/* * Intel XScale PXA255/270 LCDC emulation. * * Copyright (c) 2006 Openedhand Ltd. * Written by Andrzej Zaborowski <balrog@zabor.org> * * This code is licensed under the GPLv2. */ #include "hw.h" #include "console.h" #include "pxa.h" #include "pixel_ops.h" /* FIXME: For graphic_rotate. Should probably be done in common code. */ #include "sysemu.h" #include "framebuffer.h" struct PXA2xxLCDState { qemu_irq irq; int irqlevel; int invalidated; DisplayState *ds; drawfn *line_fn[2]; int dest_width; int xres, yres; int pal_for; int transp; enum { pxa_lcdc_2bpp = 1, pxa_lcdc_4bpp = 2, pxa_lcdc_8bpp = 3, pxa_lcdc_16bpp = 4, pxa_lcdc_18bpp = 5, pxa_lcdc_18pbpp = 6, pxa_lcdc_19bpp = 7, pxa_lcdc_19pbpp = 8, pxa_lcdc_24bpp = 9, pxa_lcdc_25bpp = 10, } bpp; uint32_t control[6]; uint32_t status[2]; uint32_t ovl1c[2]; uint32_t ovl2c[2]; uint32_t ccr; uint32_t cmdcr; uint32_t trgbr; uint32_t tcr; uint32_t liidr; uint8_t bscntr; struct { target_phys_addr_t branch; int up; uint8_t palette[1024]; uint8_t pbuffer[1024]; void (*redraw)(PXA2xxLCDState *s, target_phys_addr_t addr, int *miny, int *maxy); target_phys_addr_t descriptor; target_phys_addr_t source; uint32_t id; uint32_t command; } dma_ch[7]; qemu_irq vsync_cb; int orientation; }; typedef struct __attribute__ ((__packed__)) { uint32_t fdaddr; uint32_t fsaddr; uint32_t fidr; uint32_t ldcmd; } PXAFrameDescriptor; #define LCCR0 0x000 /* LCD Controller Control register 0 */ #define LCCR1 0x004 /* LCD Controller Control register 1 */ #define LCCR2 0x008 /* LCD Controller Control register 2 */ #define LCCR3 0x00c /* LCD Controller Control register 3 */ #define LCCR4 0x010 /* LCD Controller Control register 4 */ #define LCCR5 0x014 /* LCD Controller Control register 5 */ #define FBR0 0x020 /* DMA Channel 0 Frame Branch register */ #define FBR1 0x024 /* DMA Channel 1 Frame Branch register */ #define FBR2 0x028 /* DMA Channel 2 Frame Branch register */ #define FBR3 0x02c /* DMA Channel 3 Frame Branch register */ #define FBR4 0x030 /* DMA Channel 4 Frame Branch register */ #define FBR5 0x110 /* DMA Channel 5 Frame Branch register */ #define FBR6 0x114 /* DMA Channel 6 Frame Branch register */ #define LCSR1 0x034 /* LCD Controller Status register 1 */ #define LCSR0 0x038 /* LCD Controller Status register 0 */ #define LIIDR 0x03c /* LCD Controller Interrupt ID register */ #define TRGBR 0x040 /* TMED RGB Seed register */ #define TCR 0x044 /* TMED Control register */ #define OVL1C1 0x050 /* Overlay 1 Control register 1 */ #define OVL1C2 0x060 /* Overlay 1 Control register 2 */ #define OVL2C1 0x070 /* Overlay 2 Control register 1 */ #define OVL2C2 0x080 /* Overlay 2 Control register 2 */ #define CCR 0x090 /* Cursor Control register */ #define CMDCR 0x100 /* Command Control register */ #define PRSR 0x104 /* Panel