC_EXPECTED; } IOInstEnding do_subchannel_work_passthrough(SubchDev *sch) { SCHIB *schib = &sch->curr_status; if (schib->scsw.ctrl & SCSW_FCTL_CLEAR_FUNC) { return sch_handle_clear_func_passthrough(sch); } else if (schib->scsw.ctrl & SCSW_FCTL_HALT_FUNC) { return sch_handle_halt_func_passthrough(sch); } else if (schib->scsw.ctrl & SCSW_FCTL_START_FUNC) { return sch_handle_start_func_passthrough(sch); } return IOINST_CC_EXPECTED; } static IOInstEnding do_subchannel_work(SubchDev *sch) { if (!sch->do_subchannel_work) { return IOINST_CC_STATUS_PRESENT; } g_assert(sch->curr_status.scsw.ctrl & SCSW_CTRL_MASK_FCTL); return sch->do_subchannel_work(sch); } static void copy_pmcw_to_guest(PMCW *dest, const PMCW *src) { int i; dest->intparm = cpu_to_be32(src->intparm); dest->flags = cpu_to_be16(src->flags); dest->devno = cpu_to_be16(src->devno); dest->lpm = src->lpm; dest->pnom = src->pnom; dest->lpum = src->lpum; dest->pim = src->pim; dest->mbi = cpu_to_be16(src->mbi); dest->pom = src->pom; dest->pam = src->pam; for (i = 0; i < ARRAY_SIZE(dest->chpid); i++) { dest->chpid[i] = src->chpid[i]; } dest->chars = cpu_to_be32(src->chars); } void copy_scsw_to_guest(SCSW *dest, const SCSW *src) { dest->flags = cpu_to_be16(src->flags); dest->ctrl = cpu_to_be16(src->ctrl); dest->cpa = cpu_to_be32(src->cpa); dest->dstat = src->dstat; dest->cstat = src->cstat; dest->count = cpu_to_be16(src->count); } static void copy_schib_to_guest(SCHIB *dest, const SCHIB *src) { int i; /* * We copy the PMCW and SCSW in and out of local variables to * avoid taking the address of members of a packed struct. */ PMCW src_pmcw, dest_pmcw; SCSW src_scsw, dest_scsw; src_pmcw = src->pmcw; copy_pmcw_to_guest(&dest_pmcw, &src_pmcw); dest->pmcw = dest_pmcw; src_scsw = src->scsw; copy_scsw_to_guest(&dest_scsw, &src_scsw); dest->scsw = dest_scsw; dest->mba = cpu_to_be64(src->mba); for (i = 0; i < ARRAY_SIZE(dest->mda); i++) { dest->mda[i] = src->mda[i]; } } void copy_esw_to_guest(ESW *dest, const ESW *src) { dest->word0 = cpu_to_be32(src->word0); dest->erw = cpu_to_be32(src->erw); dest->word2 = cpu_to_be64(src->word2); dest->word4 = cpu_to_be32(src->word4); } IOInstEnding css_do_stsch(SubchDev *sch, SCHIB *schib) { int ret; /* * For some subchannels, we may want to update parts of * the schib (e.g., update path masks from the host device * for passthrough subchannels). */ ret = s390_ccw_store(sch); /* Use current status. */ copy_schib_to_guest(schib, &sch->curr_status); return ret; } static void copy_pmcw_from_guest(PMCW *dest, const PMCW *src) { int i; dest->intparm = be32_to_cpu(src->intparm); dest->flags = be16_to_cpu(src->flags); dest->devno = be16_to_cpu(src->devno); dest->lpm = src->lpm; dest->pnom = src->pnom; dest->lpum = src->lpum; dest->pim = src->pim; dest->mbi = be16_to_cpu(src->mbi); dest->pom = src->pom; dest->pam = src->pam; for (i = 0; i < ARRAY_SIZE(dest->chpid); i++) { dest->chpid[i] = src->chpid[i]; } dest->chars = be32_to_cpu(src->chars); } static void copy_scsw_from_guest(SCSW *dest, const SCSW *src) { dest->flags = be16_to_cpu(src->flags); dest->ctrl = be16_to_cpu(src->ctrl); dest->cpa = be32_to_cpu(src->cpa); dest->dstat = src->dstat; dest->cstat = src->cstat; dest->count = be16_to_cpu(src->count); } static void copy_schib_from_guest(SCHIB *dest, const SCHIB *src) { int i; /* * We copy the PMCW and SCSW in and out of local variables to * avoid taking the address of members of a packed struct. */ PMCW src_pmcw, dest_pmcw; SCSW src_scsw, dest_scsw; src_pmcw = src->pmcw; copy_pmcw_from_guest(&dest_pmcw, &src_pmcw); dest->pmcw = dest_pmcw; src_scsw = src->scsw; copy_scsw_from_guest(&dest_scsw, &src_scsw); dest->scsw = dest_scsw; dest->mba = be64_to_cpu(src->mba); for (i = 0; i < ARRAY_SIZE(dest->mda); i++) { dest->mda[i] = src->mda[i]; } } IOInstEnding css_do_msch(SubchDev *sch, const SCHIB *orig_schib) { SCHIB *schib = &sch->curr_status; uint16_t oldflags; SCHIB schib_copy; if (!