/* * Intel XScale PXA255/270 processor support. * * Copyright (c) 2006 Openedhand Ltd. * Written by Andrzej Zaborowski * * This code is licenced under the GPL. */ # include "vl.h" static struct { target_phys_addr_t io_base; int irqn; } pxa255_serial[] = { { 0x40100000, PXA2XX_PIC_FFUART }, { 0x40200000, PXA2XX_PIC_BTUART }, { 0x40700000, PXA2XX_PIC_STUART }, { 0x41600000, PXA25X_PIC_HWUART }, { 0, 0 } }, pxa270_serial[] = { { 0x40100000, PXA2XX_PIC_FFUART }, { 0x40200000, PXA2XX_PIC_BTUART }, { 0x40700000, PXA2XX_PIC_STUART }, { 0, 0 } }; static struct { target_phys_addr_t io_base; int irqn; } pxa250_ssp[] = { { 0x41000000, PXA2XX_PIC_SSP }, { 0, 0 } }, pxa255_ssp[] = { { 0x41000000, PXA2XX_PIC_SSP }, { 0x41400000, PXA25X_PIC_NSSP }, { 0, 0 } }, pxa26x_ssp[] = { { 0x41000000, PXA2XX_PIC_SSP }, { 0x41400000, PXA25X_PIC_NSSP }, { 0x41500000, PXA26X_PIC_ASSP }, { 0, 0 } }, pxa27x_ssp[] = { { 0x41000000, PXA2XX_PIC_SSP }, { 0x41700000, PXA27X_PIC_SSP2 }, { 0x41900000, PXA2XX_PIC_SSP3 }, { 0, 0 } }; #define PMCR 0x00 /* Power Manager Control register */ #define PSSR 0x04 /* Power Manager Sleep Status register */ #define PSPR 0x08 /* Power Manager Scratch-Pad register */ #define PWER 0x0c /* Power Manager Wake-Up Enable register */ #define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */ #define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */ #define PEDR 0x18 /* Power Manager Edge-Detect Status register */ #define PCFR 0x1c /* Power Manager General Configuration register */ #define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */ #define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */ #define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */ #define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */ #define RCSR 0x30 /* Reset Controller Status register */ #define PSLR 0x34 /* Power Manager Sleep Configuration register */ #define PTSR 0x38 /* Power Manager Standby Configuration register */ #define PVCR 0x40 /* Power Manager Voltage Change Control register */ #define PUCR 0x4c /* Power Manager USIM Card Control/Status register */ #define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */ #define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */ #define PCMD0 0x80 /* Power Manager I2C Command register File 0 */ #define PCMD31 0xfc /* Power Manager I2C Command register File 31 */ static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; addr -= s->pm_base; switch (addr) { case PMCR ... PCMD31: if (addr & 3) goto fail; return s->pm_regs[addr >> 2]; default: fail: printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); break; } return 0; } static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; addr -= s->pm_base; switch (addr) { case PMCR: s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a); s->pm_regs[addr >> 2] |= value & 0x15; break; case PSSR: /* Read-clean registers */ case RCSR: case PKSR: s->pm_regs[addr >> 2] &= ~value; break; default: /* Read-write registers */ if (addr >= PMCR && addr <= PCMD31 && !(addr & 3)) { s->pm_regs[addr >> 2] = value; break; } printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); break; } } static CPUReadMemoryFunc *pxa2xx_pm_readfn[] = { pxa2xx_pm_read, pxa2xx_pm_read, pxa2xx_pm_read, }; static CPUWriteMemoryFunc *pxa2xx_pm_writefn[] = { pxa2xx_pm_write, pxa2xx_pm_write, pxa2xx_pm_write, }; #define CCCR 0x00 /* Core Clock Configuration register */ #define CKEN 0x04 /* Clock Enable register */ #define OSCC 0x08 /* Oscillator Configuration register */ #define CCSR 0x0c /* Core Clock Status register */ static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; addr -= s->cm_base; switch (addr) { case CCCR: case CKEN: case OSCC: return s->cm_regs[addr >> 2]; case CCSR: return s->cm_regs[CCCR >> 2] | (3 << 28); default: printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); break; } return 0; } static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; addr -= s->cm_base; switch (addr) { case CCCR: case CKEN: s->cm_regs[addr >> 2] = value; break; case OSCC: s->cm_regs[addr >> 2] &= ~0x6c; s->cm_regs[addr >> 2] |= value & 0x6e; if ((value >> 1) & 1) /* OON */ s->cm_regs[addr >> 2] |= 1 << 0; /* Oscillator is now stable */ break; default: printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); break; } } static CPUReadMemoryFunc *pxa2xx_cm_readfn[] = { pxa2xx_cm_read, pxa2xx_cm_read, pxa2xx_cm_read, }; static CPUWriteMemoryFunc *pxa2xx_cm_writefn[] = { pxa2xx_cm_write, pxa2xx_cm_write, pxa2xx_cm_write, }; static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; switch (reg) { case 6: /* Clock Configuration register */ return s->clkcfg; case 7: /* Power Mode register */ return 0; default: printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); break; } return 0; } static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm, uint32_t value) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; static const char *pwrmode[8] = { "Normal", "Idle", "Deep-idle", "Standby", "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep", }; switch (reg) { case 6: /* Clock Configuration register */ s->clkcfg = value & 0xf; if (value & 2) printf("%s: CPU frequency change attempt\n", __FUNCTION__); break; case 7: /* Power Mode register */ if (value & 8) printf("%s: CPU voltage change attempt\n", __FUNCTION__); switch (value & 7) { case 0: /* Do nothing */ break; case 1: /* Idle */ if (!