Read Status register */ #define PXA_LCDDMA_CHANS 7 #define DMA_FDADR 0x00 /* Frame Descriptor Address register */ #define DMA_FSADR 0x04 /* Frame Source Address register */ #define DMA_FIDR 0x08 /* Frame ID register */ #define DMA_LDCMD 0x0c /* Command register */ /* LCD Buffer Strength Control register */ #define BSCNTR 0x04000054 /* Bitfield masks */ #define LCCR0_ENB (1 << 0) #define LCCR0_CMS (1 << 1) #define LCCR0_SDS (1 << 2) #define LCCR0_LDM (1 << 3) #define LCCR0_SOFM0 (1 << 4) #define LCCR0_IUM (1 << 5) #define LCCR0_EOFM0 (1 << 6) #define LCCR0_PAS (1 << 7) #define LCCR0_DPD (1 << 9) #define LCCR0_DIS (1 << 10) #define LCCR0_QDM (1 << 11) #define LCCR0_PDD (0xff << 12) #define LCCR0_BSM0 (1 << 20) #define LCCR0_OUM (1 << 21) #define LCCR0_LCDT (1 << 22) #define LCCR0_RDSTM (1 << 23) #define LCCR0_CMDIM (1 << 24) #define LCCR0_OUC (1 << 25) #define LCCR0_LDDALT (1 << 26) #define LCCR1_PPL(x) ((x) & 0x3ff) #define LCCR2_LPP(x) ((x) & 0x3ff) #define LCCR3_API (15 << 16) #define LCCR3_BPP(x) ((((x) >> 24) & 7) | (((x) >> 26) & 8)) #define LCCR3_PDFOR(x) (((x) >> 30) & 3) #define LCCR4_K1(x) (((x) >> 0) & 7) #define LCCR4_K2(x) (((x) >> 3) & 7) #define LCCR4_K3(x) (((x) >> 6) & 7) #define LCCR4_PALFOR(x) (((x) >> 15) & 3) #define LCCR5_SOFM(ch) (1 << (ch - 1)) #define LCCR5_EOFM(ch) (1 << (ch + 7)) #define LCCR5_BSM(ch) (1 << (ch + 15)) #define LCCR5_IUM(ch) (1 << (ch + 23)) #define OVLC1_EN (1 << 31) #define CCR_CEN (1 << 31) #define FBR_BRA (1 << 0) #define FBR_BINT (1 << 1) #define FBR_SRCADDR (0xfffffff << 4) #define LCSR0_LDD (1 << 0) #define LCSR0_SOF0 (1 << 1) #define LCSR0_BER (1 << 2) #define LCSR0_ABC (1 << 3) #define LCSR0_IU0 (1 << 4) #define LCSR0_IU1 (1 << 5) #define LCSR0_OU (1 << 6) #define LCSR0_QD (1 << 7) #define LCSR0_EOF0 (1 << 8) #define LCSR0_BS0 (1 << 9) #define LCSR0_SINT (1 << 10) #define LCSR0_RDST (1 << 11) #define LCSR0_CMDINT (1 << 12) #define LCSR0_BERCH(x) (((x) & 7) << 28) #define LCSR1_SOF(ch) (1 << (ch - 1)) #define LCSR1_EOF(ch) (1 << (ch + 7)) #define LCSR1_BS(ch) (1 << (ch + 15)) #define LCSR1_IU(ch) (1 << (ch + 23)) #define LDCMD_LENGTH(x) ((x) & 0x001ffffc) #define LDCMD_EOFINT (1 << 21) #define LDCMD_SOFINT (1 << 22) #define LDCMD_PAL (1 << 26) /* Route internal interrupt lines to the global IC */ static void pxa2xx_lcdc_int_update(PXA2xxLCDState *s) { int level = 0; level |= (s->status[0] & LCSR0_LDD) && !(s->control[0] & LCCR0_LDM); level |= (s->status[0] & LCSR0_SOF0) && !(s->control[0] & LCCR0_SOFM0); level |= (s->status[0] & LCSR0_IU0) && !(s->control[0] & LCCR0_IUM); level |= (s->status[0] & LCSR0_IU1) && !(s->control[5] & LCCR5_IUM(1)); level |= (s->status[0] & LCSR0_OU) && !(s->control[0] & LCCR0_OUM); level |= (s->status[0] & LCSR0_QD) && !(s->control[0] & LCCR0_QDM); level |= (s->status[0] & LCSR0_EOF0) && !