(schib->pmcw.flags & PMCW_FLAGS_MASK_DNV)) { return IOINST_CC_EXPECTED; } if (schib->scsw.ctrl & SCSW_STCTL_STATUS_PEND) { return IOINST_CC_STATUS_PRESENT; } if (schib->scsw.ctrl & (SCSW_FCTL_START_FUNC|SCSW_FCTL_HALT_FUNC|SCSW_FCTL_CLEAR_FUNC)) { return IOINST_CC_BUSY; } copy_schib_from_guest(&schib_copy, orig_schib); /* Only update the program-modifiable fields. */ schib->pmcw.intparm = schib_copy.pmcw.intparm; oldflags = schib->pmcw.flags; schib->pmcw.flags &= ~(PMCW_FLAGS_MASK_ISC | PMCW_FLAGS_MASK_ENA | PMCW_FLAGS_MASK_LM | PMCW_FLAGS_MASK_MME | PMCW_FLAGS_MASK_MP); schib->pmcw.flags |= schib_copy.pmcw.flags & (PMCW_FLAGS_MASK_ISC | PMCW_FLAGS_MASK_ENA | PMCW_FLAGS_MASK_LM | PMCW_FLAGS_MASK_MME | PMCW_FLAGS_MASK_MP); schib->pmcw.lpm = schib_copy.pmcw.lpm; schib->pmcw.mbi = schib_copy.pmcw.mbi; schib->pmcw.pom = schib_copy.pmcw.pom; schib->pmcw.chars &= ~(PMCW_CHARS_MASK_MBFC | PMCW_CHARS_MASK_CSENSE); schib->pmcw.chars |= schib_copy.pmcw.chars & (PMCW_CHARS_MASK_MBFC | PMCW_CHARS_MASK_CSENSE); schib->mba = schib_copy.mba; /* Has the channel been disabled? */ if (sch->disable_cb && (oldflags & PMCW_FLAGS_MASK_ENA) != 0 && (schib->pmcw.flags & PMCW_FLAGS_MASK_ENA) == 0) { sch->disable_cb(sch); } return IOINST_CC_EXPECTED; } IOInstEnding css_do_xsch(SubchDev *sch) { SCHIB *schib = &sch->curr_status; if (~(schib->pmcw.flags) & (PMCW_FLAGS_MASK_DNV | PMCW_FLAGS_MASK_ENA)) { return IOINST_CC_NOT_OPERATIONAL; } if (schib->scsw.ctrl & SCSW_CTRL_MASK_STCTL) { return IOINST_CC_STATUS_PRESENT; } if (!(schib->scsw.ctrl & SCSW_CTRL_MASK_FCTL) || ((schib->scsw.ctrl & SCSW_CTRL_MASK_FCTL) != SCSW_FCTL_START_FUNC) || (!(schib->scsw.ctrl & (SCSW_ACTL_RESUME_PEND | SCSW_ACTL_START_PEND | SCSW_ACTL_SUSP))) || (schib->scsw.ctrl & SCSW_ACTL_SUBCH_ACTIVE)) { return IOINST_CC_BUSY; } /* Cancel the current operation. */ schib->scsw.ctrl &= ~(SCSW_FCTL_START_FUNC | SCSW_ACTL_RESUME_PEND | SCSW_ACTL_START_PEND | SCSW_ACTL_SUSP); sch->channel_prog = 0x0; sch->last_cmd_valid = false; schib->scsw.dstat = 0; schib->scsw.cstat = 0; return IOINST_CC_EXPECTED; } IOInstEnding css_do_csch(SubchDev *sch) { SCHIB *schib = &sch->curr_status; uint16_t old_scsw_ctrl; IOInstEnding ccode; if (~(schib->pmcw.flags) & (PMCW_FLAGS_MASK_DNV | PMCW_FLAGS_MASK_ENA)) { return IOINST_CC_NOT_OPERATIONAL; } /* * Save the current scsw.ctrl in case CSCH fails and we need * to revert the scsw to the status quo ante. */ old_scsw_ctrl = schib->scsw.ctrl; /* Trigger the clear function. */ schib->scsw.ctrl &= ~(SCSW_CTRL_MASK_FCTL | SCSW_CTRL_MASK_ACTL); schib->scsw.ctrl |= SCSW_FCTL_CLEAR_FUNC | SCSW_ACTL_CLEAR_PEND; ccode = do_subchannel_work(sch); if (ccode != IOINST_CC_EXPECTED) { schib->scsw.ctrl = old_scsw_ctrl; } return ccode; } IOInstEnding css_do_hsch(SubchDev *sch) { SCHIB *schib = &sch->curr_status; uint16_t old_scsw_ctrl; IOInstEnding ccode; if (~(schib->pmcw.flags) & (PMCW_FLAGS_MASK_DNV | PMCW_FLAGS_MASK_ENA)) { return IOINST_CC_NOT_OPERATIONAL; } if (((schib->scsw.ctrl & SCSW_CTRL_MASK_STCTL) == SCSW_STCTL_STATUS_PEND) || (schib->scsw.ctrl & (SCSW_STCTL_PRIMARY | SCSW_STCTL_SECONDARY | SCSW_STCTL_ALERT))) { return IOINST_CC_STATUS_PRESENT; } if (schib->scsw.ctrl & (SCSW_FCTL_HALT_FUNC | SCSW_FCTL_CLEAR_FUNC)) { return IOINST_CC_BUSY; } /* * Save the current scsw.ctrl in case HSCH fails and we need * to revert the scsw to the status quo ante. */ old_scsw_ctrl = schib->scsw.ctrl; /* Trigger the halt function. */ schib->scsw.ctrl |= SCSW_FCTL_HALT_FUNC; schib->scsw.ctrl &= ~SCSW_FCTL_START_FUNC; if (((schib->scsw.ctrl & SCSW_CTRL_MASK_ACTL) == (SCSW_ACTL_SUBCH_ACTIVE | SCSW_ACTL_DEVICE_ACTIVE)) && ((schib->scsw.ctrl & SCSW_CTRL_MASK_STCTL) == SCSW_STCTL_INTERMEDIATE)) { schib->scsw.ctrl &= ~SCSW_STCTL_STATUS_PEND; } schib->scsw.ctrl |= SCSW_ACTL_HALT_PEND; ccode = do_subchannel_work(sch); if (ccode != IOINST_CC_EXPECTED) { schib->scsw.ctrl = old_scsw_ctrl; } return ccode; } static void css_update_chnmon(SubchDev *sch) { if (!