(s->cm_regs[CCCR] & (1 << 31))) { /* CPDIS */ cpu_interrupt(s->env, CPU_INTERRUPT_HALT); break; } /* Fall through. */ case 2: /* Deep-Idle */ cpu_interrupt(s->env, CPU_INTERRUPT_HALT); s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */ goto message; case 3: s->env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I; s->env->cp15.c1_sys = 0; s->env->cp15.c1_coproc = 0; s->env->cp15.c2_base = 0; s->env->cp15.c3 = 0; s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */ s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */ /* * The scratch-pad register is almost universally used * for storing the return address on suspend. For the * lack of a resuming bootloader, perform a jump * directly to that address. */ memset(s->env->regs, 0, 4 * 15); s->env->regs[15] = s->pm_regs[PSPR >> 2]; #if 0 buffer = 0xe59ff000; /* ldr pc, [pc, #0] */ cpu_physical_memory_write(0, &buffer, 4); buffer = s->pm_regs[PSPR >> 2]; cpu_physical_memory_write(8, &buffer, 4); #endif /* Suspend */ cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT); goto message; default: message: printf("%s: machine entered %s mode\n", __FUNCTION__, pwrmode[value & 7]); } break; default: printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); break; } } /* Performace Monitoring Registers */ #define CPPMNC 0 /* Performance Monitor Control register */ #define CPCCNT 1 /* Clock Counter register */ #define CPINTEN 4 /* Interrupt Enable register */ #define CPFLAG 5 /* Overflow Flag register */ #define CPEVTSEL 8 /* Event Selection register */ #define CPPMN0 0 /* Performance Count register 0 */ #define CPPMN1 1 /* Performance Count register 1 */ #define CPPMN2 2 /* Performance Count register 2 */ #define CPPMN3 3 /* Performance Count register 3 */ static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; switch (reg) { case CPPMNC: return s->pmnc; case CPCCNT: if (s->pmnc & 1) return qemu_get_clock(vm_clock); else return 0; case CPINTEN: case CPFLAG: case CPEVTSEL: return 0; default: printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); break; } return 0; } static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm, uint32_t value) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; switch (reg) { case CPPMNC: s->pmnc = value; break; case CPCCNT: case CPINTEN: case CPFLAG: case CPEVTSEL: break; default: printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); break; } } static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm) { switch (crm) { case 0: return pxa2xx_clkpwr_read(opaque, op2, reg, crm); case 1: return pxa2xx_perf_read(opaque, op2, reg, crm); case 2: switch (reg) { case CPPMN0: case CPPMN1: case CPPMN2: case CPPMN3: return 0; } /* Fall through */ default: printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); break; } return 0; } static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm, uint32_t value) { switch (crm) { case 0: pxa2xx_clkpwr_write(opaque, op2, reg, crm, value); break; case 1: pxa2xx_perf_write(opaque, op2, reg, crm, value); break; case 2: switch (reg) { case CPPMN0: case CPPMN1: case CPPMN2: case CPPMN3: return; } /* Fall through */ default: printf("%s: Bad register 0x%x\n", __FUNCTION__, reg); break; } } #define MDCNFG 0x00 /* SDRAM Configuration register */ #define MDREFR 0x04 /* SDRAM Refresh Control register */ #define MSC0 0x08 /* Static Memory Control register 0 */ #define MSC1 0x0c /* Static Memory Control register 1 */ #define MSC2 0x10 /* Static Memory Control register 2 */ #define MECR 0x14 /* Expansion Memory Bus Config register */ #define SXCNFG 0x1c /* Synchronous Static Memory Config register */ #define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */ #define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */ #define MCATT0 0x30 /* PC Card Attribute Socket 0 register */ #define MCATT1 0x34 /* PC Card Attribute Socket 1 register */ #define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */ #define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */ #define MDMRS 0x40 /* SDRAM Mode Register Set Config register */ #define BOOT_DEF 0x44 /* Boot-time Default Configuration register */ #define ARB_CNTL 0x48 /* Arbiter Control register */ #define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */ #define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */ #define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */ #define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */ #define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */ #define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */ #define SA1110 0x64 /* SA-1110 Memory Compatibility register */ static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; addr -= s->mm_base; switch (addr) { case MDCNFG ... SA1110: if ((addr & 3) == 0) return s->mm_regs[addr >> 2]; default: printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); break; } return 0; } static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; addr -= s->mm_base; switch (addr) { case MDCNFG ... SA1110: if ((addr & 3) == 0) { s->mm_regs[addr >> 2] = value; break; } default: printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); break; } } static CPUReadMemoryFunc *pxa2xx_mm_readfn[] = { pxa2xx_mm_read, pxa2xx_mm_read, pxa2xx_mm_read, }; static CPUWriteMemoryFunc *pxa2xx_mm_writefn[] = { pxa2xx_mm_write, pxa2xx_mm_write, pxa2xx_mm_write, }; /* Synchronous Serial Ports */ struct pxa2xx_ssp_s { target_phys_addr_t base; qemu_irq irq; int enable; uint32_t sscr[2]; uint32_t sspsp; uint32_t ssto; uint32_t ssitr; uint32_t sssr; uint8_t sstsa; uint8_t ssrsa; uint8_t ssacd; uint32_t rx_fifo[16]; int rx_level; int rx_start; uint32_t (*readfn)(void *opaque); void (*writefn)(void *opaque, uint32_t value); void *opaque; }; #define SSCR0 0x00 /* SSP Control register 0 */ #define SSCR1 0x04 /* SSP Control register 1 */ #define SSSR 0x08 /* SSP Status register */ #define SSITR 0x0c /* SSP Interrupt Test register */ #define SSDR 0x10 /* SSP Data register */ #define SSTO 0x28 /* SSP Time-Out register */ #define SSPSP 0x2c /* SSP Programmable Serial Protocol register */ #define SSTSA 0x30 /* SSP TX Time Slot Active register */ #define SSRSA 0x34 /* SSP RX Time Slot Active register */ #define SSTSS 0x38 /* SSP Time Slot Status register */ #define SSACD 0x3c /* SSP Audio Clock Divider register */ /* Bitfields for above registers */ #define SSCR0_SPI(x) (((x) & 0x30) == 0x00) #define SSCR0_SSP(x) (((x) & 0x30) == 0x10) #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20) #define SSCR0_PSP(x) (((x) & 0x30) == 0x30) #define SSCR0_SSE (1 << 7) #define SSCR0_RIM (1 << 22) #define SSCR0_TIM (1 << 23) #define SSCR0_MOD (1 << 31) #define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1) #define SSCR1_RIE (1 << 0) #define SSCR1_TIE (1 << 1) #define SSCR1_LBM (1 << 2) #define SSCR1_MWDS (1 << 5) #define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1) #define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1) #define SSCR1_EFWR (1 << 14) #define SSCR1_PINTE (1 << 18) #define SSCR1_TINTE (1 << 19) #define SSCR1_RSRE (1 << 20) #define SSCR1_TSRE (1 << 21) #define SSCR1_EBCEI (1 << 29) #define SSITR_INT (7 << 5) #define SSSR_TNF (1 << 2) #define SSSR_RNE (1 << 3) #define SSSR_TFS (1 << 5) #define SSSR_RFS (1 << 6) #define SSSR_ROR (1 << 7) #define SSSR_PINT (1 << 18) #define SSSR_TINT (1 << 19) #define SSSR_EOC (1 << 20) #define SSSR_TUR (1 << 21) #define SSSR_BCE (1 << 23) #define SSSR_RW 0x00bc0080 static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s *s) { int level = 0; level |= s->ssitr & SSITR_INT; level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI); level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM); level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT)); level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE); level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE); level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM); level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE); level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE); qemu_set_irq(s->irq, !!level); } static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s *s) { s->sssr &= ~(0xf << 12); /* Clear RFL */ s->sssr &= ~(0xf << 8); /* Clear TFL */ s->sssr &= ~SSSR_TNF; if (s->enable) { s->sssr |= ((s->rx_level - 1) & 0xf) << 12; if (s->rx_level >= SSCR1_RFT(s->sscr[1])) s->sssr |= SSSR_RFS; else s->sssr &= ~SSSR_RFS; if (0 <= SSCR1_TFT(s->sscr[1])) s->sssr |= SSSR_TFS; else s->sssr &= ~SSSR_TFS; if (s->rx_level) s->sssr |= SSSR_RNE; else s->sssr &= ~SSSR_RNE; s->sssr |= SSSR_TNF; } pxa2xx_ssp_int_update(s); } static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr) { struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque; uint32_t retval; addr -= s->base; switch (addr) { case SSCR0: return s->sscr[0]; case SSCR1: return s->sscr[1]; case SSPSP: return s->sspsp; case SSTO: return s->ssto; case SSITR: return s->ssitr; case SSSR: return s->sssr | s->ssitr; case SSDR: if (!s->enable) return 0xffffffff; if (s->rx_level < 1) { printf("%s: SSP Rx Underrun\n", __FUNCTION__); return 0xffffffff; } s->rx_level --; retval = s->rx_fifo[s->rx_start ++]; s->rx_start &= 0xf; pxa2xx_ssp_fifo_update(s); return retval; case SSTSA: return s->sstsa; case SSRSA: return s->ssrsa; case SSTSS: return 0; case SSACD: return s->ssacd; default: printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); break; } return 0; } static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque; addr -= s->base; switch (addr) { case SSCR0: s->sscr[0] = value & 0xc7ffffff; s->enable = value & SSCR0_SSE; if (value & SSCR0_MOD) printf("%s: Attempt to use network mode\n", __FUNCTION__); if (s->enable && SSCR0_DSS(value) < 4) printf("%s: Wrong data size: %i bits\n", __FUNCTION__, SSCR0_DSS(value)); if (!