(s->control[0] & LCCR0_EOFM0); level |= (s->status[0] & LCSR0_BS0) && !(s->control[0] & LCCR0_BSM0); level |= (s->status[0] & LCSR0_RDST) && !(s->control[0] & LCCR0_RDSTM); level |= (s->status[0] & LCSR0_CMDINT) && !(s->control[0] & LCCR0_CMDIM); level |= (s->status[1] & ~s->control[5]); qemu_set_irq(s->irq, !!level); s->irqlevel = level; } /* Set Branch Status interrupt high and poke associated registers */ static inline void pxa2xx_dma_bs_set(PXA2xxLCDState *s, int ch) { int unmasked; if (ch == 0) { s->status[0] |= LCSR0_BS0; unmasked = !(s->control[0] & LCCR0_BSM0); } else { s->status[1] |= LCSR1_BS(ch); unmasked = !(s->control[5] & LCCR5_BSM(ch)); } if (unmasked) { if (s->irqlevel) s->status[0] |= LCSR0_SINT; else s->liidr = s->dma_ch[ch].id; } } /* Set Start Of Frame Status interrupt high and poke associated registers */ static inline void pxa2xx_dma_sof_set(PXA2xxLCDState *s, int ch) { int unmasked; if (!(s->dma_ch[ch].command & LDCMD_SOFINT)) return; if (ch == 0) { s->status[0] |= LCSR0_SOF0; unmasked = !(s->control[0] & LCCR0_SOFM0); } else { s->status[1] |= LCSR1_SOF(ch); unmasked = !(s->control[5] & LCCR5_SOFM(ch)); } if (unmasked) { if (s->irqlevel) s->status[0] |= LCSR0_SINT; else s->liidr = s->dma_ch[ch].id; } } /* Set End Of Frame Status interrupt high and poke associated registers */ static inline void pxa2xx_dma_eof_set(PXA2xxLCDState *s, int ch) { int unmasked; if (!(s->dma_ch[ch].command & LDCMD_EOFINT)) return; if (ch == 0) { s->status[0] |= LCSR0_EOF0; unmasked = !(s->control[0] & LCCR0_EOFM0); } else { s->status[1] |= LCSR1_EOF(ch); unmasked = !(s->control[5] & LCCR5_EOFM(ch)); } if (unmasked) { if (s->irqlevel) s->status[0] |= LCSR0_SINT; else s->liidr = s->dma_ch[ch].id; } } /* Set Bus Error Status interrupt high and poke associated registers */ static inline void pxa2xx_dma_ber_set(PXA2xxLCDState *s, int ch) { s->status[0] |= LCSR0_BERCH(ch) | LCSR0_BER; if (s->irqlevel) s->status[0] |= LCSR0_SINT; else s->liidr = s->dma_ch[ch].id; } /* Set Read Status interrupt high and poke associated registers */ static inline void pxa2xx_dma_rdst_set(PXA2xxLCDState *s) { s->status[0] |= LCSR0_RDST; if (s->irqlevel && !(s->control[0] & LCCR0_RDSTM)) s->status[0] |= LCSR0_SINT; } /* Load new Frame Descriptors from DMA */ static void pxa2xx_descriptor_load(PXA2xxLCDState *s) { PXAFrameDescriptor desc; target_phys_addr_t descptr; int i; for (i = 0; i < PXA_LCDDMA_CHANS; i ++) { s->dma_ch[i].source = 0; if (!s->dma_ch[i].up) continue; if (s->dma_ch[i].branch & FBR_BRA) { descptr = s->dma_ch[i].branch & FBR_SRCADDR; if (s->dma_ch[i].branch & FBR_BINT) pxa2xx_dma_bs_set(s, i); s->dma_ch[i].branch &= ~FBR_BRA; } else descptr = s->dma_ch[i].descriptor; if (!