(sch->curr_status.pmcw.flags & PMCW_FLAGS_MASK_MME)) { /* Not active. */ return; } /* The counter is conveniently located at the beginning of the struct. */ if (sch->curr_status.pmcw.chars & PMCW_CHARS_MASK_MBFC) { /* Format 1, per-subchannel area. */ uint32_t count; count = address_space_ldl(&address_space_memory, sch->curr_status.mba, MEMTXATTRS_UNSPECIFIED, NULL); count++; address_space_stl(&address_space_memory, sch->curr_status.mba, count, MEMTXATTRS_UNSPECIFIED, NULL); } else { /* Format 0, global area. */ uint32_t offset; uint16_t count; offset = sch->curr_status.pmcw.mbi << 5; count = address_space_lduw(&address_space_memory, channel_subsys.chnmon_area + offset, MEMTXATTRS_UNSPECIFIED, NULL); count++; address_space_stw(&address_space_memory, channel_subsys.chnmon_area + offset, count, MEMTXATTRS_UNSPECIFIED, NULL); } } IOInstEnding css_do_ssch(SubchDev *sch, ORB *orb) { SCHIB *schib = &sch->curr_status; uint16_t old_scsw_ctrl, old_scsw_flags; IOInstEnding ccode; if (~(schib->pmcw.flags) & (PMCW_FLAGS_MASK_DNV | PMCW_FLAGS_MASK_ENA)) { return IOINST_CC_NOT_OPERATIONAL; } if (schib->scsw.ctrl & SCSW_STCTL_STATUS_PEND) { return IOINST_CC_STATUS_PRESENT; } if (schib->scsw.ctrl & (SCSW_FCTL_START_FUNC | SCSW_FCTL_HALT_FUNC | SCSW_FCTL_CLEAR_FUNC)) { return IOINST_CC_BUSY; } /* If monitoring is active, update counter. */ if (channel_subsys.chnmon_active) { css_update_chnmon(sch); } sch->orb = *orb; sch->channel_prog = orb->cpa; /* * Save the current scsw.ctrl and scsw.flags in case SSCH fails and we need * to revert the scsw to the status quo ante. */ old_scsw_ctrl = schib->scsw.ctrl; old_scsw_flags = schib->scsw.flags; /* Trigger the start function. */ schib->scsw.ctrl |= (SCSW_FCTL_START_FUNC | SCSW_ACTL_START_PEND); schib->scsw.flags &= ~SCSW_FLAGS_MASK_PNO; ccode = do_subchannel_work(sch); if (ccode != IOINST_CC_EXPECTED) { schib->scsw.ctrl = old_scsw_ctrl; schib->scsw.flags = old_scsw_flags; } return ccode; } static void copy_irb_to_guest(IRB *dest, const IRB *src, const PMCW *pmcw, int *irb_len) { int i; uint16_t stctl = src->scsw.ctrl & SCSW_CTRL_MASK_STCTL; uint16_t actl = src->scsw.ctrl & SCSW_CTRL_MASK_ACTL; copy_scsw_to_guest(&dest->scsw, &src->scsw); copy_esw_to_guest(&dest->esw, &src->esw); for (i = 0; i < ARRAY_SIZE(dest->ecw); i++) { dest->ecw[i] = cpu_to_be32(src->ecw[i]); } *irb_len = sizeof(*dest) - sizeof(dest->emw); /* extended measurements enabled? */ if ((src->scsw.flags & SCSW_FLAGS_MASK_ESWF) || !(pmcw->flags & PMCW_FLAGS_MASK_TF) || !(pmcw->chars & PMCW_CHARS_MASK_XMWME)) { return; } /* extended measurements pending? */ if (!(stctl & SCSW_STCTL_STATUS_PEND)) { return; } if ((stctl & SCSW_STCTL_PRIMARY) || (stctl == SCSW_STCTL_SECONDARY) || ((stctl & SCSW_STCTL_INTERMEDIATE) && (actl & SCSW_ACTL_SUSP))) { for (i = 0; i < ARRAY_SIZE(dest->emw); i++) { dest->emw[i] = cpu_to_be32(src->emw[i]); } } *irb_len = sizeof(*dest); } static void build_irb_sense_data(SubchDev *sch, IRB *irb) { int i; /* Attention: sense_data is already BE! */ memcpy(irb->ecw, sch->sense_data, sizeof(sch->sense_data)); for (i = 0; i < ARRAY_SIZE(irb->ecw); i++) { irb->ecw[i] = be32_to_cpu(irb->ecw[i]); } } void build_irb_passthrough(SubchDev *sch, IRB *irb) { /* Copy ESW from hardware */ irb->esw = sch->esw; /* * If (irb->esw.erw & ESW_ERW_SENSE) is true, then the contents * of the ECW is sense data. If false, then it is model-dependent * information. Either way, copy it into the IRB for the guest to * read/decide what to do with. */ build_irb_sense_data(sch, irb); } void build_irb_virtual(SubchDev *sch, IRB *irb) { SCHIB *schib = &sch->curr_status; uint16_t stctl = schib->scsw.ctrl & SCSW_CTRL_MASK_STCTL; if (stctl & SCSW_STCTL_STATUS_PEND) { if (schib->scsw.cstat & (SCSW_CSTAT_DATA_CHECK | SCSW_CSTAT_CHN_CTRL_CHK | SCSW_CSTAT_INTF_CTRL_CHK)) { irb->scsw.flags |= SCSW_FLAGS_MASK_ESWF; irb->esw.word0 = 0x04804000; } else { irb->esw.word0 = 0x00800000; } /* If a unit check is pending, copy sense data. */ if ((schib->scsw.dstat & SCSW_DSTAT_UNIT_CHECK) && (schib->pmcw.chars & PMCW_CHARS_MASK_CSENSE)) { irb->scsw.flags |= SCSW_FLAGS_MASK_ESWF | SCSW_FLAGS_MASK_ECTL; build_irb_sense_data(sch, irb); irb->esw.erw = ESW_ERW_SENSE | (sizeof(sch->sense_data) << 8); } } } int css_do_tsch_get_irb(SubchDev *sch, IRB *target_irb, int *irb_len) { SCHIB *schib = &sch->curr_status; PMCW p; uint16_t stctl; IRB irb; if (~(schib->pmcw.flags) & (PMCW_FLAGS_MASK_DNV | PMCW_FLAGS_MASK_ENA)) { return 3; } stctl = schib->scsw.ctrl & SCSW_CTRL_MASK_STCTL; /* Prepare the irb for the guest. */ memset(&irb, 0, sizeof(IRB)); /* Copy scsw from current status. */ irb.scsw = schib->scsw; /* Build other IRB data, if necessary */ if (sch->irb_cb) { sch->irb_cb(sch, &irb); } /* Store the irb to the guest. */ p = schib->pmcw; copy_irb_to_guest(target_irb, &irb, &p, irb_len); return ((stctl & SCSW_STCTL_STATUS_PEND) == 0); } void css_do_tsch_update_subch(SubchDev *sch) { SCHIB *schib = &sch->curr_status; uint16_t stctl; uint16_t fctl; uint16_t actl; stctl = schib->scsw.ctrl & SCSW_CTRL_MASK_STCTL; fctl = schib->scsw.ctrl & SCSW_CTRL_MASK_FCTL; actl = schib->scsw.ctrl & SCSW_CTRL_MASK_ACTL; /* Clear conditions on subchannel, if applicable. */ if (stctl & SCSW_STCTL_STATUS_PEND) { schib->scsw.ctrl &= ~SCSW_CTRL_MASK_STCTL; if ((stctl != (SCSW_STCTL_INTERMEDIATE | SCSW_STCTL_STATUS_PEND)) || ((fctl & SCSW_FCTL_HALT_FUNC) && (actl & SCSW_ACTL_SUSP))) { schib->scsw.ctrl &= ~SCSW_CTRL_MASK_FCTL; } if (stctl != (SCSW_STCTL_INTERMEDIATE | SCSW_STCTL_STATUS_PEND)) { schib->scsw.flags &= ~SCSW_FLAGS_MASK_PNO; schib->scsw.ctrl &= ~(SCSW_ACTL_RESUME_PEND | SCSW_ACTL_START_PEND | SCSW_ACTL_HALT_PEND | SCSW_ACTL_CLEAR_PEND | SCSW_ACTL_SUSP); } else { if ((actl & SCSW_ACTL_SUSP) && (fctl & SCSW_FCTL_START_FUNC)) { schib->scsw.flags &= ~SCSW_FLAGS_MASK_PNO; if (fctl & SCSW_FCTL_HALT_FUNC) { schib->scsw.ctrl &= ~(SCSW_ACTL_RESUME_PEND | SCSW_ACTL_START_PEND | SCSW_ACTL_HALT_PEND | SCSW_ACTL_CLEAR_PEND | SCSW_ACTL_SUSP); } else { schib->scsw.ctrl &= ~SCSW_ACTL_RESUME_PEND; } } } /* Clear pending sense data. */ if (schib->pmcw.chars & PMCW_CHARS_MASK_CSENSE) { memset(sch->sense_data, 0 , sizeof(sch->sense_data)); } } } static void copy_crw_to_guest(CRW *dest, const CRW *src) { dest->flags = cpu_to_be16(src->flags); dest->rsid = cpu_to_be16(src->rsid); } int css_do_stcrw(CRW *crw) { CrwContainer *crw_cont; int ret; crw_cont = QTAILQ_FIRST(&channel_subsys.pending_crws); if (crw_cont) { QTAILQ_REMOVE(&channel_subsys.pending_crws, crw_cont, sibling); copy_crw_to_guest(crw, &crw_cont->crw); g_free(crw_cont); ret = 0; } else { /* List was empty, turn crw machine checks on again. */ memset(crw, 0, sizeof(*crw)); channel_subsys.do_crw_mchk = true; ret = 1; } return ret; } static void copy_crw_from_guest(CRW *dest, const CRW *src) { dest->flags = be16_to_cpu(src->flags); dest->rsid = be16_to_cpu(src->rsid); } void css_undo_stcrw(CRW *crw) { CrwContainer *crw_cont; crw_cont = g_try_new0(CrwContainer, 1); if (!crw_cont) { channel_subsys.crws_lost = true; return; } copy_crw_from_guest(&crw_cont->crw, crw); QTAILQ_INSERT_HEAD(&channel_subsys.pending_crws, crw_cont, sibling); } int css_collect_chp_desc(int m, uint8_t cssid, uint8_t f_chpid, uint8_t l_chpid, int rfmt, void *buf) { int i, desc_size; uint32_t words[8]; uint32_t chpid_type_word; CssImage *css; if (!m && !cssid) { css = channel_subsys.css[channel_subsys.default_cssid]; } else { css = channel_subsys.css[cssid]; } if (!css) { return 0; } desc_size = 0; for (i = f_chpid; i <= l_chpid; i++) { if (css->chpids[i].in_use) { chpid_type_word = 0x80000000 | (css->chpids[i].type << 8) | i; if (rfmt == 0) { words[0] = cpu_to_be32(chpid_type_word); words[1] = 0; memcpy(buf + desc_size, words, 8); desc_size += 8; } else if (rfmt == 1) { words[0] = cpu_to_be32(chpid_type_word); words[1] = 0; words[2] = 0; words[3] = 0; words[4] = 0; words[5] = 0; words[6] = 0; words[7] = 0; memcpy(buf + desc_size, words, 32); desc_size += 32; } } } return desc_size; } void css_do_schm(uint8_t mbk, int update, int dct, uint64_t mbo) { /* dct is currently ignored (not really meaningful for our devices) */ /* TODO: Don't ignore mbk. */ if (update && !channel_subsys.chnmon_active) { /* Enable measuring. */ channel_subsys.chnmon_area = mbo; channel_subsys.chnmon_active = true; } if (!update && channel_subsys.chnmon_active) { /* Disable measuring. */ channel_subsys.chnmon_area = 0; channel_subsys.chnmon_active = false; } } IOInstEnding css_do_rsch(SubchDev *sch) { SCHIB *schib = &sch->curr_status; if (~(schib->pmcw.flags) & (PMCW_FLAGS_MASK_DNV | PMCW_FLAGS_MASK_ENA)) { return IOINST_CC_NOT_OPERATIONAL; } if (schib->scsw.ctrl & SCSW_STCTL_STATUS_PEND) { return IOINST_CC_STATUS_PRESENT; } if (((schib->scsw.ctrl & SCSW_CTRL_MASK_FCTL) != SCSW_FCTL_START_FUNC) || (schib->scsw.ctrl & SCSW_ACTL_RESUME_PEND) || (!