(value & SSCR0_SSE)) { s->sssr = 0; s->ssitr = 0; s->rx_level = 0; } pxa2xx_ssp_fifo_update(s); break; case SSCR1: s->sscr[1] = value; if (value & (SSCR1_LBM | SSCR1_EFWR)) printf("%s: Attempt to use SSP test mode\n", __FUNCTION__); pxa2xx_ssp_fifo_update(s); break; case SSPSP: s->sspsp = value; break; case SSTO: s->ssto = value; break; case SSITR: s->ssitr = value & SSITR_INT; pxa2xx_ssp_int_update(s); break; case SSSR: s->sssr &= ~(value & SSSR_RW); pxa2xx_ssp_int_update(s); break; case SSDR: if (SSCR0_UWIRE(s->sscr[0])) { if (s->sscr[1] & SSCR1_MWDS) value &= 0xffff; else value &= 0xff; } else /* Note how 32bits overflow does no harm here */ value &= (1 << SSCR0_DSS(s->sscr[0])) - 1; /* Data goes from here to the Tx FIFO and is shifted out from * there directly to the slave, no need to buffer it. */ if (s->enable) { if (s->writefn) s->writefn(s->opaque, value); if (s->rx_level < 0x10) { if (s->readfn) s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = s->readfn(s->opaque); else s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = 0x0; } else s->sssr |= SSSR_ROR; } pxa2xx_ssp_fifo_update(s); break; case SSTSA: s->sstsa = value; break; case SSRSA: s->ssrsa = value; break; case SSACD: s->ssacd = value; break; default: printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); break; } } void pxa2xx_ssp_attach(struct pxa2xx_ssp_s *port, uint32_t (*readfn)(void *opaque), void (*writefn)(void *opaque, uint32_t value), void *opaque) { if (!port) { printf("%s: no such SSP\n", __FUNCTION__); exit(-1); } port->opaque = opaque; port->readfn = readfn; port->writefn = writefn; } static CPUReadMemoryFunc *pxa2xx_ssp_readfn[] = { pxa2xx_ssp_read, pxa2xx_ssp_read, pxa2xx_ssp_read, }; static CPUWriteMemoryFunc *pxa2xx_ssp_writefn[] = { pxa2xx_ssp_write, pxa2xx_ssp_write, pxa2xx_ssp_write, }; /* Real-Time Clock */ #define RCNR 0x00 /* RTC Counter register */ #define RTAR 0x04 /* RTC Alarm register */ #define RTSR 0x08 /* RTC Status register */ #define RTTR 0x0c /* RTC Timer Trim register */ #define RDCR 0x10 /* RTC Day Counter register */ #define RYCR 0x14 /* RTC Year Counter register */ #define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */ #define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */ #define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */ #define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */ #define SWCR 0x28 /* RTC Stopwatch Counter register */ #define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */ #define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */ #define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */ #define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */ static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s *s) { qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553)); } static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s *s) { int64_t rt = qemu_get_clock(rt_clock); s->last_rcnr += ((rt - s->last_hz) << 15) / (1000 * ((s->rttr & 0xffff) + 1)); s->last_rdcr += ((rt - s->last_hz) << 15) / (1000 * ((s->rttr & 0xffff) + 1)); s->last_hz = rt; } static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s *s) { int64_t rt = qemu_get_clock(rt_clock); if (s->rtsr & (1 << 12)) s->last_swcr += (rt - s->last_sw) / 10; s->last_sw = rt; } static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s *s) { int64_t rt = qemu_get_clock(rt_clock); if (s->rtsr & (1 << 15)) s->last_swcr += rt - s->last_pi; s->last_pi = rt; } static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s *s, uint32_t rtsr) { if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0))) qemu_mod_timer(s->rtc_hz, s->last_hz + (((s->rtar - s->last_rcnr) * 1000 * ((s->rttr & 0xffff) + 1)) >> 15)); else qemu_del_timer(s->rtc_hz); if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4))) qemu_mod_timer(s->rtc_rdal1, s->last_hz + (((s->rdar1 - s->last_rdcr) * 1000 * ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */ else qemu_del_timer(s->rtc_rdal1); if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6))) qemu_mod_timer(s->rtc_rdal2, s->last_hz + (((s->rdar2 - s->last_rdcr) * 1000 * ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */ else qemu_del_timer(s->rtc_rdal2); if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8))) qemu_mod_timer(s->rtc_swal1, s->last_sw + (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */ else qemu_del_timer(s->rtc_swal1); if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10))) qemu_mod_timer(s->rtc_swal2, s->last_sw + (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */ else qemu_del_timer(s->rtc_swal2); if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13))) qemu_mod_timer(s->rtc_pi, s->last_pi + (s->piar & 0xffff) - s->last_rtcpicr); else qemu_del_timer(s->rtc_pi); } static inline void pxa2xx_rtc_hz_tick(void *opaque) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; s->rtsr |= (1 << 0); pxa2xx_rtc_alarm_update(s, s->rtsr); pxa2xx_rtc_int_update(s); } static inline void pxa2xx_rtc_rdal1_tick(void *opaque) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; s->rtsr |= (1 << 4); pxa2xx_rtc_alarm_update(s, s->rtsr); pxa2xx_rtc_int_update(s); } static inline void pxa2xx_rtc_rdal2_tick(void *opaque) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; s->rtsr |= (1 << 6); pxa2xx_rtc_alarm_update(s, s->rtsr); pxa2xx_rtc_int_update(s); } static inline void pxa2xx_rtc_swal1_tick(void *opaque) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; s->rtsr |= (1 << 