(descptr >= PXA2XX_SDRAM_BASE && descptr + sizeof(desc) <= PXA2XX_SDRAM_BASE + ram_size)) continue; cpu_physical_memory_read(descptr, (void *)&desc, sizeof(desc)); s->dma_ch[i].descriptor = tswap32(desc.fdaddr); s->dma_ch[i].source = tswap32(desc.fsaddr); s->dma_ch[i].id = tswap32(desc.fidr); s->dma_ch[i].command = tswap32(desc.ldcmd); } } static uint32_t pxa2xx_lcdc_read(void *opaque, target_phys_addr_t offset) { PXA2xxLCDState *s = (PXA2xxLCDState *) opaque; int ch; switch (offset) { case LCCR0: return s->control[0]; case LCCR1: return s->control[1]; case LCCR2: return s->control[2]; case LCCR3: return s->control[3]; case LCCR4: return s->control[4]; case LCCR5: return s->control[5]; case OVL1C1: return s->ovl1c[0]; case OVL1C2: return s->ovl1c[1]; case OVL2C1: return s->ovl2c[0]; case OVL2C2: return s->ovl2c[1]; case CCR: return s->ccr; case CMDCR: return s->cmdcr; case TRGBR: return s->trgbr; case TCR: return s->tcr; case 0x200 ... 0x1000: /* DMA per-channel registers */ ch = (offset - 0x200) >> 4; if (!(ch >= 0 && ch < PXA_LCDDMA_CHANS)) goto fail; switch (offset & 0xf) { case DMA_FDADR: return s->dma_ch[ch].descriptor; case DMA_FSADR: return s->dma_ch[ch].source; case DMA_FIDR: return s->dma_ch[ch].id; case DMA_LDCMD: return s->dma_ch[ch].command; default: goto fail; } case FBR0: return s->dma_ch[0].branch; case FBR1: return s->dma_ch[1].branch; case FBR2: return s->dma_ch[2].branch; case FBR3: return s->dma_ch[3].branch; case FBR4: return s->dma_ch[4].branch; case FBR5: return s->dma_ch[5].branch; case FBR6: return s->dma_ch[6].branch; case BSCNTR: return s->bscntr; case PRSR: return 0; case LCSR0: return s->status[0]; case LCSR1: return s->status[1]; case LIIDR: return s->liidr; default: fail: hw_error("%s: Bad offset " REG_FMT "\n", __FUNCTION__, offset); } return 0; } static void pxa2xx_lcdc_write(void *opaque, target_phys_addr_t offset, uint32_t value) { PXA2xxLCDState *s = (PXA2xxLCDState *) opaque; int ch; switch (offset) { case LCCR0: /* ACK Quick Disable done */ if ((s->control[0] & LCCR0_ENB) && !(value & LCCR0_ENB)) s->status[0] |= LCSR0_QD; if (!(s->control[0] & LCCR0_LCDT) && (value & LCCR0_LCDT)) printf("%s: internal frame buffer unsupported\n", __FUNCTION__); if ((s->control[3] & LCCR3_API) && (value & LCCR0_ENB) && !(value & LCCR0_LCDT)) s->status[0] |= LCSR0_ABC; s->control[0] = value & 0x07ffffff; pxa2xx_lcdc_int_update(s); s->dma_ch[0].up = !!(value & LCCR0_ENB); s->dma_ch[1].up = (s->ovl1c[0] & OVLC1_EN) || (value & LCCR0_SDS); break; case LCCR1: s->control[1] = value; break; case LCCR2: s->control[2] = value; break; case LCCR3: s->control[3] = value & 0xefffffff; s->bpp = LCCR3_BPP(value); break; case LCCR4: s->control[4] = value & 0x83ff81ff; break; case LCCR5: s->control[5] = value & 0x3f3f3f3f; break; case OVL1C1: if (!