(schib->scsw.ctrl & SCSW_ACTL_SUSP))) { return IOINST_CC_BUSY; } /* If monitoring is active, update counter. */ if (channel_subsys.chnmon_active) { css_update_chnmon(sch); } schib->scsw.ctrl |= SCSW_ACTL_RESUME_PEND; return do_subchannel_work(sch); } int css_do_rchp(uint8_t cssid, uint8_t chpid) { uint8_t real_cssid; if (cssid > channel_subsys.max_cssid) { return -EINVAL; } if (channel_subsys.max_cssid == 0) { real_cssid = channel_subsys.default_cssid; } else { real_cssid = cssid; } if (!channel_subsys.css[real_cssid]) { return -EINVAL; } if (!channel_subsys.css[real_cssid]->chpids[chpid].in_use) { return -ENODEV; } if (!channel_subsys.css[real_cssid]->chpids[chpid].is_virtual) { fprintf(stderr, "rchp unsupported for non-virtual chpid %x.%02x!\n", real_cssid, chpid); return -ENODEV; } /* We don't really use a channel path, so we're done here. */ css_queue_crw(CRW_RSC_CHP, CRW_ERC_INIT, 1, channel_subsys.max_cssid > 0 ? 1 : 0, chpid); if (channel_subsys.max_cssid > 0) { css_queue_crw(CRW_RSC_CHP, CRW_ERC_INIT, 1, 0, real_cssid << 8); } return 0; } bool css_schid_final(int m, uint8_t cssid, uint8_t ssid, uint16_t schid) { SubchSet *set; uint8_t real_cssid; real_cssid = (!m && (cssid == 0)) ? channel_subsys.default_cssid : cssid; if (ssid > MAX_SSID || !channel_subsys.css[real_cssid] || !channel_subsys.css[real_cssid]->sch_set[ssid]) { return true; } set = channel_subsys.css[real_cssid]->sch_set[ssid]; return schid > find_last_bit(set->schids_used, (MAX_SCHID + 1) / sizeof(unsigned long)); } unsigned int css_find_free_chpid(uint8_t cssid) { CssImage *css = channel_subsys.css[cssid]; unsigned int chpid; if (!css) { return MAX_CHPID + 1; } for (chpid = 0; chpid <= MAX_CHPID; chpid++) { /* skip reserved chpid */ if (chpid == VIRTIO_CCW_CHPID) { continue; } if (!css->chpids[chpid].in_use) { return chpid; } } return MAX_CHPID + 1; } static int css_add_chpid(uint8_t cssid, uint8_t chpid, uint8_t type, bool is_virt) { CssImage *css; trace_css_chpid_add(cssid, chpid, type); css = channel_subsys.css[cssid]; if (!css) { return -EINVAL; } if (css->chpids[chpid].in_use) { return -EEXIST; } css->chpids[chpid].in_use = 1; css->chpids[chpid].type = type; css->chpids[chpid].is_virtual = is_virt; css_generate_chp_crws(cssid, chpid); return 0; } void css_sch_build_virtual_schib(SubchDev *sch, uint8_t chpid, uint8_t type) { SCHIB *schib = &sch->curr_status; int i; CssImage *css = channel_subsys.css[sch->cssid]; assert(css != NULL); memset(&schib->pmcw, 0, sizeof(PMCW)); schib->pmcw.flags |= PMCW_FLAGS_MASK_DNV; schib->pmcw.devno = sch->devno; /* single path */ schib->pmcw.pim = 0x80; schib->pmcw.pom = 0xff; schib->pmcw.pam = 0x80; schib->pmcw.chpid[0] = chpid; if (!css->chpids[chpid].in_use) { css_add_chpid(sch->cssid, chpid, type, true); } memset(&schib->scsw, 0, sizeof(SCSW)); schib->mba = 0; for (i = 0; i < ARRAY_SIZE(schib->mda); i++) { schib->mda[i] = 0; } } SubchDev *css_find_subch(uint8_t m, uint8_t cssid, uint8_t ssid, uint16_t schid) { uint8_t real_cssid; real_cssid = (!m && (cssid == 0)) ? channel_subsys.default_cssid : cssid; if (!channel_subsys.css[real_cssid]) { return NULL; } if (!channel_subsys.css[real_cssid]->sch_set[ssid]) { return NULL; } return channel_subsys.css[real_cssid]->sch_set[ssid]->sch[schid]; } /** * Return free device number in subchannel set. * * Return index of the first free device number in the subchannel set * identified by @p cssid and @p ssid, beginning the search at @p * start and wrapping around at MAX_DEVNO. Return a value exceeding * MAX_SCHID if there are no free device numbers in the subchannel * set. */ static uint32_t css_find_free_devno(uint8_t cssid, uint8_t ssid, uint16_t start) { uint32_t round; for (round = 0; round <= MAX_DEVNO; round++) { uint16_t devno = (start + round) % MAX_DEVNO; if (!css_devno_used(cssid, ssid, devno)) { return devno; } } return MAX_DEVNO + 1; } /** * Return first free subchannel (id) in subchannel set. * * Return index of the first free subchannel in the subchannel set * identified by @p cssid and @p ssid, if there is any. Return a value * exceeding MAX_SCHID if there are no free subchannels in the * subchannel set. */ static uint32_t css_find_free_subch(uint8_t cssid, uint8_t ssid) { uint32_t schid; for (schid = 0; schid <= MAX_SCHID; schid++) { if (!css_find_subch(1, cssid, ssid, schid)) { return schid; } } return MAX_SCHID + 1; } /** * Return first free subchannel (id) in subchannel set for a device number * * Verify the device number @p devno is not used yet in the subchannel * set identified by @p cssid and @p ssid. Set @p schid to the index * of the first free subchannel in the subchannel set, if there is * any. Return true if everything succeeded and false otherwise. */ static bool css_find_free_subch_for_devno(uint8_t cssid, uint8_t ssid, uint16_t devno, uint16_t *schid, Error **errp) { uint32_t free_schid; assert(schid); if (css_devno_used(cssid, ssid, devno)) { error_setg(errp, "Device %x.