/* * QEMU paravirtual RDMA - Generic RDMA backend * * Copyright (C) 2018 Oracle * Copyright (C) 2018 Red Hat Inc * * Authors: * Yuval Shaia * Marcel Apfelbaum * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "qemu/error-report.h" #include "sysemu/sysemu.h" #include "qapi/error.h" #include "qapi/qmp/qlist.h" #include "qapi/qmp/qnum.h" #include "qapi/qapi-events-rdma.h" #include #include #include #include #include "contrib/rdmacm-mux/rdmacm-mux.h" #include "trace.h" #include "rdma_utils.h" #include "rdma_rm.h" #include "rdma_backend.h" /* Vendor Errors */ #define VENDOR_ERR_FAIL_BACKEND 0x201 #define VENDOR_ERR_TOO_MANY_SGES 0x202 #define VENDOR_ERR_NOMEM 0x203 #define VENDOR_ERR_QP0 0x204 #define VENDOR_ERR_NO_SGE 0x205 #define VENDOR_ERR_MAD_SEND 0x206 #define VENDOR_ERR_INVLKEY 0x207 #define VENDOR_ERR_MR_SMALL 0x208 #define VENDOR_ERR_INV_MAD_BUFF 0x209 #define VENDOR_ERR_INV_NUM_SGE 0x210 #define THR_NAME_LEN 16 #define THR_POLL_TO 5000 #define MAD_HDR_SIZE sizeof(struct ibv_grh) typedef struct BackendCtx { void *up_ctx; bool is_tx_req; struct ibv_sge sge; /* Used to save MAD recv buffer */ } BackendCtx; struct backend_umad { struct ib_user_mad hdr; char mad[RDMA_MAX_PRIVATE_DATA]; }; static void (*comp_handler)(void *ctx, struct ibv_wc *wc); static void dummy_comp_handler(void *ctx, struct ibv_wc *wc) { pr_err("No completion handler is registered\n"); } static inline void complete_work(enum ibv_wc_status status, uint32_t vendor_err, void *ctx) { struct ibv_wc wc = {0}; wc.status = status; wc.vendor_err = vendor_err; comp_handler(ctx, &wc); } static void poll_cq(RdmaDeviceResources *rdma_dev_res, struct ibv_cq *ibcq) { int i, ne; BackendCtx *bctx; struct ibv_wc wc[2]; pr_dbg("Entering poll_cq loop on cq %p\n", ibcq); do { ne = ibv_poll_cq(ibcq, ARRAY_SIZE(wc), wc); pr_dbg("Got %d completion(s) from cq %p\n", ne, ibcq); for (i = 0; i < ne; i++) { pr_dbg("wr_id=0x%" PRIx64 "\n", wc[i].wr_id); pr_dbg("status=%d\n", wc[i].status); bctx = rdma_rm_get_cqe_ctx(rdma_dev_res, wc[i].wr_id); if (unlikely(!bctx)) { pr_dbg("Error: Failed to find ctx for req %" PRId64 "\n", wc[i].wr_id); continue; } pr_dbg("Processing %s CQE\n", bctx->is_tx_req ? "send" : "recv"); comp_handler(bctx->up_ctx, &wc[i]); rdma_rm_dealloc_cqe_ctx(rdma_dev_res, wc[i].wr_id); g_free(bctx); } } while (ne > 0); if (ne < 0) { pr_dbg("Got error %d from ibv_poll_cq\n", ne); } } static void *comp_handler_thread(void *arg) { RdmaBackendDev *backend_dev = (RdmaBackendDev *)arg; int rc; struct ibv_cq *ev_cq; void *ev_ctx; int flags; GPollFD pfds[1]; /* Change to non-blocking mode */ flags = fcntl(backend_dev->channel->fd, F_GETFL); rc = fcntl(backend_dev->channel->fd, F_SETFL, flags | O_NONBLOCK); if (rc < 0) { pr_dbg("Fail to change to non-blocking mode\n"); return NULL; } pr_dbg("Starting\n"); pfds[0].fd = backend_dev->channel->fd; pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR; backend_dev->comp_thread.is_running = true; while (backend_dev->comp_thread.run) { do { rc = qemu_poll_ns(pfds, 1, THR_POLL_TO * (int64_t)SCALE_MS); } while (!rc && backend_dev->comp_thread.run); if (backend_dev->comp_thread.run) { pr_dbg("Waiting for completion on channel %p\n", backend_dev->channel); rc = ibv_get_cq_event(backend_dev->channel, &ev_cq, &ev_ctx); pr_dbg("ibv_get_cq_event=%d\n", rc); if (unlikely(rc)) { pr_dbg("---> ibv_get_cq_event (%d)\n", rc); continue; } rc = ibv_req_notify_cq(ev_cq, 0); if (unlikely(rc)) { pr_dbg("Error %d from ibv_req_notify_cq\n", rc); } poll_cq(backend_dev->rdma_dev_res, ev_cq); ibv_ack_cq_events(ev_cq, 1); } } pr_dbg("Going down\n"); /* TODO: Post cqe for all remaining buffs that were posted */ backend_dev->comp_thread.is_running = false; qemu_thread_exit(0); return NULL; } static inline void disable_rdmacm_mux_async(RdmaBackendDev *backend_dev) { atomic_set(&backend_dev->rdmacm_mux.can_receive, 0); } static inline void enable_rdmacm_mux_async(RdmaBackendDev *backend_dev) { atomic_set(&backend_dev->rdmacm_mux.can_receive, sizeof(RdmaCmMuxMsg)); } static inline int rdmacm_mux_can_process_async(RdmaBackendDev *backend_dev) { return atomic_read(&backend_dev->rdmacm_mux.can_receive); } static int check_mux_op_status(CharBackend *mad_chr_be) { RdmaCmMuxMsg msg = {0}; int ret; pr_dbg("Reading response\n"); ret = qemu_chr_fe_read_all(mad_chr_be, (uint8_t *)&msg, sizeof(msg)); if (ret != sizeof(msg)) { pr_dbg("Invalid message size %d, expecting %ld\n", ret, sizeof(msg)); return -EIO; } pr_dbg("msg_type=%d\n", msg.hdr.msg_type); pr_dbg("op_code=%d\n", msg.hdr.op_code); pr_dbg("err_code=%d\n", msg.hdr.err_code); if (msg.hdr.msg_type != RDMACM_MUX_MSG_TYPE_RESP) { pr_dbg("Invalid message type %d\n", msg.hdr.msg_type); return -EIO; } if (msg.hdr.err_code != RDMACM_MUX_ERR_CODE_OK) { pr_dbg("Operation failed in mux, error code %d\n", msg.hdr.err_code); return -EIO; } return 0; } static int exec_rdmacm_mux_req(RdmaBackendDev *backend_dev, RdmaCmMuxMsg *msg) { int rc = 0; pr_dbg("Executing request %d\n", msg->hdr.op_code); msg->hdr.msg_type = RDMACM_MUX_MSG_TYPE_REQ; disable_rdmacm_mux_async(backend_dev); rc = qemu_chr_fe_write(backend_dev->rdmacm_mux.chr_be, (const uint8_t *)msg, sizeof(*msg)); if (rc != sizeof(*msg)) { enable_rdmacm_mux_async(backend_dev); pr_dbg("Fail to send request to rdmacm_mux (rc=%d)\n", rc); return -EIO; } rc = check_mux_op_status(backend_dev->rdmacm_mux.chr_be); if (rc) { pr_dbg("Fail to execute rdmacm_mux request %d (rc=%d)\n", msg->hdr.op_code, rc); } enable_rdmacm_mux_async(backend_dev); return 0; } static void stop_backend_thread(RdmaBackendThread *thread) { thread->run = false; while (thread->is_running) { pr_dbg("Waiting for thread to complete\n"); sleep(THR_POLL_TO / SCALE_US / 2); } } static void start_comp_thread(RdmaBackendDev *backend_dev) { char thread_name[THR_NAME_LEN] = {0}; stop_backend_thread(&backend_dev->comp_thread); snprintf(thread_name, sizeof(thread_name), "rdma_comp_%s", ibv_get_device_name(backend_dev->ib_dev)); backend_dev->comp_thread.run = true; qemu_thread_create(&backend_dev->comp_thread.thread, thread_name, comp_handler_thread, backend_dev, QEMU_THREAD_DETACHED); } void rdma_backend_register_comp_handler(void (*handler)(void *ctx, struct ibv_wc *wc)) { comp_handler = handler; } void rdma_backend_unregister_comp_handler(void) { rdma_backend_register_comp_handler(dummy_comp_handler); } int rdma_backend_query_port(RdmaBackendDev *backend_dev, struct ibv_port_attr *port_attr) { int rc; rc = ibv_query_port(backend_dev->context, backend_dev->port_num, port_attr); if (rc) { pr_dbg("Error %d from ibv_query_port\n", rc); return -EIO; } return 0; } void rdma_backend_poll_cq(RdmaDeviceResources *rdma_dev_res, RdmaBackendCQ *cq) { poll_cq(rdma_dev_res, cq->ibcq); } static GHashTable *ah_hash; static struct ibv_ah *create_ah(RdmaBackendDev *backend_dev, struct ibv_pd *pd, uint8_t sgid_idx, union ibv_gid *dgid) { GBytes *ah_key = g_bytes_new(dgid, sizeof(*dgid)); struct ibv_ah *ah = g_hash_table_lookup(ah_hash, ah_key); if (ah) { trace_create_ah_cache_hit(be64_to_cpu(dgid->global.subnet_prefix), be64_to_cpu(dgid->global.interface_id)); g_bytes_unref(ah_key); } else { struct ibv_ah_attr ah_attr = { .is_global = 1, .port_num = backend_dev->port_num, .grh.hop_limit = 1, }; ah_attr.grh.dgid = *dgid; ah_attr.grh.sgid_index = sgid_idx; ah = ibv_create_ah(pd, &ah_attr); if (ah) { g_hash_table_insert(ah_hash, ah_key, ah); } else { g_bytes_unref(ah_key); pr_dbg("Fail to create AH for gid <0x%" PRIx64 ", 0x%" PRIx64 ">\n", be64_to_cpu(dgid->global.subnet_prefix), be64_to_cpu(dgid->global.interface_id)); } trace_create_ah_cache_miss(be64_to_cpu(dgid->global.subnet_prefix), be64_to_cpu(dgid->global.interface_id)); } return