(s->ovl1c[0] & OVLC1_EN) && (value & OVLC1_EN)) printf("%s: Overlay 1 not supported\n", __FUNCTION__); s->ovl1c[0] = value & 0x80ffffff; s->dma_ch[1].up = (value & OVLC1_EN) || (s->control[0] & LCCR0_SDS); break; case OVL1C2: s->ovl1c[1] = value & 0x000fffff; break; case OVL2C1: if (!(s->ovl2c[0] & OVLC1_EN) && (value & OVLC1_EN)) printf("%s: Overlay 2 not supported\n", __FUNCTION__); s->ovl2c[0] = value & 0x80ffffff; s->dma_ch[2].up = !!(value & OVLC1_EN); s->dma_ch[3].up = !!(value & OVLC1_EN); s->dma_ch[4].up = !!(value & OVLC1_EN); break; case OVL2C2: s->ovl2c[1] = value & 0x007fffff; break; case CCR: if (!(s->ccr & CCR_CEN) && (value & CCR_CEN)) printf("%s: Hardware cursor unimplemented\n", __FUNCTION__); s->ccr = value & 0x81ffffe7; s->dma_ch[5].up = !!(value & CCR_CEN); break; case CMDCR: s->cmdcr = value & 0xff; break; case TRGBR: s->trgbr = value & 0x00ffffff; break; case TCR: s->tcr = value & 0x7fff; break; case 0x200 ... 0x1000: /* DMA per-channel registers */ ch = (offset - 0x200) >> 4; if (!(ch >= 0 && ch < PXA_LCDDMA_CHANS)) goto fail; switch (offset & 0xf) { case DMA_FDADR: s->dma_ch[ch].descriptor = value & 0xfffffff0; break; default: goto fail; } break; case FBR0: s->dma_ch[0].branch = value & 0xfffffff3; break; case FBR1: s->dma_ch[1].branch = value & 0xfffffff3; break; case FBR2: s->dma_ch[2].branch = value & 0xfffffff3; break; case FBR3: s->dma_ch[3].branch = value & 0xfffffff3; break; case FBR4: s->dma_ch[4].branch = value & 0xfffffff3; break; case FBR5: s->dma_ch[5].branch = value & 0xfffffff3; break; case FBR6: s->dma_ch[6].branch = value & 0xfffffff3; break; case BSCNTR: s->bscntr = value & 0xf; break; case PRSR: break; case LCSR0: s->status[0] &= ~(value & 0xfff); if (value & LCSR0_BER) s->status[0] &= ~LCSR0_BERCH(7); break; case LCSR1: s->status[1] &= ~(value & 0x3e3f3f); break; default: fail: hw_error("%s: Bad offset " REG_FMT "\n", __FUNCTION__, offset); } } static CPUReadMemoryFunc * const pxa2xx_lcdc_readfn[] = { pxa2xx_lcdc_read, pxa2xx_lcdc_read, pxa2xx_lcdc_read }; static CPUWriteMemoryFunc * const pxa2xx_lcdc_writefn[] = { pxa2xx_lcdc_write, pxa2xx_lcdc_write, pxa2xx_lcdc_write }; /* Load new palette for a given DMA channel, convert to internal format */ static void pxa2xx_palette_parse(PXA2xxLCDState *s, int ch, int bpp) { int i, n, format, r, g, b, alpha; uint32_t *dest, *src; s->pal_for = LCCR4_PALFOR(s->control[4]); format = s->pal_for; switch (bpp) { case pxa_lcdc_2bpp: n = 4; break; case pxa_lcdc_4bpp: n = 16; break; case pxa_lcdc_8bpp: n = 256; break; default: format = 0; return; } src = (uint32_t *) s->dma_ch[ch].pbuffer; dest = (uint32_t *) s->dma_ch[ch].palette; alpha = r = g = b = 0; for (i = 0; i < n; i ++) { switch (format) { case 0: /* 16 bpp, no transparency */ alpha = 0; if (s->control[0] & LCCR0_CMS) r = g = b = *src & 