%x.%04x already exists", cssid, ssid, devno); return false; } free_schid = css_find_free_subch(cssid, ssid); if (free_schid > MAX_SCHID) { error_setg(errp, "No free subchannel found for %x.%x.%04x", cssid, ssid, devno); return false; } *schid = free_schid; return true; } /** * Return first free subchannel (id) and device number * * Locate the first free subchannel and first free device number in * any of the subchannel sets of the channel subsystem identified by * @p cssid. Return false if no free subchannel / device number could * be found. Otherwise set @p ssid, @p devno and @p schid to identify * the available subchannel and device number and return true. * * May modify @p ssid, @p devno and / or @p schid even if no free * subchannel / device number could be found. */ static bool css_find_free_subch_and_devno(uint8_t cssid, uint8_t *ssid, uint16_t *devno, uint16_t *schid, Error **errp) { uint32_t free_schid, free_devno; assert(ssid && devno && schid); for (*ssid = 0; *ssid <= MAX_SSID; (*ssid)++) { free_schid = css_find_free_subch(cssid, *ssid); if (free_schid > MAX_SCHID) { continue; } free_devno = css_find_free_devno(cssid, *ssid, free_schid); if (free_devno > MAX_DEVNO) { continue; } *schid = free_schid; *devno = free_devno; return true; } error_setg(errp, "Virtual channel subsystem is full!"); return false; } bool css_subch_visible(SubchDev *sch) { if (sch->ssid > channel_subsys.max_ssid) { return false; } if (sch->cssid != channel_subsys.default_cssid) { return (channel_subsys.max_cssid > 0); } return true; } bool css_present(uint8_t cssid) { return (channel_subsys.css[cssid] != NULL); } bool css_devno_used(uint8_t cssid, uint8_t ssid, uint16_t devno) { if (!channel_subsys.css[cssid]) { return false; } if (!channel_subsys.css[cssid]->sch_set[ssid]) { return false; } return !!test_bit(devno, channel_subsys.css[cssid]->sch_set[ssid]->devnos_used); } void css_subch_assign(uint8_t cssid, uint8_t ssid, uint16_t schid, uint16_t devno, SubchDev *sch) { CssImage *css; SubchSet *s_set; trace_css_assign_subch(sch ? "assign" : "deassign", cssid, ssid, schid, devno); if (!channel_subsys.css[cssid]) { fprintf(stderr, "Suspicious call to %s (%x.%x.%04x) for non-existing css!\n", __func__, cssid, ssid, schid); return; } css = channel_subsys.css[cssid]; if (!css->sch_set[ssid]) { css->sch_set[ssid] = g_new0(SubchSet, 1); } s_set = css->sch_set[ssid]; s_set->sch[schid] = sch; if (sch) { set_bit(schid, s_set->schids_used); set_bit(devno, s_set->devnos_used); } else { clear_bit(schid, s_set->schids_used); clear_bit(devno, s_set->devnos_used); } } void css_crw_add_to_queue(CRW crw) { CrwContainer *crw_cont; trace_css_crw((crw.flags & CRW_FLAGS_MASK_RSC) >> 8, crw.flags & CRW_FLAGS_MASK_ERC, crw.rsid, (crw.flags & CRW_FLAGS_MASK_C) ? "(chained)" : ""); /* TODO: Maybe use a static crw pool? */ crw_cont = g_try_new0(CrwContainer, 1); if (!crw_cont) { channel_subsys.crws_lost = true; return; } crw_cont->crw = crw; QTAILQ_INSERT_TAIL(&channel_subsys.pending_crws, crw_cont, sibling); if (channel_subsys.do_crw_mchk) { channel_subsys.do_crw_mchk = false; /* Inject crw pending machine check. */ s390_crw_mchk(); } } void css_queue_crw(uint8_t rsc, uint8_t erc, int solicited, int chain, uint16_t rsid) { CRW crw; crw.flags = (rsc << 8) | erc; if (solicited) { crw.flags |= CRW_FLAGS_MASK_S; } if (chain) { crw.flags |= CRW_FLAGS_MASK_C; } crw.rsid = rsid; if (channel_subsys.crws_lost) { crw.flags |= CRW_FLAGS_MASK_R; channel_subsys.crws_lost = false; } css_crw_add_to_queue(crw); } void css_generate_sch_crws(uint8_t cssid, uint8_t ssid, uint16_t schid, int hotplugged, int add) { uint8_t guest_cssid; bool chain_crw; if (add && !hotplugged) { return; } if (channel_subsys.max_cssid == 0) { /* Default cssid shows up as 0. */ guest_cssid = (cssid == channel_subsys.default_cssid) ? 