ah; } static void destroy_ah_hash_key(gpointer data) { g_bytes_unref(data); } static void destroy_ah_hast_data(gpointer data) { struct ibv_ah *ah = data; ibv_destroy_ah(ah); } static void ah_cache_init(void) { ah_hash = g_hash_table_new_full(g_bytes_hash, g_bytes_equal, destroy_ah_hash_key, destroy_ah_hast_data); } static int build_host_sge_array(RdmaDeviceResources *rdma_dev_res, struct ibv_sge *dsge, struct ibv_sge *ssge, uint8_t num_sge) { RdmaRmMR *mr; int ssge_idx; pr_dbg("num_sge=%d\n", num_sge); for (ssge_idx = 0; ssge_idx < num_sge; ssge_idx++) { mr = rdma_rm_get_mr(rdma_dev_res, ssge[ssge_idx].lkey); if (unlikely(!mr)) { pr_dbg("Invalid lkey 0x%x\n", ssge[ssge_idx].lkey); return VENDOR_ERR_INVLKEY | ssge[ssge_idx].lkey; } dsge->addr = (uintptr_t)mr->virt + ssge[ssge_idx].addr - mr->start; dsge->length = ssge[ssge_idx].length; dsge->lkey = rdma_backend_mr_lkey(&mr->backend_mr); pr_dbg("ssge->addr=0x%" PRIx64 "\n", ssge[ssge_idx].addr); pr_dbg("dsge->addr=0x%" PRIx64 "\n", dsge->addr); pr_dbg("dsge->length=%d\n", dsge->length); pr_dbg("dsge->lkey=0x%x\n", dsge->lkey); dsge++; } return 0; } static int mad_send(RdmaBackendDev *backend_dev, uint8_t sgid_idx, union ibv_gid *sgid, struct ibv_sge *sge, uint32_t num_sge) { RdmaCmMuxMsg msg = {0}; char *hdr, *data; int ret; pr_dbg("num_sge=%d\n", num_sge); if (num_sge != 2) { return -EINVAL; } msg.hdr.op_code = RDMACM_MUX_OP_CODE_MAD; memcpy(msg.hdr.sgid.raw, sgid->raw, sizeof(msg.hdr.sgid)); msg.umad_len = sge[0].length + sge[1].length; pr_dbg("umad_len=%d\n", msg.umad_len); if (msg.umad_len > sizeof(msg.umad.mad)) { return -ENOMEM; } msg.umad.hdr.addr.qpn = htobe32(1); msg.umad.hdr.addr.grh_present = 1; pr_dbg("sgid_idx=%d\n", sgid_idx); pr_dbg("sgid=0x%llx\n", sgid->global.interface_id); msg.umad.hdr.addr.gid_index = sgid_idx; memcpy(msg.umad.hdr.addr.gid, sgid->raw, sizeof(msg.umad.hdr.addr.gid)); msg.umad.hdr.addr.hop_limit = 0xFF; hdr = rdma_pci_dma_map(backend_dev->dev, sge[0].addr, sge[0].length); if (!hdr) { pr_dbg("Fail to map to sge[0]\n"); return -ENOMEM; } data = rdma_pci_dma_map(backend_dev->dev, sge[1].addr, sge[1].length); if (!data) { pr_dbg("Fail to map to sge[1]\n"); rdma_pci_dma_unmap(backend_dev->dev, hdr, sge[0].length); return -ENOMEM; } pr_dbg_buf("mad_hdr", hdr, sge[0].length); pr_dbg_buf("mad_data", data, sge[1].length); memcpy(&msg.umad.mad[0], hdr, sge[0].length); memcpy(&msg.umad.mad[sge[0].length], data, sge[1].length); rdma_pci_dma_unmap(backend_dev->dev, data, sge[1].length); rdma_pci_dma_unmap(backend_dev->dev, hdr, sge[0].length); ret = exec_rdmacm_mux_req(backend_dev, &msg); if (ret) { pr_dbg("Fail to send MAD to rdma_umadmux (%d)\n", ret); return -EIO; } return 0; } void rdma_backend_post_send(RdmaBackendDev *backend_dev, RdmaBackendQP *qp, uint8_t qp_type, struct ibv_sge *sge, uint32_t num_sge, uint8_t sgid_idx, union ibv_gid *sgid, union ibv_gid *dgid, uint32_t dqpn, uint32_t dqkey, void *ctx) { BackendCtx *bctx; struct ibv_sge new_sge[MAX_SGE]; uint32_t bctx_id; int rc; struct ibv_send_wr wr = {0}, *bad_wr; if (!qp->ibqp) { /* This field does not get initialized for QP0 and QP1 */ if (qp_type == IBV_QPT_SMI) { pr_dbg("QP0 unsupported\n"); complete_work(IBV_WC_GENERAL_ERR, VENDOR_ERR_QP0, ctx); } else if (qp_type == IBV_QPT_GSI) { pr_dbg("QP1\n"); rc = mad_send(backend_dev, sgid_idx, sgid, sge, num_sge); if (rc) { complete_work(IBV_WC_GENERAL_ERR, VENDOR_ERR_MAD_SEND, ctx); } else { complete_work(IBV_WC_SUCCESS, 0, ctx); } } return; } pr_dbg("num_sge=%d\n", num_sge); if (!num_sge) { pr_dbg("num_sge=0\n"); complete_work(IBV_WC_GENERAL_ERR, VENDOR_ERR_NO_SGE, ctx); return; } bctx = g_malloc0(sizeof(*bctx)); bctx->up_ctx = ctx; bctx->is_tx_req = 1; rc = rdma_rm_alloc_cqe_ctx(backend_dev->rdma_dev_res, &bctx_id, bctx); if (unlikely(rc)) { pr_dbg("Failed to allocate cqe_ctx\n"); complete_work(IBV_WC_GENERAL_ERR, VENDOR_ERR_NOMEM, ctx); goto out_free_bctx; } rc = build_host_sge_array(backend_dev->rdma_dev_res, new_sge, sge, num_sge); if (rc) { pr_dbg("Error: Failed to build host SGE array\n"); complete_work(IBV_WC_GENERAL_ERR, rc, ctx); goto out_dealloc_cqe_ctx; } if (qp_type == IBV_QPT_UD) { wr.wr.ud.ah = create_ah(backend_dev, qp->ibpd, sgid_idx, dgid); if (!wr.wr.ud.ah) { complete_work(IBV_WC_GENERAL_ERR, VENDOR_ERR_FAIL_BACKEND, ctx); goto out_dealloc_cqe_ctx; } wr.wr.ud.remote_qpn = dqpn; wr.wr.ud.remote_qkey = dqkey; } wr.num_sge = num_sge; wr.opcode = IBV_WR_SEND; wr.send_flags = IBV_SEND_SIGNALED; wr.sg_list = new_sge; wr.wr_id = bctx_id; rc = ibv_post_send(qp->ibqp, &wr, &bad_wr); pr_dbg("ibv_post_send=%d\n", rc); if (rc) { pr_dbg("Fail (%d, %d) to post send WQE to qpn %d\n", rc, errno, qp->ibqp->qp_num); complete_work(IBV_WC_GENERAL_ERR, VENDOR_ERR_FAIL_BACKEND, ctx); goto out_dealloc_cqe_ctx; } return; out_dealloc_cqe_ctx: rdma_rm_dealloc_cqe_ctx(backend_dev->rdma_dev_res, bctx_id); out_free_bctx: g_free(bctx); } static unsigned int save_mad_recv_buffer(RdmaBackendDev *backend_dev, struct ibv_sge *sge, uint32_t num_sge, void *ctx) { BackendCtx *bctx; int rc; uint32_t bctx_id; if (num_sge != 1) { pr_dbg("Invalid num_sge (%d), expecting 1\n", num_sge); return VENDOR_ERR_INV_NUM_SGE; } if (sge[0].length < RDMA_MAX_PRIVATE_DATA + sizeof(struct ibv_grh)) { pr_dbg("Too small buffer for MAD\n"); return VENDOR_ERR_INV_MAD_BUFF; } pr_dbg("addr=0x%" PRIx64"\n", sge[0].addr); pr_dbg("length=%d\n", sge[0].length); pr_dbg("lkey=%d\n", sge[0].lkey); bctx = g_malloc0(sizeof(*bctx)); rc = rdma_rm_alloc_cqe_ctx(backend_dev->rdma_dev_res, &bctx_id, bctx); if (unlikely(rc)) { g_free(bctx); pr_dbg("Fail to allocate cqe_ctx\n"); return VENDOR_ERR_NOMEM; } pr_dbg("bctx_id %d, bctx %p, ctx %p\n", bctx_id, bctx, ctx); bctx->up_ctx = ctx; bctx->sge = *sge; qemu_mutex_lock(&backend_dev->recv_mads_list.lock); qlist_append_int(backend_dev->recv_mads_list.list, bctx_id); qemu_mutex_unlock(&backend_dev->recv_mads_list.lock); return 0; } void rdma_backend_post_recv(RdmaBackendDev *backend_dev, RdmaDeviceResources *rdma_dev_res, RdmaBackendQP *qp, uint8_t qp_type, struct ibv_sge *sge, uint32_t num_sge, void *ctx) { BackendCtx *bctx; struct ibv_sge new_sge[MAX_SGE]; uint32_t bctx_id; int rc; struct ibv_recv_wr wr = {0}, *bad_wr; if (!qp->ibqp) { /* This field does not get initialized for QP0 and QP1 */ if (qp_type == IBV_QPT_SMI) { pr_dbg("QP0 unsupported\n"); complete_work(IBV_WC_GENERAL_ERR, VENDOR_ERR_QP0, ctx); } if (qp_type == IBV_QPT_GSI) { pr_dbg("QP1\n"); rc = save_mad_recv_buffer(backend_dev, sge, num_sge, ctx); if (rc) { complete_work(IBV_WC_GENERAL_ERR, rc, ctx); } } return; } pr_dbg("num_sge=%d\n", num_sge); if (!num_sge) { pr_dbg("num_sge=0\n"); complete_work(IBV_WC_GENERAL_ERR, VENDOR_ERR_NO_SGE, ctx); return; } bctx = g_malloc0(sizeof(*bctx)); bctx->up_ctx = ctx; bctx->is_tx_req = 0; rc = rdma_rm_alloc_cqe_ctx(rdma_dev_res, &bctx_id, bctx); if (unlikely(rc)) { pr_dbg("Failed to allocate cqe_ctx\n"); complete_work(IBV_WC_GENERAL_ERR, VENDOR_ERR_NOMEM, ctx); goto out_free_bctx; } rc = build_host_sge_array(rdma_dev_res, new_sge, sge, num_sge); if (rc) { pr_dbg("Error: Failed to build host SGE array\n"); complete_work(IBV_WC_GENERAL_ERR, rc, ctx); goto out_dealloc_cqe_ctx; } wr.num_sge = num_sge; wr.sg_list = new_sge; wr.wr_id = bctx_id; rc = ibv_post_recv(qp->ibqp, &wr, &bad_wr); pr_dbg("ibv_post_recv=%d\n", rc); if (rc) { pr_dbg("Fail (%d, %d) to post recv WQE to qpn %d\n", rc, errno, qp->ibqp->qp_num); complete_work(IBV_WC_GENERAL_ERR, VENDOR_ERR_FAIL_BACKEND, ctx); goto out_dealloc_cqe_ctx; } return; out_dealloc_cqe_ctx: rdma_rm_dealloc_cqe_ctx(rdma_dev_res, bctx_id); out_free_bctx: g_free(bctx); } int rdma_backend_create_pd(RdmaBackendDev *backend_dev, RdmaBackendPD *pd) { pd->ibpd = ibv_alloc_pd(backend_dev->context); return pd->ibpd ? 