0xff; else { r = (*src & 0xf800) >> 8; g = (*src & 0x07e0) >> 3; b = (*src & 0x001f) << 3; } break; case 1: /* 16 bpp plus transparency */ alpha = *src & (1 << 24); if (s->control[0] & LCCR0_CMS) r = g = b = *src & 0xff; else { r = (*src & 0xf800) >> 8; g = (*src & 0x07e0) >> 3; b = (*src & 0x001f) << 3; } break; case 2: /* 18 bpp plus transparency */ alpha = *src & (1 << 24); if (s->control[0] & LCCR0_CMS) r = g = b = *src & 0xff; else { r = (*src & 0xf80000) >> 16; g = (*src & 0x00fc00) >> 8; b = (*src & 0x0000f8); } break; case 3: /* 24 bpp plus transparency */ alpha = *src & (1 << 24); if (s->control[0] & LCCR0_CMS) r = g = b = *src & 0xff; else { r = (*src & 0xff0000) >> 16; g = (*src & 0x00ff00) >> 8; b = (*src & 0x0000ff); } break; } switch (ds_get_bits_per_pixel(s->ds)) { case 8: *dest = rgb_to_pixel8(r, g, b) | alpha; break; case 15: *dest = rgb_to_pixel15(r, g, b) | alpha; break; case 16: *dest = rgb_to_pixel16(r, g, b) | alpha; break; case 24: *dest = rgb_to_pixel24(r, g, b) | alpha; break; case 32: *dest = rgb_to_pixel32(r, g, b) | alpha; break; } src ++; dest ++; } } static void pxa2xx_lcdc_dma0_redraw_horiz(PXA2xxLCDState *s, target_phys_addr_t addr, int *miny, int *maxy) { int src_width, dest_width; drawfn fn = NULL; if (s->dest_width) fn = s->line_fn[s->transp][s->bpp]; if (!fn) return; src_width = (s->xres + 3) & ~3; /* Pad to a 4 pixels multiple */ if (s->bpp == pxa_lcdc_19pbpp || s->bpp == pxa_lcdc_18pbpp) src_width *= 3; else if (s->bpp > pxa_lcdc_16bpp) src_width *= 4; else if (s->bpp > pxa_lcdc_8bpp) src_width *= 2; dest_width = s->xres * s->dest_width; *miny = 0; framebuffer_update_display(s->ds, addr, s->xres, s->yres, src_width, dest_width, s->dest_width, s->invalidated, fn, s->dma_ch[0].palette, miny, maxy); } static void pxa2xx_lcdc_dma0_redraw_vert(PXA2xxLCDState *s, target_phys_addr_t addr, int *miny, int *maxy) { int src_width, dest_width; drawfn fn = NULL; if (s->dest_width) fn = s->line_fn[s->transp][s->bpp]; if (!fn) return; src_width = (s->xres + 3) & ~3; /* Pad to a 4 pixels multiple */ if (s->bpp == pxa_lcdc_19pbpp || s->bpp == pxa_lcdc_18pbpp) src_width *= 3; else if (s->bpp > pxa_lcdc_16bpp) src_width *= 4; else if (s->bpp > pxa_lcdc_8bpp) src_width *= 2; dest_width = s->yres * s->dest_width; *miny = 0; framebuffer_update_display(s->ds, addr, s->xres, s->yres, src_width, s->dest_width, -dest_width, s->invalidated, fn, s->dma_ch[0].palette, miny, maxy); } static void pxa2xx_lcdc_resize(PXA2xxLCDState *s) { int width, height; if (!(s->control[0] & LCCR0_ENB)) return; width = LCCR1_PPL(s->control[1]) + 1; height = LCCR2_LPP(s->control[2]) + 1; if (width != s->xres || height != s->yres) { if (s->orientation) qemu_console_resize(s->ds, height, width); else qemu_console_resize(s->ds, width, height); s->invalidated = 1; s->xres = width; s->yres = height; } } static void pxa2xx_update_display(void *opaque) { PXA2xxLCDState *s = (PXA2xxLCDState *) opaque; target_phys_addr_t fbptr; int miny, maxy; int ch; if (!