0 : cssid; } else { /* Show real cssid to the guest. */ guest_cssid = cssid; } /* * Only notify for higher subchannel sets/channel subsystems if the * guest has enabled it. */ if ((ssid > channel_subsys.max_ssid) || (guest_cssid > channel_subsys.max_cssid) || ((channel_subsys.max_cssid == 0) && (cssid != channel_subsys.default_cssid))) { return; } chain_crw = (channel_subsys.max_ssid > 0) || (channel_subsys.max_cssid > 0); css_queue_crw(CRW_RSC_SUBCH, CRW_ERC_IPI, 0, chain_crw ? 1 : 0, schid); if (chain_crw) { css_queue_crw(CRW_RSC_SUBCH, CRW_ERC_IPI, 0, 0, (guest_cssid << 8) | (ssid << 4)); } /* RW_ERC_IPI --> clear pending interrupts */ css_clear_io_interrupt(css_do_build_subchannel_id(cssid, ssid), schid); } void css_generate_chp_crws(uint8_t cssid, uint8_t chpid) { /* TODO */ } void css_generate_css_crws(uint8_t cssid) { if (!channel_subsys.sei_pending) { css_queue_crw(CRW_RSC_CSS, CRW_ERC_EVENT, 0, 0, cssid); } channel_subsys.sei_pending = true; } void css_clear_sei_pending(void) { channel_subsys.sei_pending = false; } int css_enable_mcsse(void) { trace_css_enable_facility("mcsse"); channel_subsys.max_cssid = MAX_CSSID; return 0; } int css_enable_mss(void) { trace_css_enable_facility("mss"); channel_subsys.max_ssid = MAX_SSID; return 0; } void css_reset_sch(SubchDev *sch) { SCHIB *schib = &sch->curr_status; if ((schib->pmcw.flags & PMCW_FLAGS_MASK_ENA) != 0 && sch->disable_cb) { sch->disable_cb(sch); } schib->pmcw.intparm = 0; schib->pmcw.flags &= ~(PMCW_FLAGS_MASK_ISC | PMCW_FLAGS_MASK_ENA | PMCW_FLAGS_MASK_LM | PMCW_FLAGS_MASK_MME | PMCW_FLAGS_MASK_MP | PMCW_FLAGS_MASK_TF); schib->pmcw.flags |= PMCW_FLAGS_MASK_DNV; schib->pmcw.devno = sch->devno; schib->pmcw.pim = 0x80; schib->pmcw.lpm = schib->pmcw.pim; schib->pmcw.pnom = 0; schib->pmcw.lpum = 0; schib->pmcw.mbi = 0; schib->pmcw.pom = 0xff; schib->pmcw.pam = 0x80; schib->pmcw.chars &= ~(PMCW_CHARS_MASK_MBFC | PMCW_CHARS_MASK_XMWME | PMCW_CHARS_MASK_CSENSE); memset(&schib->scsw, 0, sizeof(schib->scsw)); schib->mba = 0; sch->channel_prog = 0x0; sch->last_cmd_valid = false; sch->thinint_active = false; } void css_reset(void) { CrwContainer *crw_cont; /* Clean up monitoring. */ channel_subsys.chnmon_active = false; channel_subsys.chnmon_area = 0; /* Clear pending CRWs. */ while ((crw_cont = QTAILQ_FIRST(&channel_subsys.pending_crws))) { QTAILQ_REMOVE(&channel_subsys.pending_crws, crw_cont, sibling); g_free(crw_cont); } channel_subsys.sei_pending = false; channel_subsys.do_crw_mchk = true; channel_subsys.crws_lost = false; /* Reset maximum ids. */ channel_subsys.max_cssid = 0; channel_subsys.max_ssid = 0; } static void get_css_devid(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { Property *prop = opaque; CssDevId *dev_id = object_field_prop_ptr(obj, prop); char buffer[] = "xx.x.xxxx"; char *p = buffer; int r; if (dev_id->valid) { r = snprintf(buffer, sizeof(buffer), "%02x.%1x.%04x", dev_id->cssid, dev_id->ssid, dev_id->devid); assert(r == sizeof(buffer) - 1); /* drop leading zero */ if (dev_id->cssid <= 0xf) { p++; } } else { snprintf(buffer, sizeof(buffer), "<unset>"); } visit_type_str(v, name, &p, errp); } /* * parse <cssid>.<ssid>.<devid> and assert valid range for cssid/ssid */ static void set_css_devid(Object *obj, Visitor *v, const char *name, void *opaque, Error **errp) { Property *prop = opaque; CssDevId *dev_id = object_field_prop_ptr(obj, prop); char *str; int num, n1, n2; unsigned int cssid, ssid, devid; if (!visit_type_str(v, name, &str, errp)) { return; } num = sscanf(str, "%2x.%1x%n.