0 : -EIO; } void rdma_backend_destroy_pd(RdmaBackendPD *pd) { if (pd->ibpd) { ibv_dealloc_pd(pd->ibpd); } } int rdma_backend_create_mr(RdmaBackendMR *mr, RdmaBackendPD *pd, void *addr, size_t length, int access) { pr_dbg("addr=0x%p\n", addr); pr_dbg("len=%zu\n", length); mr->ibmr = ibv_reg_mr(pd->ibpd, addr, length, access); if (mr->ibmr) { pr_dbg("lkey=0x%x\n", mr->ibmr->lkey); pr_dbg("rkey=0x%x\n", mr->ibmr->rkey); mr->ibpd = pd->ibpd; } return mr->ibmr ? 0 : -EIO; } void rdma_backend_destroy_mr(RdmaBackendMR *mr) { if (mr->ibmr) { ibv_dereg_mr(mr->ibmr); } } int rdma_backend_create_cq(RdmaBackendDev *backend_dev, RdmaBackendCQ *cq, int cqe) { int rc; pr_dbg("cqe=%d\n", cqe); pr_dbg("dev->channel=%p\n", backend_dev->channel); cq->ibcq = ibv_create_cq(backend_dev->context, cqe + 1, NULL, backend_dev->channel, 0); if (cq->ibcq) { rc = ibv_req_notify_cq(cq->ibcq, 0); if (rc) { pr_dbg("Error %d from ibv_req_notify_cq\n", rc); } cq->backend_dev = backend_dev; } return cq->ibcq ? 0 : -EIO; } void rdma_backend_destroy_cq(RdmaBackendCQ *cq) { if (cq->ibcq) { ibv_destroy_cq(cq->ibcq); } } int rdma_backend_create_qp(RdmaBackendQP *qp, uint8_t qp_type, RdmaBackendPD *pd, RdmaBackendCQ *scq, RdmaBackendCQ *rcq, uint32_t max_send_wr, uint32_t max_recv_wr, uint32_t max_send_sge, uint32_t max_recv_sge) { struct ibv_qp_init_attr attr = {0}; qp->ibqp = 0; pr_dbg("qp_type=%d\n", qp_type); switch (qp_type) { case IBV_QPT_GSI: return 0; case IBV_QPT_RC: /* fall through */ case IBV_QPT_UD: /* do nothing */ break; default: pr_dbg("Unsupported QP type %d\n", qp_type); return -EIO; } attr.qp_type = qp_type; attr.send_cq = scq->ibcq; attr.recv_cq = rcq->ibcq; attr.cap.max_send_wr = max_send_wr; attr.cap.max_recv_wr = max_recv_wr; attr.cap.max_send_sge = max_send_sge; attr.cap.max_recv_sge = max_recv_sge; pr_dbg("max_send_wr=%d\n", max_send_wr); pr_dbg("max_recv_wr=%d\n", max_recv_wr); pr_dbg("max_send_sge=%d\n", max_send_sge); pr_dbg("max_recv_sge=%d\n", max_recv_sge); qp->ibqp = ibv_create_qp(pd->ibpd, &attr); if (likely(!qp->ibqp)) { pr_dbg("Error from ibv_create_qp\n"); return -EIO; } qp->ibpd = pd->ibpd; /* TODO: Query QP to get max_inline_data and save it to be used in send */ pr_dbg("qpn=0x%x\n", qp->ibqp->qp_num); return 0; } int rdma_backend_qp_state_init(RdmaBackendDev *backend_dev, RdmaBackendQP *qp, uint8_t qp_type, uint32_t qkey) { struct ibv_qp_attr attr = {0}; int rc, attr_mask; pr_dbg("qpn=0x%x\n", qp->ibqp->qp_num); pr_dbg("sport_num=%d\n", backend_dev->port_num); attr_mask = IBV_QP_STATE | IBV_QP_PKEY_INDEX | IBV_QP_PORT; attr.qp_state = IBV_QPS_INIT; attr.pkey_index = 0; attr.port_num = backend_dev->port_num; switch (qp_type) { case IBV_QPT_RC: attr_mask |= IBV_QP_ACCESS_FLAGS; break; case IBV_QPT_UD: attr.qkey = qkey; attr_mask |= IBV_QP_QKEY; break; default: pr_dbg("Unsupported QP type %d\n", qp_type); return -EIO; } rc = ibv_modify_qp(qp->ibqp, &attr, attr_mask); if (rc) { pr_dbg("Error %d from ibv_modify_qp\n", rc); return -EIO; } return 0; } int rdma_backend_qp_state_rtr(RdmaBackendDev *backend_dev, RdmaBackendQP *qp, uint8_t qp_type, uint8_t sgid_idx, union ibv_gid *dgid, uint32_t dqpn, uint32_t rq_psn, uint32_t qkey, bool use_qkey) { struct ibv_qp_attr attr = {0}; union ibv_gid ibv_gid = { .global.interface_id = dgid->global.interface_id, .global.subnet_prefix = dgid->global.subnet_prefix }; int rc, attr_mask; attr.qp_state = IBV_QPS_RTR; attr_mask = IBV_QP_STATE; qp->sgid_idx = sgid_idx; switch (qp_type) { case IBV_QPT_RC: pr_dbg("dgid=0x%" PRIx64 ",%" PRIx64 "\n", be64_to_cpu(ibv_gid.global.subnet_prefix), be64_to_cpu(ibv_gid.global.interface_id)); pr_dbg("dqpn=0x%x\n", dqpn); pr_dbg("sgid_idx=%d\n", qp->sgid_idx); pr_dbg("sport_num=%d\n", backend_dev->port_num); pr_dbg("rq_psn=0x%x\n", rq_psn); attr.path_mtu = IBV_MTU_1024; attr.dest_qp_num = dqpn; attr.max_dest_rd_atomic = 1; attr.min_rnr_timer = 12; attr.ah_attr.port_num = backend_dev->port_num; attr.ah_attr.is_global = 1; attr.ah_attr.grh.hop_limit = 1; attr.ah_attr.grh.dgid = ibv_gid; attr.ah_attr.grh.sgid_index = qp->sgid_idx; attr.rq_psn = rq_psn; attr_mask |= IBV_QP_AV | IBV_QP_PATH_MTU | IBV_QP_DEST_QPN | IBV_QP_RQ_PSN | IBV_QP_MAX_DEST_RD_ATOMIC | IBV_QP_MIN_RNR_TIMER; break; case IBV_QPT_UD: pr_dbg("qkey=0x%x\n", qkey); if (use_qkey) { attr.qkey = qkey; attr_mask |= IBV_QP_QKEY; } break; } rc = ibv_modify_qp(qp->ibqp, &attr, attr_mask); if (rc) { pr_dbg("Error %d from ibv_modify_qp\n", rc); return -EIO; } return 0; } int rdma_backend_qp_state_rts(RdmaBackendQP *qp, uint8_t qp_type, uint32_t sq_psn, uint32_t qkey, bool use_qkey) { struct ibv_qp_attr attr = {0}; int rc, attr_mask; pr_dbg("qpn=0x%x\n", qp->ibqp->qp_num); pr_dbg("sq_psn=0x%x\n", sq_psn); attr.qp_state = IBV_QPS_RTS; attr.sq_psn = sq_psn; attr_mask = IBV_QP_STATE | IBV_QP_SQ_PSN; switch (qp_type) { case IBV_QPT_RC: attr.timeout = 14; attr.retry_cnt = 7; attr.rnr_retry = 7; attr.max_rd_atomic = 1; attr_mask |= IBV_QP_TIMEOUT | IBV_QP_RETRY_CNT | IBV_QP_RNR_RETRY | IBV_QP_MAX_QP_RD_ATOMIC; break; case IBV_QPT_UD: if (use_qkey) { pr_dbg("qkey=0x%x\n", qkey); attr.qkey = qkey; attr_mask |= IBV_QP_QKEY; } break; } rc = ibv_modify_qp(qp->ibqp, &attr, attr_mask); if (rc) { pr_dbg("Error %d from ibv_modify_qp\n", rc); return -EIO; } return 0; } int rdma_backend_query_qp(RdmaBackendQP *qp, struct ibv_qp_attr *attr, int attr_mask, struct ibv_qp_init_attr *init_attr) { if (!qp->ibqp) { pr_dbg("QP1\n"); attr->qp_state = IBV_QPS_RTS; return 0; } return ibv_query_qp(qp->ibqp, attr, attr_mask, init_attr); } void rdma_backend_destroy_qp(RdmaBackendQP *qp) { if (qp->ibqp) { ibv_destroy_qp(qp->ibqp); } } #define CHK_ATTR(req, dev, member, fmt) ({ \ pr_dbg("%s="fmt","fmt"\n", #member, dev.member, req->member); \ if (req->member > dev.member) { \ warn_report("%s = "fmt" is higher than host device capability "fmt, \ #member, req->member, dev.member); \ req->member = dev.member; \ } \ pr_dbg("%s="fmt"\n", #member, req->member); }) static int init_device_caps(RdmaBackendDev *backend_dev, struct ibv_device_attr *dev_attr) { if (ibv_query_device(backend_dev->context, &backend_dev->dev_attr)) { return -EIO; } CHK_ATTR(dev_attr, backend_dev->dev_attr, max_mr_size, "%" PRId64); CHK_ATTR(dev_attr, backend_dev->dev_attr, max_qp, "%d"); CHK_ATTR(dev_attr, backend_dev->dev_attr, max_sge, "%d"); CHK_ATTR(dev_attr, backend_dev->dev_attr, max_qp_wr, "%d"); CHK_ATTR(dev_attr, backend_dev->dev_attr, max_cq, "%d"); CHK_ATTR(dev_attr, backend_dev->dev_attr, max_cqe, "%d"); CHK_ATTR(dev_attr, backend_dev->dev_attr, max_mr, "%d"); CHK_ATTR(dev_attr, backend_dev->dev_attr, max_pd, "%d"); CHK_ATTR(dev_attr, backend_dev->dev_attr, max_qp_rd_atom, "%d"); CHK_ATTR(dev_attr, backend_dev->dev_attr, max_qp_init_rd_atom, "%d"); CHK_ATTR(dev_attr, backend_dev->dev_attr, max_ah, "%d"); return 0; } static inline void build_mad_hdr(struct ibv_grh *grh, union ibv_gid *sgid, union ibv_gid *my_gid, int paylen) { grh->paylen = htons(paylen); grh->sgid = *sgid; grh->dgid = *my_gid; pr_dbg("paylen=%d (net=0x%x)\n", paylen, grh->paylen); pr_dbg("dgid=0x%llx\n", my_gid->global.interface_id); pr_dbg("sgid=0x%llx\n", sgid->global.interface_id); } static void process_incoming_mad_req(RdmaBackendDev *backend_dev, RdmaCmMuxMsg *msg) { QObject *o_ctx_id; unsigned long cqe_ctx_id; BackendCtx *bctx; char *mad; pr_dbg("umad_len=%d\n", msg->umad_len); #ifdef PVRDMA_DEBUG struct umad_hdr *hdr = (struct umad_hdr *)&msg->umad.mad; pr_dbg("bv %x cls %x cv %x mtd %x st %d tid %" PRIx64 " at %x atm %x\n", hdr->base_version, hdr->mgmt_class, hdr->class_version, hdr->method, hdr->status, be64toh(hdr->tid), hdr->attr_id, hdr->attr_mod); #endif qemu_mutex_lock(&backend_dev->recv_mads_list.lock); o_ctx_id = qlist_pop(backend_dev->recv_mads_list.list); qemu_mutex_unlock(&backend_dev->recv_mads_list.lock); if (!o_ctx_id) { pr_dbg("No more free MADs buffers, waiting for a while\n"); sleep(THR_POLL_TO); return; } cqe_ctx_id = qnum_get_uint(qobject_to(QNum, o_ctx_id)); bctx = rdma_rm_get_cqe_ctx(backend_dev->rdma_dev_res, cqe_ctx_id); if (unlikely(!bctx)) { pr_dbg("Error: Fail to find ctx for %ld\n", cqe_ctx_id); return; } pr_dbg("id %ld, bctx %p, ctx %p\n", cqe_ctx_id, bctx, bctx->up_ctx); mad = rdma_pci_dma_map(backend_dev->dev, bctx->sge.addr, bctx->sge.length); if (!mad || bctx->sge.length < msg->umad_len + MAD_HDR_SIZE) { complete_work(IBV_WC_GENERAL_ERR, VENDOR_ERR_INV_MAD_BUFF, bctx->up_ctx); } else { struct ibv_wc wc = {0}; pr_dbg_buf("mad", msg->umad.mad, msg->umad_len); memset(mad, 0, bctx->sge.length); build_mad_hdr((struct ibv_grh *)mad, (union ibv_gid *)&msg->umad.hdr.addr.gid, &msg->hdr.sgid, msg->umad_len); memcpy(&mad[MAD_HDR_SIZE], msg->umad.mad, msg->umad_len); rdma_pci_dma_unmap(backend_dev->dev, mad, bctx->sge.length); wc.byte_len = msg->umad_len; wc.status = IBV_WC_SUCCESS; wc.wc_flags = IBV_WC_GRH; comp_handler(bctx->up_ctx, &wc); } g_free(bctx); rdma_rm_dealloc_cqe_ctx(backend_dev->rdma_dev_res, cqe_ctx_id); } static inline int rdmacm_mux_can_receive(void *opaque) { RdmaBackendDev *backend_dev = (RdmaBackendDev *)opaque; return rdmacm_mux_can_process_async(backend_dev); } static void rdmacm_mux_read(void *opaque, const uint8_t *buf, int size) { RdmaBackendDev *backend_dev = (RdmaBackendDev *)opaque; RdmaCmMuxMsg *msg = (RdmaCmMuxMsg *)buf; pr_dbg("Got %d bytes\n", size); pr_dbg("msg_type=%d\n", msg->hdr.msg_type); pr_dbg("op_code=%d\n", msg->hdr.op_code); if (msg->hdr.msg_type != RDMACM_MUX_MSG_TYPE_REQ && msg->hdr.op_code != RDMACM_MUX_OP_CODE_MAD) { pr_dbg("Error: Not a MAD request, skipping\n"); return; } process_incoming_mad_req(backend_dev, msg); } static int mad_init(RdmaBackendDev *backend_dev, CharBackend *mad_chr_be) { int ret; backend_dev->rdmacm_mux.chr_be = mad_chr_be; ret = qemu_chr_fe_backend_connected(backend_dev->rdmacm_mux.chr_be); if (!ret) { pr_dbg("Missing chardev for MAD multiplexer\n"); return -EIO; } qemu_mutex_init(&backend_dev->recv_mads_list.lock); backend_dev->recv_mads_list.list = qlist_new(); enable_rdmacm_mux_async(backend_dev); qemu_chr_fe_set_handlers(backend_dev->rdmacm_mux.chr_be, rdmacm_mux_can_receive, rdmacm_mux_read, NULL, NULL, backend_dev, NULL, true); return 0; } static void mad_fini(RdmaBackendDev *backend_dev) { pr_dbg("Stopping MAD\n"); disable_rdmacm_mux_async(backend_dev); qemu_chr_fe_disconnect(backend_dev->rdmacm_mux.chr_be); qlist_destroy_obj(QOBJECT(backend_dev->recv_mads_list.list)); qemu_mutex_destroy(&backend_dev->recv_mads_list.lock); } int rdma_backend_get_gid_index(RdmaBackendDev *backend_dev, union ibv_gid *gid) { union ibv_gid sgid; int ret; int i = 0; pr_dbg("0x%llx, 0x%llx\n", (long long unsigned int)be64_to_cpu(gid->global.subnet_prefix), (long long unsigned int)be64_to_cpu(gid->global.interface_id)); do { ret = ibv_query_gid(backend_dev->context, backend_dev->port_num, i, &sgid); i++; } while (!ret && (memcmp(&sgid, gid, sizeof(*gid)))); pr_dbg("gid_index=%d\n", i - 1); return ret ? ret : i - 1; } int rdma_backend_add_gid(RdmaBackendDev *backend_dev, const char *ifname, union ibv_gid *gid) { RdmaCmMuxMsg msg = {0}; int ret; pr_dbg("0x%llx, 0x%llx\n", (long long unsigned int)be64_to_cpu(gid->global.subnet_prefix), (long long unsigned int)be64_to_cpu(gid->global.interface_id)); msg.hdr.op_code = RDMACM_MUX_OP_CODE_REG; memcpy(msg.hdr.sgid.raw, gid->raw, sizeof(msg.hdr.sgid)); ret = exec_rdmacm_mux_req(backend_dev, &msg); if (ret) { pr_dbg("Fail to register GID to rdma_umadmux (%d)\n", ret); return -EIO; } qapi_event_send_rdma_gid_status_changed(ifname, true, gid->global.subnet_prefix, gid->global.interface_id); return ret; } int rdma_backend_del_gid(RdmaBackendDev *backend_dev, const char *ifname, union ibv_gid *gid) { RdmaCmMuxMsg msg = {0}; int ret; pr_dbg("0x%llx, 0x%llx\n", (long long unsigned int)be64_to_cpu(gid->global.subnet_prefix), (long long unsigned int)be64_to_cpu(gid->global.interface_id)); msg.hdr.op_code = RDMACM_MUX_OP_CODE_UNREG; memcpy(msg.hdr.sgid.raw, gid->raw, sizeof(msg.hdr.sgid)); ret = exec_rdmacm_mux_req(backend_dev, &msg); if (ret) { pr_dbg("Fail to unregister GID from rdma_umadmux (%d)\n", ret); return -EIO; } qapi_event_send_rdma_gid_status_changed(ifname, false, gid->global.subnet_prefix, gid->global.interface_id); return 0; } int rdma_backend_init(RdmaBackendDev *backend_dev, PCIDevice *pdev, RdmaDeviceResources *rdma_dev_res, const char *backend_device_name, uint8_t port_num, struct ibv_device_attr *dev_attr, CharBackend *mad_chr_be, Error **errp) { int i; int ret = 0; int num_ibv_devices; struct ibv_device **dev_list; memset(backend_dev, 0, sizeof(*backend_dev)); backend_dev->dev = pdev; backend_dev->port_num = port_num; backend_dev->rdma_dev_res = rdma_dev_res; rdma_backend_register_comp_handler(dummy_comp_handler); dev_list = ibv_get_device_list(&num_ibv_devices); if (!dev_list) { error_setg(errp, "Failed to get IB devices list"); return -EIO; } if (num_ibv_devices == 0) { error_setg(errp, "No IB devices were found"); ret = -ENXIO; goto out_free_dev_list; } if (backend_device_name) { for (i = 0; dev_list[i]; ++i) { if (!strcmp(ibv_get_device_name(dev_list[i]), backend_device_name)) { break; } } backend_dev->ib_dev = dev_list[i]; if (!backend_dev->ib_dev) { error_setg(errp, "Failed to find IB device %s", backend_device_name); ret = -EIO; goto out_free_dev_list; } } else { backend_dev->ib_dev = *dev_list; } pr_dbg("Using backend device %s, port %d\n", ibv_get_device_name(backend_dev->ib_dev), backend_dev->port_num); pr_dbg("uverb device %s\n", backend_dev->ib_dev->dev_name); backend_dev->context = ibv_open_device(backend_dev->ib_dev); if (!backend_dev->context) { error_setg(errp, "Failed to open IB device"); ret = -EIO; goto out; } backend_dev->channel = ibv_create_comp_channel(backend_dev->context); if (!backend_dev->channel) { error_setg(errp, "Failed to create IB communication channel"); ret = -EIO; goto out_close_device; } pr_dbg("dev->backend_dev.channel=%p\n", backend_dev->channel); ret = init_device_caps(backend_dev, dev_attr); if (ret) { error_setg(errp, "Failed to initialize device capabilities"); ret = -EIO; goto out_destroy_comm_channel; } ret = mad_init(backend_dev, mad_chr_be); if (ret) { error_setg(errp, "Fail to initialize mad"); ret = -EIO; goto out_destroy_comm_channel; } backend_dev->comp_thread.run = false; backend_dev->comp_thread.is_running = false; ah_cache_init(); goto out_free_dev_list; out_destroy_comm_channel: ibv_destroy_comp_channel(backend_dev->channel); out_close_device: ibv_close_device(backend_dev->context); out_free_dev_list: ibv_free_device_list(dev_list); out: return ret; } void rdma_backend_start(RdmaBackendDev *backend_dev) { pr_dbg("Starting rdma_backend\n"); start_comp_thread(backend_dev); } void rdma_backend_stop(RdmaBackendDev *backend_dev) { pr_dbg("Stopping rdma_backend\n"); stop_backend_thread(&backend_dev->comp_thread); } void rdma_backend_fini(RdmaBackendDev *backend_dev) { rdma_backend_stop(backend_dev); mad_fini(backend_dev); g_hash_table_destroy(ah_hash); ibv_destroy_comp_channel(backend_dev->channel); ibv_close_device(backend_dev->context); }