8); pxa2xx_rtc_alarm_update(s, s->rtsr); pxa2xx_rtc_int_update(s); } static inline void pxa2xx_rtc_swal2_tick(void *opaque) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; s->rtsr |= (1 << 10); pxa2xx_rtc_alarm_update(s, s->rtsr); pxa2xx_rtc_int_update(s); } static inline void pxa2xx_rtc_pi_tick(void *opaque) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; s->rtsr |= (1 << 13); pxa2xx_rtc_piupdate(s); s->last_rtcpicr = 0; pxa2xx_rtc_alarm_update(s, s->rtsr); pxa2xx_rtc_int_update(s); } static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; addr -= s->rtc_base; switch (addr) { case RTTR: return s->rttr; case RTSR: return s->rtsr; case RTAR: return s->rtar; case RDAR1: return s->rdar1; case RDAR2: return s->rdar2; case RYAR1: return s->ryar1; case RYAR2: return s->ryar2; case SWAR1: return s->swar1; case SWAR2: return s->swar2; case PIAR: return s->piar; case RCNR: return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) / (1000 * ((s->rttr & 0xffff) + 1)); case RDCR: return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) / (1000 * ((s->rttr & 0xffff) + 1)); case RYCR: return s->last_rycr; case SWCR: if (s->rtsr & (1 << 12)) return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10; else return s->last_swcr; default: printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); break; } return 0; } static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; addr -= s->rtc_base; switch (addr) { case RTTR: if (!(s->rttr & (1 << 31))) { pxa2xx_rtc_hzupdate(s); s->rttr = value; pxa2xx_rtc_alarm_update(s, s->rtsr); } break; case RTSR: if ((s->rtsr ^ value) & (1 << 15)) pxa2xx_rtc_piupdate(s); if ((s->rtsr ^ value) & (1 << 12)) pxa2xx_rtc_swupdate(s); if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac)) pxa2xx_rtc_alarm_update(s, value); s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac)); pxa2xx_rtc_int_update(s); break; case RTAR: s->rtar = value; pxa2xx_rtc_alarm_update(s, s->rtsr); break; case RDAR1: s->rdar1 = value; pxa2xx_rtc_alarm_update(s, s->rtsr); break; case RDAR2: s->rdar2 = value; pxa2xx_rtc_alarm_update(s, s->rtsr); break; case RYAR1: s->ryar1 = value; pxa2xx_rtc_alarm_update(s, s->rtsr); break; case RYAR2: s->ryar2 = value; pxa2xx_rtc_alarm_update(s, s->rtsr); break; case SWAR1: pxa2xx_rtc_swupdate(s); s->swar1 = value; s->last_swcr = 0; pxa2xx_rtc_alarm_update(s, s->rtsr); break; case SWAR2: s->swar2 = value; pxa2xx_rtc_alarm_update(s, s->rtsr); break; case PIAR: s->piar = value; pxa2xx_rtc_alarm_update(s, s->rtsr); break; case RCNR: pxa2xx_rtc_hzupdate(s); s->last_rcnr = value; pxa2xx_rtc_alarm_update(s, s->rtsr); break; case RDCR: pxa2xx_rtc_hzupdate(s); s->last_rdcr = value; pxa2xx_rtc_alarm_update(s, s->rtsr); break; case RYCR: s->last_rycr = value; break; case SWCR: pxa2xx_rtc_swupdate(s); s->last_swcr = value; pxa2xx_rtc_alarm_update(s, s->rtsr); break; case RTCPICR: pxa2xx_rtc_piupdate(s); s->last_rtcpicr = value & 0xffff; pxa2xx_rtc_alarm_update(s, s->rtsr); break; default: printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); } } static void pxa2xx_rtc_reset(struct pxa2xx_state_s *s) { struct tm *tm; time_t ti; int wom; s->rttr = 0x7fff; s->rtsr = 0; time(&ti); if (rtc_utc) tm = gmtime(&ti); else tm = localtime(&ti); wom = ((tm->tm_mday - 1) / 7) + 1; s->last_rcnr = (uint32_t) ti; s->last_rdcr = (wom << 20) | ((tm->tm_wday + 1) << 17) | (tm->tm_hour << 12) | (tm->tm_min << 6) | tm->tm_sec; s->last_rycr = ((tm->tm_year + 1900) << 9) | ((tm->tm_mon + 1) << 5) | tm->tm_mday; s->last_swcr = (tm->tm_hour << 19) | (tm->tm_min << 13) | (tm->tm_sec << 7); s->last_rtcpicr = 0; s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock); s->rtc_hz = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick, s); s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s); s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s); s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s); s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s); s->rtc_pi = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick, s); } static CPUReadMemoryFunc *pxa2xx_rtc_readfn[] = { pxa2xx_rtc_read, pxa2xx_rtc_read, pxa2xx_rtc_read, }; static CPUWriteMemoryFunc *pxa2xx_rtc_writefn[] = { pxa2xx_rtc_write, pxa2xx_rtc_write, pxa2xx_rtc_write, }; /* PXA Inter-IC Sound Controller */ static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s *i2s) { i2s->rx_len = 0; i2s->tx_len = 0; i2s->fifo_len = 0; i2s->clk = 0x1a; i2s->control[0] = 0x00; i2s->control[1] = 0x00; i2s->status = 0x00; i2s->mask = 0x00; } #define SACR_TFTH(val) ((val >> 8) & 0xf) #define SACR_RFTH(val) ((val >> 12) & 0xf) #define SACR_DREC(val) (val & (1 << 3)) #define SACR_DPRL(val) (val & (1 << 4)) static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s *i2s) { int rfs, tfs; rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len && !SACR_DREC(i2s->control[1]); tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) && i2s->enable && !SACR_DPRL(i2s->control[1]); pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs); pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs); i2s->status &= 0xe0; if (i2s->rx_len) i2s->status |= 1 << 1; /* RNE */ if (i2s->enable) i2s->status |= 1 << 2; /* BSY */ if (tfs) i2s->status |= 1 << 3; /* TFS */ if (rfs) i2s->status |= 1 << 4; /* RFS */ if (!