/* * QEMU PowerPC 405 embedded processors emulation * * Copyright (c) 2007 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" #include "ppc405.h" extern int loglevel; extern FILE *logfile; //#define DEBUG_MMIO #define DEBUG_OPBA #define DEBUG_SDRAM #define DEBUG_GPIO #define DEBUG_SERIAL #define DEBUG_OCM //#define DEBUG_I2C #define DEBUG_GPT #define DEBUG_MAL #define DEBUG_UIC #define DEBUG_CLOCKS //#define DEBUG_UNASSIGNED /*****************************************************************************/ /* Generic PowerPC 405 processor instanciation */ CPUState *ppc405_init (const unsigned char *cpu_model, clk_setup_t *cpu_clk, clk_setup_t *tb_clk, uint32_t sysclk) { CPUState *env; ppc_def_t *def; /* init CPUs */ env = cpu_init(); qemu_register_reset(&cpu_ppc_reset, env); register_savevm("cpu", 0, 3, cpu_save, cpu_load, env); ppc_find_by_name(cpu_model, &def); if (def == NULL) { cpu_abort(env, "Unable to find PowerPC %s CPU definition\n", cpu_model); } cpu_ppc_register(env, def); cpu_clk->cb = NULL; /* We don't care about CPU clock frequency changes */ cpu_clk->opaque = env; /* Set time-base frequency to sysclk */ tb_clk->cb = ppc_emb_timers_init(env, sysclk); tb_clk->opaque = env; ppc_dcr_init(env, NULL, NULL); return env; } ram_addr_t ppc405_set_bootinfo (CPUState *env, ppc4xx_bd_info_t *bd, uint32_t flags) { ram_addr_t bdloc; int i, n; /* We put the bd structure at the top of memory */ if (bd->bi_memsize >= 0x01000000UL) bdloc = 0x01000000UL - sizeof(struct ppc4xx_bd_info_t); else bdloc = bd->bi_memsize - sizeof(struct ppc4xx_bd_info_t); stl_raw(phys_ram_base + bdloc + 0x00, bd->bi_memstart); stl_raw(phys_ram_base + bdloc + 0x04, bd->bi_memsize); stl_raw(phys_ram_base + bdloc + 0x08, bd->bi_flashstart); stl_raw(phys_ram_base + bdloc + 0x0C, bd->bi_flashsize); stl_raw(phys_ram_base + bdloc + 0x10, bd->bi_flashoffset); stl_raw(phys_ram_base + bdloc + 0x14, bd->bi_sramstart); stl_raw(phys_ram_base + bdloc + 0x18, bd->bi_sramsize); stl_raw(phys_ram_base + bdloc + 0x1C, bd->bi_bootflags); stl_raw(phys_ram_base + bdloc + 0x20, bd->bi_ipaddr); for (i = 0; i < 6; i++) stb_raw(phys_ram_base + bdloc + 0x24 + i, bd->bi_enetaddr[i]); stw_raw(phys_ram_base + bdloc + 0x2A, bd->bi_ethspeed); stl_raw(phys_ram_base + bdloc + 0x2C, bd->bi_intfreq); stl_raw(phys_ram_base + bdloc + 0x30, bd->bi_busfreq); stl_raw(phys_ram_base + bdloc + 0x34, bd->bi_baudrate); for (i = 0; i < 4; i++) stb_raw(phys_ram_base + bdloc + 0x38 + i, bd->bi_s_version[i]); for (i = 0; i < 32; i++) stb_raw(phys_ram_base + bdloc + 0x3C + i, bd->bi_s_version[i]); stl_raw(phys_ram_base + bdloc + 0x5C, bd->bi_plb_busfreq); stl_raw(phys_ram_base + bdloc + 0x60, bd->bi_pci_busfreq); for (i = 0; i < 6; i++) stb_raw(phys_ram_base + bdloc + 0x64 + i, bd->bi_pci_enetaddr[i]); n = 0x6A; if (flags & 0x00000001) { for (i = 0; i < 6; i++) stb_raw(phys_ram_base + bdloc + n++, bd->bi_pci_enetaddr2[i]); } stl_raw(phys_ram_base + bdloc + n, bd->bi_opbfreq); n += 4; for (i = 0; i < 2; i++) { stl_raw(phys_ram_base + bdloc + n, bd->bi_iic_fast[i]); n += 4; } return bdloc; } /*****************************************************************************/ /* Shared peripherals */ /*****************************************************************************/ /* Fake device used to map multiple devices in a single memory page */ #define MMIO_AREA_BITS 8 #define MMIO_AREA_LEN (1 << MMIO_AREA_BITS) #define MMIO_AREA_NB (1 << (TARGET_PAGE_BITS - MMIO_AREA_BITS)) #define MMIO_IDX(addr) (((addr) >> MMIO_AREA_BITS) & (MMIO_AREA_NB - 1)) struct ppc4xx_mmio_t { target_phys_addr_t base; CPUReadMemoryFunc **mem_read[MMIO_AREA_NB]; CPUWriteMemoryFunc **mem_write[MMIO_AREA_NB]; void *opaque[MMIO_AREA_NB]; }; static uint32_t unassigned_mmio_readb (void *opaque, target_phys_addr_t addr) { #ifdef DEBUG_UNASSIGNED ppc4xx_mmio_t *mmio; mmio = opaque; printf("Unassigned mmio read 0x" PADDRX " base " PADDRX "\n", addr, mmio->base); #endif return 0; } static void unassigned_mmio_writeb (void *opaque, target_phys_addr_t addr, uint32_t val) { #ifdef DEBUG_UNASSIGNED ppc4xx_mmio_t *mmio; mmio = opaque; printf("Unassigned mmio write 0x" PADDRX " = 0x%x base " PADDRX "\n", addr, val, mmio->base); #endif } static CPUReadMemoryFunc *unassigned_mmio_read[3] = { unassigned_mmio_readb, unassigned_mmio_readb, unassigned_mmio_readb, }; static CPUWriteMemoryFunc *unassigned_mmio_write[3] = { unassigned_mmio_writeb, unassigned_mmio_writeb, unassigned_mmio_writeb, }; static uint32_t mmio_readlen (ppc4xx_mmio_t *mmio, target_phys_addr_t addr, int len) { CPUReadMemoryFunc **mem_read; uint32_t ret; int idx; idx = MMIO_IDX(addr - mmio->base); #if defined(DEBUG_MMIO) printf("%s: mmio %p len %d addr " PADDRX " idx %d\n", __func__, mmio, len, addr, idx); #endif mem_read = mmio->mem_read[idx]; ret = (*mem_read[len])(mmio->opaque[idx], addr - mmio->base); return ret; } static void mmio_writelen (ppc4xx_mmio_t *mmio, target_phys_addr_t addr, uint32_t value, int len) { CPUWriteMemoryFunc **mem_write; int idx; idx = MMIO_IDX(addr - mmio->base); #if defined(DEBUG_MMIO) printf("%s: mmio %p len %d addr " PADDRX " idx %d value %08x\n", __func__, mmio, len, addr, idx, value); #endif mem_write = mmio->mem_write[idx]; (*mem_write[len])(mmio->opaque[idx], addr - mmio->base, value); } static uint32_t mmio_readb (void *opaque, target_phys_addr_t addr) { #if defined(DEBUG_MMIO) printf("%s: addr " PADDRX "\n", __func__, addr); #endif return mmio_readlen(opaque, addr, 0); } static void mmio_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) { #if defined(DEBUG_MMIO) printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif mmio_writelen(opaque, addr, value, 0); } static uint32_t mmio_readw (void *opaque, target_phys_addr_t addr) { #if defined(DEBUG_MMIO) printf("%s: addr " PADDRX "\n", __func__, addr); #endif return mmio_readlen(opaque, addr, 1); } static void mmio_writew (void *opaque, target_phys_addr_t addr, uint32_t value) { #if defined(DEBUG_MMIO) printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif mmio_writelen(opaque, addr, value, 1); } static uint32_t mmio_readl (void *opaque, target_phys_addr_t addr) { #if defined(DEBUG_MMIO) printf("%s: addr " PADDRX "\n", __func__, addr); #endif return mmio_readlen(opaque, addr, 2); } static void mmio_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { #if defined(DEBUG_MMIO) printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif mmio_writelen(opaque, addr, value, 2); } static CPUReadMemoryFunc *mmio_read[] = { &mmio_readb, &mmio_readw, &mmio_readl, }; static CPUWriteMemoryFunc *mmio_write[] = { &mmio_writeb, &mmio_writew, &mmio_writel, }; int ppc4xx_mmio_register (CPUState *env, ppc4xx_mmio_t *mmio, target_phys_addr_t offset, uint32_t len, CPUReadMemoryFunc **mem_read, CPUWriteMemoryFunc **mem_write, void *opaque) { uint32_t end; int idx, eidx; if ((offset + len) > TARGET_PAGE_SIZE) return -1; idx = MMIO_IDX(offset); end = offset + len - 1; eidx = MMIO_IDX(end); #if defined(DEBUG_MMIO) printf("%s: offset %08x len %08x %08x %d %d\n", __func__, offset, len, end, idx, eidx); #endif for (; idx <= eidx; idx++) { mmio->mem_read[idx] = mem_read; mmio->mem_write[idx] = mem_write; mmio->opaque[idx] = opaque; } return 0; } ppc4xx_mmio_t *ppc4xx_mmio_init (CPUState *env, target_phys_addr_t base) { ppc4xx_mmio_t *mmio; int mmio_memory; mmio = qemu_mallocz(sizeof(ppc4xx_mmio_t)); if (mmio != NULL) { mmio->base = base; mmio_memory = cpu_register_io_memory(0, mmio_read, mmio_write, mmio); #if defined(DEBUG_MMIO) printf("%s: %p base %08x len %08x %d\n", __func__, mmio, base, TARGET_PAGE_SIZE, mmio_memory); #endif cpu_register_physical_memory(base, TARGET_PAGE_SIZE, mmio_memory); ppc4xx_mmio_register(env, mmio, 0, TARGET_PAGE_SIZE, unassigned_mmio_read, unassigned_mmio_write, mmio); } return mmio; } /*****************************************************************************/ /* Peripheral local bus arbitrer */ enum { PLB0_BESR = 0x084, PLB0_BEAR = 0x086, PLB0_ACR = 0x087, }; typedef struct ppc4xx_plb_t ppc4xx_plb_t; struct ppc4xx_plb_t { uint32_t acr; uint32_t bear; uint32_t besr; }; static target_ulong dcr_read_plb (void *opaque, int dcrn) { ppc4xx_plb_t *plb; target_ulong ret; plb = opaque; switch (dcrn) { case PLB0_ACR: ret = plb->acr; break; case PLB0_BEAR: ret = plb->bear; break; case PLB0_BESR: ret = plb->besr; break; default: /* Avoid gcc warning */ ret = 0; break; } return ret; } static void dcr_write_plb (void *opaque, int dcrn, target_ulong val) { ppc4xx_plb_t *plb; plb = opaque; switch (dcrn) { case PLB0_ACR: /* We don't care about the actual parameters written as * we don't manage any priorities on the bus */ plb->acr = val & 0xF8000000; break; case PLB0_BEAR: /* Read only */ break; case PLB0_BESR: /* Write-clear */ plb->besr &= ~val; break; } } static void ppc4xx_plb_reset (void *opaque) { ppc4xx_plb_t *plb; plb = opaque; plb->acr = 0x00000000; plb->bear = 0x00000000; plb->besr = 0x00000000; } void ppc4xx_plb_init (CPUState *env) { ppc4xx_plb_t *plb; plb = qemu_mallocz(sizeof(ppc4xx_plb_t)); if (plb != NULL) { ppc_dcr_register(env, PLB0_ACR, plb, &dcr_read_plb, &dcr_write_plb); ppc_dcr_register(env, PLB0_BEAR, plb, &dcr_read_plb, &dcr_write_plb); ppc_dcr_register(env, PLB0_BESR, plb, &dcr_read_plb, &dcr_write_plb); ppc4xx_plb_reset(plb); qemu_register_reset(ppc4xx_plb_reset, plb); } } /*****************************************************************************/ /* PLB to OPB bridge */ enum { POB0_BESR0 = 0x0A0, POB0_BESR1 = 0x0A2, POB0_BEAR = 0x0A4, }; typedef struct ppc4xx_pob_t ppc4xx_pob_t; struct ppc4xx_pob_t { uint32_t bear; uint32_t besr[2]; }; static target_ulong dcr_read_pob (void *opaque, int dcrn) { ppc4xx_pob_t *pob; target_ulong ret; pob = opaque; switch (dcrn) { case POB0_BEAR: ret = pob->bear; break; case POB0_BESR0: case POB0_BESR1: ret = pob->besr[dcrn - POB0_BESR0]; break; default: /* Avoid gcc warning */ ret = 0; break; } return ret; } static void dcr_write_pob (void *opaque, int dcrn, target_ulong val) { ppc4xx_pob_t *pob; pob = opaque; switch (dcrn) { case POB0_BEAR: /* Read only */ break; case POB0_BESR0: case POB0_BESR1: /* Write-clear */ pob->besr[dcrn - POB0_BESR0] &= ~val; break; } } static void ppc4xx_pob_reset (void *opaque) { ppc4xx_pob_t *pob; pob = opaque; /* No error */ pob->bear = 0x00000000; pob->besr[0] = 0x0000000; pob->besr[1] = 0x0000000; } void ppc4xx_pob_init (CPUState *env) { ppc4xx_pob_t *pob; pob = qemu_mallocz(sizeof(ppc4xx_pob_t)); if (pob != NULL) { ppc_dcr_register(env, POB0_BEAR, pob, &dcr_read_pob, &dcr_write_pob); ppc_dcr_register(env, POB0_BESR0, pob, &dcr_read_pob, &dcr_write_pob); ppc_dcr_register(env, POB0_BESR1, pob, &dcr_read_pob, &dcr_write_pob); qemu_register_reset(ppc4xx_pob_reset, pob); ppc4xx_pob_reset(env); } } /*****************************************************************************/ /* OPB arbitrer */ typedef struct ppc4xx_opba_t ppc4xx_opba_t; struct ppc4xx_opba_t { target_phys_addr_t base; uint8_t cr; uint8_t pr; }; static uint32_t opba_readb (void *opaque, target_phys_addr_t addr) { ppc4xx_opba_t *opba; uint32_t ret; #ifdef DEBUG_OPBA printf("%s: addr " PADDRX "\n", __func__, addr); #endif opba = opaque; switch (addr - opba->base) { case 0x00: ret = opba->cr; break; case 0x01: ret = opba->pr; break; default: ret = 0x00; break; } return ret; } static void opba_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) { ppc4xx_opba_t *opba; #ifdef DEBUG_OPBA printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif opba = opaque; switch (addr - opba->base) { case 0x00: opba->cr = value & 0xF8; break; case 0x01: opba->pr = value & 0xFF; break; default: break; } } static uint32_t opba_readw (void *opaque, target_phys_addr_t addr) { uint32_t ret; #ifdef DEBUG_OPBA printf("%s: addr " PADDRX "\n", __func__, addr); #endif ret = opba_readb(opaque, addr) << 8; ret |= opba_readb(opaque, addr + 1); return ret; } static void opba_writew (void *opaque, target_phys_addr_t addr, uint32_t value) { #ifdef DEBUG_OPBA printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif opba_writeb(opaque, addr, value >> 8); opba_writeb(opaque, addr + 1, value); } static uint32_t opba_readl (void *opaque, target_phys_addr_t addr) { uint32_t ret; #ifdef DEBUG_OPBA printf("%s: addr " PADDRX "\n", __func__, addr); #endif ret = opba_readb(opaque, addr) << 24; ret |= opba_readb(opaque, addr + 1) << 16; return ret; } static void opba_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { #ifdef DEBUG_OPBA printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif opba_writeb(opaque, addr, value >> 24); opba_writeb(opaque, addr + 1, value >> 16); } static CPUReadMemoryFunc *opba_read[] = { &opba_readb, &opba_readw, &opba_readl, }; static CPUWriteMemoryFunc *opba_write[] = { &opba_writeb, &opba_writew, &opba_writel, }; static void ppc4xx_opba_reset (void *opaque) { ppc4xx_opba_t *opba; opba = opaque; opba->cr = 0x00; /* No dynamic priorities - park disabled */ opba->pr = 0x11; } void ppc4xx_opba_init (CPUState *env, ppc4xx_mmio_t *mmio, target_phys_addr_t offset) { ppc4xx_opba_t *opba; opba = qemu_mallocz(sizeof(ppc4xx_opba_t)); if (opba != NULL) { opba->base = offset; #ifdef DEBUG_OPBA printf("%s: offset=" PADDRX "\n", __func__, offset); #endif ppc4xx_mmio_register(env, mmio, offset, 0x002, opba_read, opba_write, opba); qemu_register_reset(ppc4xx_opba_reset, opba); ppc4xx_opba_reset(opba); } } /*****************************************************************************/ /* "Universal" Interrupt controller */ enum { DCR_UICSR = 0x000, DCR_UICSRS = 