/* * QEMU PowerPC 4xx embedded processors shared devices emulation * * Copyright (c) 2007 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "ppc.h" #include "ppc4xx.h" #include "sysemu.h" extern int loglevel; extern FILE *logfile; //#define DEBUG_MMIO //#define DEBUG_UNASSIGNED #define DEBUG_UIC /*****************************************************************************/ /* Generic PowerPC 4xx processor instanciation */ CPUState *ppc4xx_init (const unsigned char *cpu_model, clk_setup_t *cpu_clk, clk_setup_t *tb_clk, uint32_t sysclk) { CPUState *env; /* init CPUs */ env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find PowerPC %s CPU definition\n", cpu_model); exit(1); } cpu_clk->cb = NULL; /* We don't care about CPU clock frequency changes */ cpu_clk->opaque = env; /* Set time-base frequency to sysclk */ tb_clk->cb = ppc_emb_timers_init(env, sysclk); tb_clk->opaque = env; ppc_dcr_init(env, NULL, NULL); /* Register qemu callbacks */ qemu_register_reset(&cpu_ppc_reset, env); register_savevm("cpu", 0, 3, cpu_save, cpu_load, env); return env; } /*****************************************************************************/ /* Fake device used to map multiple devices in a single memory page */ #define MMIO_AREA_BITS 8 #define MMIO_AREA_LEN (1 << MMIO_AREA_BITS) #define MMIO_AREA_NB (1 << (TARGET_PAGE_BITS - MMIO_AREA_BITS)) #define MMIO_IDX(addr) (((addr) >> MMIO_AREA_BITS) & (MMIO_AREA_NB - 1)) struct ppc4xx_mmio_t { target_phys_addr_t base; CPUReadMemoryFunc **mem_read[MMIO_AREA_NB]; CPUWriteMemoryFunc **mem_write[MMIO_AREA_NB]; void *opaque[MMIO_AREA_NB]; }; static uint32_t unassigned_mmio_readb (void *opaque, target_phys_addr_t addr) { #ifdef DEBUG_UNASSIGNED ppc4xx_mmio_t *mmio; mmio = opaque; printf("Unassigned mmio read 0x" PADDRX " base " PADDRX "\n", addr, mmio->base); #endif return 0; } static void unassigned_mmio_writeb (void *opaque, target_phys_addr_t addr, uint32_t val) { #ifdef DEBUG_UNASSIGNED ppc4xx_mmio_t *mmio; mmio = opaque; printf("Unassigned mmio write 0x" PADDRX " = 0x%x base " PADDRX "\n", addr, val, mmio->base); #endif } static CPUReadMemoryFunc *unassigned_mmio_read[3] = { unassigned_mmio_readb, unassigned_mmio_readb, unassigned_mmio_readb, }; static CPUWriteMemoryFunc *unassigned_mmio_write[3] = { unassigned_mmio_writeb, unassigned_mmio_writeb, unassigned_mmio_writeb, }; static uint32_t mmio_readlen (ppc4xx_mmio_t *mmio, target_phys_addr_t addr, int len) { CPUReadMemoryFunc **mem_read; uint32_t ret; int idx; idx = MMIO_IDX(addr - mmio->base); #if defined(DEBUG_MMIO) printf("%s: mmio %p len %d addr " PADDRX " idx %d\n", __func__, mmio, len, addr, idx); #endif mem_read = mmio->mem_read[idx]; ret = (*mem_read[len])(mmio->opaque[idx], addr - mmio->base); return ret; } static void mmio_writelen (ppc4xx_mmio_t *mmio, target_phys_addr_t addr, uint32_t value, int len) { CPUWriteMemoryFunc **mem_write; int idx; idx = MMIO_IDX(addr - mmio->base); #if defined(DEBUG_MMIO) printf("%s: mmio %p len %d addr " PADDRX " idx %d value %08" PRIx32 "\n", __func__, mmio, len, addr, idx, value); #endif mem_write = mmio->mem_write[idx]; (*mem_write[len])(mmio->opaque[idx], addr - mmio->base, value); } static uint32_t mmio_readb (void *opaque, target_phys_addr_t addr) { #if defined(DEBUG_MMIO) printf("%s: addr " PADDRX "\n", __func__, addr); #endif return mmio_readlen(opaque, addr, 0); } static void mmio_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) { #if defined(DEBUG_MMIO) printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value); #endif mmio_writelen(opaque, addr, value, 0); } static uint32_t mmio_readw (void *opaque, target_phys_addr_t addr) { #if defined(DEBUG_MMIO) printf("%s: addr " PADDRX "\n", __func__, addr); #endif