%4x%n", &cssid, &ssid, &n1, &devid, &n2); if (num != 3 || (n2 - n1) != 5 || strlen(str) != n2) { error_set_from_qdev_prop_error(errp, EINVAL, obj, name, str); goto out; } if ((cssid > MAX_CSSID) || (ssid > MAX_SSID)) { error_setg(errp, "Invalid cssid or ssid: cssid %x, ssid %x", cssid, ssid); goto out; } dev_id->cssid = cssid; dev_id->ssid = ssid; dev_id->devid = devid; dev_id->valid = true; out: g_free(str); } const PropertyInfo css_devid_propinfo = { .name = "str", .description = "Identifier of an I/O device in the channel " "subsystem, example: fe.1.23ab", .get = get_css_devid, .set = set_css_devid, }; const PropertyInfo css_devid_ro_propinfo = { .name = "str", .description = "Read-only identifier of an I/O device in the channel " "subsystem, example: fe.1.23ab", .get = get_css_devid, }; SubchDev *css_create_sch(CssDevId bus_id, Error **errp) { uint16_t schid = 0; SubchDev *sch; if (bus_id.valid) { if (!channel_subsys.css[bus_id.cssid]) { css_create_css_image(bus_id.cssid, false); } if (!css_find_free_subch_for_devno(bus_id.cssid, bus_id.ssid, bus_id.devid, &schid, errp)) { return NULL; } } else { for (bus_id.cssid = channel_subsys.default_cssid;;) { if (!channel_subsys.css[bus_id.cssid]) { css_create_css_image(bus_id.cssid, false); } if (css_find_free_subch_and_devno(bus_id.cssid, &bus_id.ssid, &bus_id.devid, &schid, NULL)) { break; } bus_id.cssid = (bus_id.cssid + 1) % MAX_CSSID; if (bus_id.cssid == channel_subsys.default_cssid) { error_setg(errp, "Virtual channel subsystem is full!"); return NULL; } } } sch = g_new0(SubchDev, 1); sch->cssid = bus_id.cssid; sch->ssid = bus_id.ssid; sch->devno = bus_id.devid; sch->schid = schid; css_subch_assign(sch->cssid, sch->ssid, schid, sch->devno, sch); return sch; } static int css_sch_get_chpids(SubchDev *sch, CssDevId *dev_id) { char *fid_path; FILE *fd; uint32_t chpid[8]; int i; SCHIB *schib = &sch->curr_status; fid_path = g_strdup_printf("/sys/bus/css/devices/%x.%x.%04x/chpids", dev_id->cssid, dev_id->ssid, dev_id->devid); fd = fopen(fid_path, "r"); if (fd == NULL) { error_report("%s: open %s failed", __func__, fid_path); g_free(fid_path); return -EINVAL; } if (fscanf(fd, "%x %x %x %x %x %x %x %x", &chpid[0], &chpid[1], &chpid[2], &chpid[3], &chpid[4], &chpid[5], &chpid[6], &chpid[7]) != 8) { fclose(fd); g_free(fid_path); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(schib->pmcw.chpid); i++) { schib->pmcw.chpid[i] = chpid[i]; } fclose(fd); g_free(fid_path); return 0; } static int css_sch_get_path_masks(SubchDev *sch, CssDevId *dev_id) { char *fid_path; FILE *fd; uint32_t pim, pam, pom; SCHIB *schib = &sch->curr_status; fid_path = g_strdup_printf("/sys/bus/css/devices/%x.%x.%04x/pimpampom", dev_id->cssid, dev_id->ssid, dev_id->devid); fd = fopen(fid_path, "r"); if (fd == NULL) { error_report("%s: open %s failed", __func__, fid_path); g_free(fid_path); return -EINVAL; } if (fscanf(fd, "%x %x %x", &pim, &pam, &pom) != 3) { fclose(fd); g_free(fid_path); return -EINVAL; } schib->pmcw.pim = pim; schib->pmcw.pam = pam; schib->pmcw.pom = pom; fclose(fd); g_free(fid_path); return 0; } static int css_sch_get_chpid_type(uint8_t chpid, uint32_t *type, CssDevId *dev_id) { char *fid_path; FILE *fd; fid_path = g_strdup_printf("/sys/devices/css%x/chp0.%02x/type", dev_id->cssid, chpid); fd = fopen(fid_path, "r"); if (fd == NULL) { error_report("%s: open %s failed", __func__, fid_path); g_free(fid_path); return -EINVAL; } if (fscanf(fd, "%x", type) != 1) { fclose(fd); g_free(fid_path); return -EINVAL; } fclose(fd); g_free(fid_path); return 0; } /* * We currently retrieve the real device information from sysfs to build the * guest subchannel information block without considering the migration feature. * We need to revisit this problem when we want to add migration support. */ int css_sch_build_schib(SubchDev *sch, CssDevId *dev_id) { CssImage *css = channel_subsys.css[sch->cssid]; SCHIB *schib = &sch->curr_status; uint32_t type; int i, ret; assert(css != NULL); memset(&schib->pmcw, 0, sizeof(PMCW)); schib->pmcw.flags |= PMCW_FLAGS_MASK_DNV; /* We are dealing with I/O subchannels only. */ schib->pmcw.devno = sch->devno; /* Grab path mask from sysfs. */ ret = css_sch_get_path_masks(sch, dev_id); if (ret) { return ret; } /* Grab chpids from sysfs. */ ret = css_sch_get_chpids(sch, dev_id); if (ret) { return ret; } /* Build chpid type. */ for (i = 0; i < ARRAY_SIZE(schib->pmcw.chpid); i++) { if (schib->pmcw.chpid[i] && !css->chpids[schib->pmcw.chpid[i]].in_use) { ret = css_sch_get_chpid_type(schib->pmcw.chpid[i], &type, dev_id); if (ret) { return ret; } css_add_chpid(sch->cssid, schib->pmcw.chpid[i], type, false); } } memset(&schib->scsw, 0, sizeof(SCSW)); schib->mba = 0; for (i = 0; i < ARRAY_SIZE(schib->mda); i++) { schib->mda[i] = 0; } return 0; }