(s->control[0] & LCCR0_ENB)) return; pxa2xx_descriptor_load(s); pxa2xx_lcdc_resize(s); miny = s->yres; maxy = 0; s->transp = s->dma_ch[2].up || s->dma_ch[3].up; /* Note: With overlay planes the order depends on LCCR0 bit 25. */ for (ch = 0; ch < PXA_LCDDMA_CHANS; ch ++) if (s->dma_ch[ch].up) { if (!s->dma_ch[ch].source) { pxa2xx_dma_ber_set(s, ch); continue; } fbptr = s->dma_ch[ch].source; if (!(fbptr >= PXA2XX_SDRAM_BASE && fbptr <= PXA2XX_SDRAM_BASE + ram_size)) { pxa2xx_dma_ber_set(s, ch); continue; } if (s->dma_ch[ch].command & LDCMD_PAL) { cpu_physical_memory_read(fbptr, s->dma_ch[ch].pbuffer, MAX(LDCMD_LENGTH(s->dma_ch[ch].command), sizeof(s->dma_ch[ch].pbuffer))); pxa2xx_palette_parse(s, ch, s->bpp); } else { /* Do we need to reparse palette */ if (LCCR4_PALFOR(s->control[4]) != s->pal_for) pxa2xx_palette_parse(s, ch, s->bpp); /* ACK frame start */ pxa2xx_dma_sof_set(s, ch); s->dma_ch[ch].redraw(s, fbptr, &miny, &maxy); s->invalidated = 0; /* ACK frame completed */ pxa2xx_dma_eof_set(s, ch); } } if (s->control[0] & LCCR0_DIS) { /* ACK last frame completed */ s->control[0] &= ~LCCR0_ENB; s->status[0] |= LCSR0_LDD; } if (miny >= 0) { if (s->orientation) dpy_update(s->ds, miny, 0, maxy, s->xres); else dpy_update(s->ds, 0, miny, s->xres, maxy); } pxa2xx_lcdc_int_update(s); qemu_irq_raise(s->vsync_cb); } static void pxa2xx_invalidate_display(void *opaque) { PXA2xxLCDState *s = (PXA2xxLCDState *) opaque; s->invalidated = 1; } static void pxa2xx_screen_dump(void *opaque, const char *filename) { /* TODO */ } static void pxa2xx_lcdc_orientation(void *opaque, int angle) { PXA2xxLCDState *s = (PXA2xxLCDState *) opaque; if (angle) { s->dma_ch[0].redraw = pxa2xx_lcdc_dma0_redraw_vert; } else { s->dma_ch[0].redraw = pxa2xx_lcdc_dma0_redraw_horiz; } s->orientation = angle; s->xres = s->yres = -1; pxa2xx_lcdc_resize(s); } static void pxa2xx_lcdc_save(QEMUFile *f, void *opaque) { PXA2xxLCDState *s = (PXA2xxLCDState *) opaque; int i; qemu_put_be32(f, s->irqlevel); qemu_put_be32(f, s->transp); for (i = 0; i < 6; i ++) qemu_put_be32s(f, &s->control[i]); for (i = 0; i < 2; i ++) qemu_put_be32s(f, &s->status[i]); for (i = 0; i < 2; i ++) qemu_put_be32s(f, &s->ovl1c[i]); for (i = 0; i < 2; i ++) qemu_put_be32s(f, &s->ovl2c[i]); qemu_put_be32s(f, &s->ccr); qemu_put_be32s(f, &s->cmdcr); qemu_put_be32s(f, &s->trgbr); qemu_put_be32s(f, &s->tcr); qemu_put_be32s(f, &s->liidr); qemu_put_8s(f, &s->bscntr); for (i = 0; i < 7; i ++) { qemu_put_betl(f, s->dma_ch[i].branch); qemu_put_byte(f, s->dma_ch[i].up); qemu_put_buffer(f, s->dma_ch[i].pbuffer, sizeof(s->dma_ch[i].pbuffer)); qemu_put_betl(f, s->dma_ch[i].descriptor); qemu_put_betl(f, s->dma_ch[i].source); qemu_put_be32s(f, &s->dma_ch[i].id); qemu_put_be32s(f, &s->dma_ch[i].command); } } static int pxa2xx_lcdc_load(QEMUFile *f, void *opaque, int version_id) { PXA2xxLCDState *s = (PXA2xxLCDState *) opaque; int i; s->irqlevel = qemu_get_be32(f); s->transp = qemu_get_be32(f); for (i = 0; i < 6; i ++) qemu_get_be32s(f, &s->control[i]); for (i = 0; i < 2; i ++) qemu_get_be32s(f, &s->status[i]); for (i = 0; i < 2; i ++) qemu_get_be32s(f, &s->ovl1c[i]); for (i = 0; i < 2; i ++) qemu_get_be32s(f, &s->ovl2c[i]); qemu_get_be32s(f, &s->ccr); qemu_get_be32s(f, &s->cmdcr); qemu_get_be32s(f, &s->trgbr); qemu_get_be32s(f, &s->tcr); qemu_get_be32s(f, &s->liidr); qemu_get_8s(f, &s->bscntr); for (i = 0; i < 7; i ++) { s->dma_ch[i].branch = qemu_get_betl(f); s->dma_ch[i].up = qemu_get_byte(f); qemu_get_buffer(f, s->dma_ch[i].pbuffer, sizeof(s->dma_ch[i].pbuffer)); s->dma_ch[i].descriptor = qemu_get_betl(f); s->dma_ch[i].source = qemu_get_betl(f); qemu_get_be32s(f, &s->dma_ch[i].id); qemu_get_be32s(f, &s->dma_ch[i].command); } s->bpp = LCCR3_BPP(s->control[3]); s->xres = s->yres = s->pal_for = -1; return 0; } #define BITS 8 #include "pxa2xx_template.h" #define BITS 15 #include "pxa2xx_template.h" #define BITS 16 #include "pxa2xx_template.h" #define BITS 24 #include "pxa2xx_template.h" #define BITS 32 #include "pxa2xx_template.h" PXA2xxLCDState *pxa2xx_lcdc_init(target_phys_addr_t base, qemu_irq irq) { int iomemtype; PXA2xxLCDState *s; s = (PXA2xxLCDState *) qemu_mallocz(sizeof(PXA2xxLCDState)); s->invalidated = 1; s->irq = irq; pxa2xx_lcdc_orientation(s, graphic_rotate); iomemtype = cpu_register_io_memory(pxa2xx_lcdc_readfn, pxa2xx_lcdc_writefn, s); cpu_register_physical_memory(base, 0x00100000, iomemtype); s->ds = graphic_console_init(pxa2xx_update_display, pxa2xx_invalidate_display, pxa2xx_screen_dump, NULL, s); switch (ds_get_bits_per_pixel(s->ds)) { case 0: s->dest_width = 0; break; case 8: s->line_fn[0] = pxa2xx_draw_fn_8; s->line_fn[1] = pxa2xx_draw_fn_8t; s->dest_width = 1; break; case 15: s->line_fn[0] = pxa2xx_draw_fn_15; s->line_fn[1] = pxa2xx_draw_fn_15t; s->dest_width = 2; break; case 16: s->line_fn[0] = pxa2xx_draw_fn_16; s->line_fn[1] = pxa2xx_draw_fn_16t; s->dest_width = 2; break; case 24: s->line_fn[0] = pxa2xx_draw_fn_24; s->line_fn[1] = pxa2xx_draw_fn_24t; s->dest_width = 3; break; case 32: s->line_fn[0] = pxa2xx_draw_fn_32; s->line_fn[1] = pxa2xx_draw_fn_32t; s->dest_width = 4; break; default: fprintf(stderr, "%s: Bad color depth\n", __FUNCTION__); exit(1); } register_savevm("pxa2xx_lcdc", 0, 0, pxa2xx_lcdc_save, pxa2xx_lcdc_load, s); return s; } void pxa2xx_lcd_vsync_notifier(PXA2xxLCDState *s, qemu_irq handler) { s->vsync_cb = handler; }