return mmio_readlen(opaque, addr, 1); } static void mmio_writew (void *opaque, target_phys_addr_t addr, uint32_t value) { #if defined(DEBUG_MMIO) printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value); #endif mmio_writelen(opaque, addr, value, 1); } static uint32_t mmio_readl (void *opaque, target_phys_addr_t addr) { #if defined(DEBUG_MMIO) printf("%s: addr " PADDRX "\n", __func__, addr); #endif return mmio_readlen(opaque, addr, 2); } static void mmio_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { #if defined(DEBUG_MMIO) printf("%s: addr " PADDRX " val %08" PRIx32 "\n", __func__, addr, value); #endif mmio_writelen(opaque, addr, value, 2); } static CPUReadMemoryFunc *mmio_read[] = { &mmio_readb, &mmio_readw, &mmio_readl, }; static CPUWriteMemoryFunc *mmio_write[] = { &mmio_writeb, &mmio_writew, &mmio_writel, }; int ppc4xx_mmio_register (CPUState *env, ppc4xx_mmio_t *mmio, target_phys_addr_t offset, uint32_t len, CPUReadMemoryFunc **mem_read, CPUWriteMemoryFunc **mem_write, void *opaque) { target_phys_addr_t end; int idx, eidx; if ((offset + len) > TARGET_PAGE_SIZE) return -1; idx = MMIO_IDX(offset); end = offset + len - 1; eidx = MMIO_IDX(end); #if defined(DEBUG_MMIO) printf("%s: offset " PADDRX " len %08" PRIx32 " " PADDRX " %d %d\n", __func__, offset, len, end, idx, eidx); #endif for (; idx <= eidx; idx++) { mmio->mem_read[idx] = mem_read; mmio->mem_write[idx] = mem_write; mmio->opaque[idx] = opaque; } return 0; } ppc4xx_mmio_t *ppc4xx_mmio_init (CPUState *env, target_phys_addr_t base) { ppc4xx_mmio_t *mmio; int mmio_memory; mmio = qemu_mallocz(sizeof(ppc4xx_mmio_t)); if (mmio != NULL) { mmio->base = base; mmio_memory = cpu_register_io_memory(0, mmio_read, mmio_write, mmio); #if defined(DEBUG_MMIO) printf("%s: base " PADDRX " len %08x %d\n", __func__, base, TARGET_PAGE_SIZE, mmio_memory); #endif cpu_register_physical_memory(base, TARGET_PAGE_SIZE, mmio_memory); ppc4xx_mmio_register(env, mmio, 0, TARGET_PAGE_SIZE, unassigned_mmio_read, unassigned_mmio_write, mmio); } return mmio; } /*****************************************************************************/ /* "Universal" Interrupt controller */ enum { DCR_UICSR = 0x000, DCR_UICSRS = 0x001, DCR_UICER = 0x002, DCR_UICCR = 0x003, DCR_UICPR = 0x004, DCR_UICTR = 0x005, DCR_UICMSR = 0x006, DCR_UICVR = 0x007, DCR_UICVCR = 0x008, DCR_UICMAX = 0x009, }; #define UIC_MAX_IRQ 32 typedef struct ppcuic_t ppcuic_t; struct ppcuic_t { uint32_t dcr_base; int use_vectors; uint32_t uicsr; /* Status register */ uint32_t uicer; /* Enable register */ uint32_t uiccr; /* Critical register */ uint32_t uicpr; /* Polarity register */ uint32_t uictr; /* Triggering register */ uint32_t uicvcr; /* Vector configuration register */ uint32_t uicvr; qemu_irq *irqs; }; static void ppcuic_trigger_irq (ppcuic_t *uic) { uint32_t ir, cr; int start, end, inc, i; /* Trigger interrupt if any is pending */ ir = uic->uicsr & uic->uicer & (~uic->uiccr); cr = uic->uicsr & uic->uicer & uic->uiccr; #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "%s: uicsr %08" PRIx32 " uicer %08" PRIx32 " uiccr %08" PRIx32 "\n" " %08" PRIx32 " ir %08" PRIx32 " cr %08" PRIx32 "\n", __func__, uic->uicsr, uic->uicer, uic->uiccr, uic->uicsr & uic->uicer, ir, cr); } #endif if (ir != 0x0000000) { #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "Raise UIC interrupt\n"); } #endif qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_INT]); } else { #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "Lower UIC interrupt\n"); } #endif qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_INT]); } /* Trigger critical interrupt if any is pending and update vector */ if (cr != 0x0000000) { qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_CINT]); if (uic->use_vectors) { /* Compute critical IRQ vector */ if (uic->uicvcr & 1) { start = 31; end = 0; inc = -1; } else { start = 0; end = 31; inc = 1; } uic->uicvr = uic->uicvcr & 0xFFFFFFFC; for (i = start; i <= end; i += inc) { if (cr & (1 << i)) { uic->uicvr += (i - start) * 512 * inc; break; } } } #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "Raise UIC critical interrupt - " "vector %08" PRIx32 "\n", uic->uicvr); } #endif } else { #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "Lower UIC critical interrupt\n"); } #endif qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_CINT]); uic->uicvr = 0x00000000; } } static void ppcuic_set_irq (void *opaque, int irq_num, int level) { ppcuic_t *uic; uint32_t mask, sr; uic = opaque; mask = 1 << (31-irq_num); #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "%s: irq %d level %d uicsr %08" PRIx32 " mask %08" PRIx32 " => %08" PRIx32 " %08" PRIx32 "\n", __func__, irq_num, level, uic->uicsr, mask, uic->uicsr & mask, level << irq_num); } #endif if (irq_num < 0 || irq_num > 31) return; sr = uic->uicsr; /* Update status register */ if (uic->uictr & mask) { /* Edge sensitive interrupt */ if (level == 1) uic->uicsr |= mask; } else { /* Level sensitive interrupt */ if (level == 1) uic->uicsr |= mask; else uic->uicsr &= ~mask; } #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "%s: irq %d level %d sr %" PRIx32 " => " "%08" PRIx32 "\n", __func__, irq_num, level, uic->uicsr, sr); } #endif if (sr != uic->uicsr) ppcuic_trigger_irq(uic); } static target_ulong dcr_read_uic (void *opaque, int dcrn) { ppcuic_t *uic; target_ulong ret; uic = opaque; dcrn -= uic->dcr_base; switch (dcrn) { case DCR_UICSR: case DCR_UICSRS: ret = uic->uicsr; break; case DCR_UICER: ret = uic->uicer; break; case DCR_UICCR: ret = uic->uiccr; break; case DCR_UICPR: ret = uic->uicpr; break; case DCR_UICTR: ret = uic->uictr; break; case DCR_UICMSR: ret = uic->uicsr & uic->uicer; break; case DCR_UICVR: if (!uic->use_vectors) goto no_read; ret = uic->uicvr; break; case DCR_UICVCR: if (!uic->use_vectors) goto no_read; ret = uic->uicvcr; break; default: no_read: ret = 0x00000000; break; } return ret; } static void dcr_write_uic (void *opaque, int dcrn, target_ulong val) { ppcuic_t *uic; uic = opaque; dcrn -= uic->dcr_base; #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "%s: dcr %d val " ADDRX "\n", __func__, dcrn, val); } #endif switch (dcrn) { case DCR_UICSR: uic->uicsr &= ~val; ppcuic_trigger_irq(uic); break; case DCR_UICSRS: uic->uicsr |= val; ppcuic_trigger_irq(uic); break; case DCR_UICER: uic->uicer = val; ppcuic_trigger_irq(uic); break; case DCR_UICCR: uic->uiccr = val; ppcuic_trigger_irq(uic); break; case DCR_UICPR: uic->uicpr = val; break; case DCR_UICTR: uic->uictr = val; ppcuic_trigger_irq(uic); break; case DCR_UICMSR: break; case DCR_UICVR: break; case DCR_UICVCR: uic->uicvcr = val & 0xFFFFFFFD; ppcuic_trigger_irq(uic); break; } } static void ppcuic_reset (void *opaque) { ppcuic_t *uic; uic = opaque; uic->uiccr = 0x00000000; uic->uicer = 0x00000000; uic->uicpr = 0x00000000; uic->uicsr = 0x00000000; uic->uictr = 0x00000000; if (uic->use_vectors) { uic->uicvcr = 0x00000000; uic->uicvr = 0x0000000; } } qemu_irq *ppcuic_init (CPUState *env, qemu_irq *irqs, uint32_t dcr_base, int has_ssr, int has_vr) { ppcuic_t *uic; int i; uic = qemu_mallocz(sizeof(ppcuic_t)); if (uic != NULL) { uic->dcr_base = dcr_base; uic->irqs = irqs; if (has_vr) uic->use_vectors = 1; for (i = 0; i < DCR_UICMAX; i++) { ppc_dcr_register(env, dcr_base + i, uic, &dcr_read_uic, &dcr_write_uic); } qemu_register_reset(ppcuic_reset, uic); ppcuic_reset(uic); } return qemu_allocate_irqs(&ppcuic_set_irq, uic, UIC_MAX_IRQ); }