(i2s->tx_len && i2s->enable)) i2s->status |= i2s->fifo_len << 8; /* TFL */ i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */ qemu_set_irq(i2s->irq, i2s->status & i2s->mask); } #define SACR0 0x00 /* Serial Audio Global Control register */ #define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */ #define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */ #define SAIMR 0x14 /* Serial Audio Interrupt Mask register */ #define SAICR 0x18 /* Serial Audio Interrupt Clear register */ #define SADIV 0x60 /* Serial Audio Clock Divider register */ #define SADR 0x80 /* Serial Audio Data register */ static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr) { struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque; addr -= s->base; switch (addr) { case SACR0: return s->control[0]; case SACR1: return s->control[1]; case SASR0: return s->status; case SAIMR: return s->mask; case SAICR: return 0; case SADIV: return s->clk; case SADR: if (s->rx_len > 0) { s->rx_len --; pxa2xx_i2s_update(s); return s->codec_in(s->opaque); } return 0; default: printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); break; } return 0; } static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque; uint32_t *sample; addr -= s->base; switch (addr) { case SACR0: if (value & (1 << 3)) /* RST */ pxa2xx_i2s_reset(s); s->control[0] = value & 0xff3d; if (!s->enable && (value & 1) && s->tx_len) { /* ENB */ for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++) s->codec_out(s->opaque, *sample); s->status &= ~(1 << 7); /* I2SOFF */ } if (value & (1 << 4)) /* EFWR */ printf("%s: Attempt to use special function\n", __FUNCTION__); s->enable = ((value ^ 4) & 5) == 5; /* ENB && !RST*/ pxa2xx_i2s_update(s); break; case SACR1: s->control[1] = value & 0x0039; if (value & (1 << 5)) /* ENLBF */ printf("%s: Attempt to use loopback function\n", __FUNCTION__); if (value & (1 << 4)) /* DPRL */ s->fifo_len = 0; pxa2xx_i2s_update(s); break; case SAIMR: s->mask = value & 0x0078; pxa2xx_i2s_update(s); break; case SAICR: s->status &= ~(value & (3 << 5)); pxa2xx_i2s_update(s); break; case SADIV: s->clk = value & 0x007f; break; case SADR: if (s->tx_len && s->enable) { s->tx_len --; pxa2xx_i2s_update(s); s->codec_out(s->opaque, value); } else if (s->fifo_len < 16) { s->fifo[s->fifo_len ++] = value; pxa2xx_i2s_update(s); } break; default: printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); } } static CPUReadMemoryFunc *pxa2xx_i2s_readfn[] = { pxa2xx_i2s_read, pxa2xx_i2s_read, pxa2xx_i2s_read, }; static CPUWriteMemoryFunc *pxa2xx_i2s_writefn[] = { pxa2xx_i2s_write, pxa2xx_i2s_write, pxa2xx_i2s_write, }; static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx) { struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque; uint32_t *sample; /* Signal FIFO errors */ if (s->enable && s->tx_len) s->status |= 1 << 5; /* TUR */ if (s->enable && s->rx_len) s->status |= 1 << 6; /* ROR */ /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to * handle the cases where it makes a difference. */ s->tx_len = tx - s->fifo_len; s->rx_len = rx; /* Note that is s->codec_out wasn't set, we wouldn't get called. */ if (s->enable) for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++) s->codec_out(s->opaque, *sample); pxa2xx_i2s_update(s); } static struct pxa2xx_i2s_s *pxa2xx_i2s_init(target_phys_addr_t base, qemu_irq irq, struct pxa2xx_dma_state_s *dma) { int iomemtype; struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) qemu_mallocz(sizeof(struct pxa2xx_i2s_s)); s->base = base; s->irq = irq; s->dma = dma; s->data_req = pxa2xx_i2s_data_req; pxa2xx_i2s_reset(s); iomemtype = cpu_register_io_memory(0, pxa2xx_i2s_readfn, pxa2xx_i2s_writefn, s); cpu_register_physical_memory(s->base & 0xfff00000, 0xfffff, iomemtype); return s; } /* PXA Fast Infra-red Communications Port */ struct pxa2xx_fir_s { target_phys_addr_t base; qemu_irq irq; struct pxa2xx_dma_state_s *dma; int enable; CharDriverState *chr; uint8_t control[3]; uint8_t status[2]; int rx_len; int rx_start; uint8_t rx_fifo[64]; }; static void pxa2xx_fir_reset(struct pxa2xx_fir_s *s) { s->control[0] = 0x00; s->control[1] = 0x00; s->control[2] = 0x00; s->status[0] = 0x00; s->status[1] = 0x00; s->enable = 0; } static inline void pxa2xx_fir_update(struct pxa2xx_fir_s *s) { static const int tresh[4] = { 8, 16, 32, 0 }; int intr = 0; if ((s->control[0] & (1 << 4)) && /* RXE */ s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */ s->status[0] |= 1 << 4; /* RFS */ else s->status[0] &= ~(1 << 4); /* RFS */ if (s->control[0] & (1 << 3)) /* TXE */ s->status[0] |= 1 << 3; /* TFS */ else s->status[0] &= ~(1 << 3); /* TFS */ if (s->rx_len) s->status[1] |= 1 << 2; /* RNE */ else s->status[1] &= ~(1 << 2); /* RNE */ if (s->control[0] & (1 << 4)) /* RXE */ s->status[1] |= 1 << 0; /* RSY */ else s->status[1] &= ~(1 << 0); /* RSY */ intr |= (s->control[0] & (1 << 5)) && /* RIE */ (s->status[0] & (1 << 4)); /* RFS */ intr |= (s->control[0] & (1 << 6)) && /* TIE */ (s->status[0] & (1 << 3)); /* TFS */ intr |= (s->control[2] & (1 << 4)) && /* TRAIL */ (s->status[0] & (1 << 6)); /* EOC */ intr |= (s->control[0] & (1 << 2)) && /* TUS */ (s->status[0] & (1 << 1)); /* TUR */ intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */ pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1); pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1); qemu_set_irq(s->irq, intr && s->enable); } #define ICCR0 0x00 /* FICP Control register 0 */ #define ICCR1 0x04 /* FICP Control register 1 */ #define ICCR2 0x08 /* FICP Control register 2 */ #define ICDR 0x0c /* FICP Data register */ #define ICSR0 0x14 /* FICP Status register 0 */ #define ICSR1 0x18 /* FICP Status register 1 */ #define ICFOR 0x1c /* FICP FIFO Occupancy Status register */ static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr) { struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque; uint8_t ret; addr -= s->base; switch (addr) { case ICCR0: return s->control[0]; case ICCR1: return s->control[1]; case ICCR2: return s->control[2]; case ICDR: s->status[0] &= ~0x01; s->status[1] &= ~0x72; if (s->rx_len) { s->rx_len --; ret = s->rx_fifo[s->rx_start ++]; s->rx_start &= 63; pxa2xx_fir_update(s); return ret; } printf("%s: Rx FIFO underrun.\n", __FUNCTION__); break; case ICSR0: return s->status[0]; case ICSR1: return s->status[1] | (1 << 3); /* TNF */ case ICFOR: return s->rx_len; default: printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); break; } return 0; } static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque; uint8_t ch; addr -= s->base; switch (addr) { case ICCR0: s->control[0] = value; if (!(value & (1 << 4))) /* RXE */ s->rx_len = s->rx_start = 0; if (!(value & (1 << 3))) /* TXE */ /* Nop */; s->enable = value & 1; /* ITR */ if (!s->enable) s->status[0] = 0; pxa2xx_fir_update(s); break; case ICCR1: s->control[1] = value; break; case ICCR2: s->control[2] = value & 0x3f; pxa2xx_fir_update(s); break; case ICDR: if (s->control[2] & (1 << 2)) /* TXP */ ch = value; else ch = ~value; if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */ qemu_chr_write(s->chr, &ch, 1); break; case ICSR0: s->status[0] &= ~(value & 0x66); pxa2xx_fir_update(s); break; case ICFOR: break; default: printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr); } } static CPUReadMemoryFunc *pxa2xx_fir_readfn[] = { pxa2xx_fir_read, pxa2xx_fir_read, pxa2xx_fir_read, }; static CPUWriteMemoryFunc *pxa2xx_fir_writefn[] = { pxa2xx_fir_write, pxa2xx_fir_write, pxa2xx_fir_write, }; static int pxa2xx_fir_is_empty(void *opaque) { struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque; return (s->rx_len < 64); } static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size) { struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque; if (!(s->control[0] & (1 << 4))) /* RXE */ return; while (size --) { s->status[1] |= 1 << 4; /* EOF */ if (s->rx_len >= 64) { s->status[1] |= 1 << 6; /* ROR */ break; } if (s->control[2] & (1 << 3)) /* RXP */ s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++); else s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++); } pxa2xx_fir_update(s); } static void pxa2xx_fir_event(void *opaque, int event) { } static struct pxa2xx_fir_s *pxa2xx_fir_init(target_phys_addr_t base, qemu_irq irq, struct pxa2xx_dma_state_s *dma, CharDriverState *chr) { int iomemtype; struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) qemu_mallocz(sizeof(struct pxa2xx_fir_s)); s->base = base; s->irq = irq; s->dma = dma; s->chr = chr; pxa2xx_fir_reset(s); iomemtype = cpu_register_io_memory(0, pxa2xx_fir_readfn, pxa2xx_fir_writefn, s); cpu_register_physical_memory(s->base, 0xfff, iomemtype); if (chr) qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty, pxa2xx_fir_rx, pxa2xx_fir_event, s); return s; } void pxa2xx_reset(int line, int level, void *opaque) { struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque; if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */ cpu_reset(s->env); /* TODO: reset peripherals */ } } /* Initialise a PXA270 integrated chip (ARM based core). */ struct pxa2xx_state_s *pxa270_init(unsigned int sdram_size, DisplayState *ds, const char *revision) { struct pxa2xx_state_s *s; struct pxa2xx_ssp_s *ssp; int iomemtype, i; s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s)); if (revision && strncmp(revision, "pxa27", 5)) { fprintf(stderr, "Machine requires a PXA27x processor.\n"); exit(1); } s->env = cpu_init(); cpu_arm_set_model(s->env, revision ?: "pxa270"); /* SDRAM & Internal Memory Storage */ cpu_register_physical_memory(PXA2XX_SDRAM_BASE, sdram_size, qemu_ram_alloc(sdram_size) | IO_MEM_RAM); cpu_register_physical_memory(PXA2XX_INTERNAL_BASE, 0x40000, qemu_ram_alloc(0x40000) | IO_MEM_RAM); s->pic = pxa2xx_pic_init(0x40d00000, s->env); s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]); pxa27x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0], s->pic[PXA27X_PIC_OST_4_11], s->env); s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121); s->mmc = pxa2xx_mmci_init(0x41100000, s->pic[PXA2XX_PIC_MMC], s->dma); for (i = 0; pxa270_serial[i].io_base; i ++) if (serial_hds[i]) serial_mm_init(pxa270_serial[i].io_base, 2, s->pic[pxa270_serial[i].irqn], serial_hds[i], 1); else break; if (serial_hds[i]) s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP], s->dma, serial_hds[i]); if (ds) s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds); s->cm_base = 0x41300000; s->cm_regs[CCCR >> 4] = 0x02000210; /* 416.0 MHz */ s->clkcfg = 0x00000009; /* Turbo mode active */ iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn, pxa2xx_cm_writefn, s); cpu_register_physical_memory(s->cm_base, 0xfff, iomemtype); cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s); s->mm_base = 0x48000000; s->mm_regs[MDMRS >> 2] = 0x00020002; s->mm_regs[MDREFR >> 2] = 0x03ca4000; s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */ iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn, pxa2xx_mm_writefn, s); cpu_register_physical_memory(s->mm_base, 0xfff, iomemtype); for (i = 0; pxa27x_ssp[i].io_base; i ++); s->ssp = (struct pxa2xx_ssp_s **) qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i); ssp = (struct pxa2xx_ssp_s *) qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i); for (i = 0; pxa27x_ssp[i].io_base; i ++) { s->ssp[i] = &ssp[i]; ssp[i].base = pxa27x_ssp[i].io_base; ssp[i].irq = s->pic[pxa27x_ssp[i].irqn]; iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn, pxa2xx_ssp_writefn, &ssp[i]); cpu_register_physical_memory(ssp[i].base, 0xfff, iomemtype); } if (usb_enabled) { usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]); } s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000); s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000); s->rtc_base = 0x40900000; iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn, pxa2xx_rtc_writefn, s); cpu_register_physical_memory(s->rtc_base, 0xfff, iomemtype); pxa2xx_rtc_reset(s); s->pm_base = 0x40f00000; iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn, pxa2xx_pm_writefn, s); cpu_register_physical_memory(s->pm_base, 0xfff, iomemtype); s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma); /* GPIO1 resets the processor */ /* The handler can be overriden by board-specific code */ pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s); return s; } /* Initialise a PXA255 integrated chip (ARM based core). */ struct pxa2xx_state_s *pxa255_init(unsigned int sdram_size, DisplayState *ds) { struct pxa2xx_state_s *s; struct pxa2xx_ssp_s *ssp; int iomemtype, i; s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s)); s->env = cpu_init(); cpu_arm_set_model(s->env, "pxa255"); /* SDRAM & Internal Memory Storage */ cpu_register_physical_memory(PXA2XX_SDRAM_BASE, sdram_size, qemu_ram_alloc(sdram_size) | IO_MEM_RAM); cpu_register_physical_memory(PXA2XX_INTERNAL_BASE, PXA2XX_INTERNAL_SIZE, qemu_ram_alloc(PXA2XX_INTERNAL_SIZE) | IO_MEM_RAM); s->pic = pxa2xx_pic_init(0x40d00000, s->env); s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]); pxa25x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0], s->env); s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85); s->mmc = pxa2xx_mmci_init(0x41100000, s->pic[PXA2XX_PIC_MMC], s->dma); for (i = 0; pxa255_serial[i].io_base; i ++) if (serial_hds[i]) serial_mm_init(pxa255_serial[i].io_base, 2, s->pic[pxa255_serial[i].irqn], serial_hds[i], 1); else break; if (serial_hds[i]) s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP], s->dma, serial_hds[i]); if (ds) s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds); s->cm_base = 0x41300000; s->cm_regs[CCCR >> 4] = 0x02000210; /* 416.0 MHz */ s->clkcfg = 0x00000009; /* Turbo mode active */ iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn, pxa2xx_cm_writefn, s); cpu_register_physical_memory(s->cm_base, 0xfff, iomemtype); cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s); s->mm_base = 0x48000000; s->mm_regs[MDMRS >> 2] = 0x00020002; s->mm_regs[MDREFR >> 2] = 0x03ca4000; s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */ iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn, pxa2xx_mm_writefn, s); cpu_register_physical_memory(s->mm_base, 0xfff, iomemtype); for (i = 0; pxa255_ssp[i].io_base; i ++); s->ssp = (struct pxa2xx_ssp_s **) qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i); ssp = (struct pxa2xx_ssp_s *) qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i); for (i = 0; pxa255_ssp[i].io_base; i ++) { s->ssp[i] = &ssp[i]; ssp[i].base = pxa255_ssp[i].io_base; ssp[i].irq = s->pic[pxa255_ssp[i].irqn]; iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn, pxa2xx_ssp_writefn, &ssp[i]); cpu_register_physical_memory(ssp[i].base, 0xfff, iomemtype); } if (usb_enabled) { usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]); } s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000); s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000); s->rtc_base = 0x40900000; iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn, pxa2xx_rtc_writefn, s); cpu_register_physical_memory(s->rtc_base, 0xfff, iomemtype); pxa2xx_rtc_reset(s); s->pm_base = 0x40f00000; iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn, pxa2xx_pm_writefn, s); cpu_register_physical_memory(s->pm_base, 0xfff, iomemtype); s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma); /* GPIO1 resets the processor */ /* The handler can be overriden by board-specific code */ pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s); return s; }