0x001, DCR_UICER = 0x002, DCR_UICCR = 0x003, DCR_UICPR = 0x004, DCR_UICTR = 0x005, DCR_UICMSR = 0x006, DCR_UICVR = 0x007, DCR_UICVCR = 0x008, DCR_UICMAX = 0x009, }; #define UIC_MAX_IRQ 32 typedef struct ppcuic_t ppcuic_t; struct ppcuic_t { uint32_t dcr_base; int use_vectors; uint32_t uicsr; /* Status register */ uint32_t uicer; /* Enable register */ uint32_t uiccr; /* Critical register */ uint32_t uicpr; /* Polarity register */ uint32_t uictr; /* Triggering register */ uint32_t uicvcr; /* Vector configuration register */ uint32_t uicvr; qemu_irq *irqs; }; static void ppcuic_trigger_irq (ppcuic_t *uic) { uint32_t ir, cr; int start, end, inc, i; /* Trigger interrupt if any is pending */ ir = uic->uicsr & uic->uicer & (~uic->uiccr); cr = uic->uicsr & uic->uicer & uic->uiccr; #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "%s: uicsr %08x uicer %08x uiccr %08x\n" " %08x ir %08x cr %08x\n", __func__, uic->uicsr, uic->uicer, uic->uiccr, uic->uicsr & uic->uicer, ir, cr); } #endif if (ir != 0x0000000) { #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "Raise UIC interrupt\n"); } #endif qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_INT]); } else { #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "Lower UIC interrupt\n"); } #endif qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_INT]); } /* Trigger critical interrupt if any is pending and update vector */ if (cr != 0x0000000) { qemu_irq_raise(uic->irqs[PPCUIC_OUTPUT_CINT]); if (uic->use_vectors) { /* Compute critical IRQ vector */ if (uic->uicvcr & 1) { start = 31; end = 0; inc = -1; } else { start = 0; end = 31; inc = 1; } uic->uicvr = uic->uicvcr & 0xFFFFFFFC; for (i = start; i <= end; i += inc) { if (cr & (1 << i)) { uic->uicvr += (i - start) * 512 * inc; break; } } } #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "Raise UIC critical interrupt - vector %08x\n", uic->uicvr); } #endif } else { #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "Lower UIC critical interrupt\n"); } #endif qemu_irq_lower(uic->irqs[PPCUIC_OUTPUT_CINT]); uic->uicvr = 0x00000000; } } static void ppcuic_set_irq (void *opaque, int irq_num, int level) { ppcuic_t *uic; uint32_t mask, sr; uic = opaque; mask = 1 << irq_num; #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "%s: irq %d level %d uicsr %08x mask %08x => %08x " "%08x\n", __func__, irq_num, level, uic->uicsr, mask, uic->uicsr & mask, level << irq_num); } #endif if (irq_num < 0 || irq_num > 31) return; sr = uic->uicsr; if (!(uic->uicpr & mask)) { /* Negatively asserted IRQ */ level = level == 0 ? 1 : 0; } /* Update status register */ if (uic->uictr & mask) { /* Edge sensitive interrupt */ if (level == 1) uic->uicsr |= mask; } else { /* Level sensitive interrupt */ if (level == 1) uic->uicsr |= mask; else uic->uicsr &= ~mask; } #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "%s: irq %d level %d sr %08x => %08x\n", __func__, irq_num, level, uic->uicsr, sr); } #endif if (sr != uic->uicsr) ppcuic_trigger_irq(uic); } static target_ulong dcr_read_uic (void *opaque, int dcrn) { ppcuic_t *uic; target_ulong ret; uic = opaque; dcrn -= uic->dcr_base; switch (dcrn) { case DCR_UICSR: case DCR_UICSRS: ret = uic->uicsr; break; case DCR_UICER: ret = uic->uicer; break; case DCR_UICCR: ret = uic->uiccr; break; case DCR_UICPR: ret = uic->uicpr; break; case DCR_UICTR: ret = uic->uictr; break; case DCR_UICMSR: ret = uic->uicsr & uic->uicer; break; case DCR_UICVR: if (!uic->use_vectors) goto no_read; ret = uic->uicvr; break; case DCR_UICVCR: if (!uic->use_vectors) goto no_read; ret = uic->uicvcr; break; default: no_read: ret = 0x00000000; break; } return ret; } static void dcr_write_uic (void *opaque, int dcrn, target_ulong val) { ppcuic_t *uic; uic = opaque; dcrn -= uic->dcr_base; #ifdef DEBUG_UIC if (loglevel & CPU_LOG_INT) { fprintf(logfile, "%s: dcr %d val " ADDRX "\n", __func__, dcrn, val); } #endif switch (dcrn) { case DCR_UICSR: uic->uicsr &= ~val; ppcuic_trigger_irq(uic); break; case DCR_UICSRS: uic->uicsr |= val; ppcuic_trigger_irq(uic); break; case DCR_UICER: uic->uicer = val; ppcuic_trigger_irq(uic); break; case DCR_UICCR: uic->uiccr = val; ppcuic_trigger_irq(uic); break; case DCR_UICPR: uic->uicpr = val; ppcuic_trigger_irq(uic); break; case DCR_UICTR: uic->uictr = val; ppcuic_trigger_irq(uic); break; case DCR_UICMSR: break; case DCR_UICVR: break; case DCR_UICVCR: uic->uicvcr = val & 0xFFFFFFFD; ppcuic_trigger_irq(uic); break; } } static void ppcuic_reset (void *opaque) { ppcuic_t *uic; uic = opaque; uic->uiccr = 0x00000000; uic->uicer = 0x00000000; uic->uicpr = 0x00000000; uic->uicsr = 0x00000000; uic->uictr = 0x00000000; if (uic->use_vectors) { uic->uicvcr = 0x00000000; uic->uicvr = 0x0000000; } } qemu_irq *ppcuic_init (CPUState *env, qemu_irq *irqs, uint32_t dcr_base, int has_ssr, int has_vr) { ppcuic_t *uic; int i; uic = qemu_mallocz(sizeof(ppcuic_t)); if (uic != NULL) { uic->dcr_base = dcr_base; uic->irqs = irqs; if (has_vr) uic->use_vectors = 1; for (i = 0; i < DCR_UICMAX; i++) { ppc_dcr_register(env, dcr_base + i, uic, &dcr_read_uic, &dcr_write_uic); } qemu_register_reset(ppcuic_reset, uic); ppcuic_reset(uic); } return qemu_allocate_irqs(&ppcuic_set_irq, uic, UIC_MAX_IRQ); } /*****************************************************************************/ /* Code decompression controller */ /* XXX: TODO */ /*****************************************************************************/ /* SDRAM controller */ typedef struct ppc4xx_sdram_t ppc4xx_sdram_t; struct ppc4xx_sdram_t { uint32_t addr; int nbanks; target_phys_addr_t ram_bases[4]; target_phys_addr_t ram_sizes[4]; uint32_t besr0; uint32_t besr1; uint32_t bear; uint32_t cfg; uint32_t status; uint32_t rtr; uint32_t pmit; uint32_t bcr[4]; uint32_t tr; uint32_t ecccfg; uint32_t eccesr; qemu_irq irq; }; enum { SDRAM0_CFGADDR = 0x010, SDRAM0_CFGDATA = 0x011, }; static uint32_t sdram_bcr (target_phys_addr_t ram_base, target_phys_addr_t ram_size) { uint32_t bcr; switch (ram_size) { case (4 * 1024 * 1024): bcr = 0x00000000; break; case (8 * 1024 * 1024): bcr = 0x00020000; break; case (16 * 1024 * 1024): bcr = 0x00040000; break; case (32 * 1024 * 1024): bcr = 0x00060000; break; case (64 * 1024 * 1024): bcr = 0x00080000; break; case (128 * 1024 * 1024): bcr = 0x000A0000; break; case (256 * 1024 * 1024): bcr = 0x000C0000; break; default: printf("%s: invalid RAM size " TARGET_FMT_plx "\n", __func__, ram_size); return 0x00000000; } bcr |= ram_base & 0xFF800000; bcr |= 1; return bcr; } static inline target_phys_addr_t sdram_base (uint32_t bcr) { return bcr & 0xFF800000; } static target_ulong sdram_size (uint32_t bcr) { target_ulong size; int sh; sh = (bcr >> 17) & 0x7; if (sh == 7) size = -1; else size = (4 * 1024 * 1024) << sh; return size; } static void sdram_set_bcr (uint32_t *bcrp, uint32_t bcr, int enabled) { if (*bcrp & 0x00000001) { /* Unmap RAM */ #ifdef DEBUG_SDRAM printf("%s: unmap RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n", __func__, sdram_base(*bcrp), sdram_size(*bcrp)); #endif cpu_register_physical_memory(sdram_base(*bcrp), sdram_size(*bcrp), IO_MEM_UNASSIGNED); } *bcrp = bcr & 0xFFDEE001; if (enabled && (bcr & 0x00000001)) { #ifdef DEBUG_SDRAM printf("%s: Map RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n", __func__, sdram_base(bcr), sdram_size(bcr)); #endif cpu_register_physical_memory(sdram_base(bcr), sdram_size(bcr), sdram_base(bcr) | IO_MEM_RAM); } } static void sdram_map_bcr (ppc4xx_sdram_t *sdram) { int i; for (i = 0; i < sdram->nbanks; i++) { if (sdram->ram_sizes[i] != 0) { sdram_set_bcr(&sdram->bcr[i], sdram_bcr(sdram->ram_bases[i], sdram->ram_sizes[i]), 1); } else { sdram_set_bcr(&sdram->bcr[i], 0x00000000, 0); } } } static void sdram_unmap_bcr (ppc4xx_sdram_t *sdram) { int i; for (i = 0; i < sdram->nbanks; i++) { #ifdef DEBUG_SDRAM printf("%s: Unmap RAM area " TARGET_FMT_plx " " TARGET_FMT_lx "\n", __func__, sdram_base(sdram->bcr[i]), sdram_size(sdram->bcr[i])); #endif cpu_register_physical_memory(sdram_base(sdram->bcr[i]), sdram_size(sdram->bcr[i]), IO_MEM_UNASSIGNED); } } static target_ulong dcr_read_sdram (void *opaque, int dcrn) { ppc4xx_sdram_t *sdram; target_ulong ret; sdram = opaque; switch (dcrn) { case SDRAM0_CFGADDR: ret = sdram->addr; break; case SDRAM0_CFGDATA: switch (sdram->addr) { case 0x00: /* SDRAM_BESR0 */ ret = sdram->besr0; break; case 0x08: /* SDRAM_BESR1 */ ret = sdram->besr1; break; case 0x10: /* SDRAM_BEAR */ ret = sdram->bear; break; case 0x20: /* SDRAM_CFG */ ret = sdram->cfg; break; case 0x24: /* SDRAM_STATUS */ ret = sdram->status; break; case 0x30: /* SDRAM_RTR */ ret = sdram->rtr; break; case 0x34: /* SDRAM_PMIT */ ret = sdram->pmit; break; case 0x40: /* SDRAM_B0CR */ ret = sdram->bcr[0]; break; case 0x44: /* SDRAM_B1CR */ ret = sdram->bcr[1]; break; case 0x48: /* SDRAM_B2CR */ ret = sdram->bcr[2]; break; case 0x4C: /* SDRAM_B3CR */ ret = sdram->bcr[3]; break; case 0x80: /* SDRAM_TR */ ret = -1; /* ? */ break; case 0x94: /* SDRAM_ECCCFG */ ret = sdram->ecccfg; break; case 0x98: /* SDRAM_ECCESR */ ret = sdram->eccesr; break; default: /* Error */ ret = -1; break; } break; default: /* Avoid gcc warning */ ret = 0x00000000; break; } return ret; } static void dcr_write_sdram (void *opaque, int dcrn, target_ulong val) { ppc4xx_sdram_t *sdram; sdram = opaque; switch (dcrn) { case SDRAM0_CFGADDR: sdram->addr = val; break; case SDRAM0_CFGDATA: switch (sdram->addr) { case 0x00: /* SDRAM_BESR0 */ sdram->besr0 &= ~val; break; case 0x08: /* SDRAM_BESR1 */ sdram->besr1 &= ~val; break; case 0x10: /* SDRAM_BEAR */ sdram->bear = val; break; case 0x20: /* SDRAM_CFG */ val &= 0xFFE00000; if (!(sdram->cfg & 0x80000000) && (val & 0x80000000)) { #ifdef DEBUG_SDRAM printf("%s: enable SDRAM controller\n", __func__); #endif /* validate all RAM mappings */ sdram_map_bcr(sdram); sdram->status &= ~0x80000000; } else if ((sdram->cfg & 0x80000000) && !(val & 0x80000000)) { #ifdef DEBUG_SDRAM printf("%s: disable SDRAM controller\n", __func__); #endif /* invalidate all RAM mappings */ sdram_unmap_bcr(sdram); sdram->status |= 0x80000000; } if (!(sdram->cfg & 0x40000000) && (val & 0x40000000)) sdram->status |= 0x40000000; else if ((sdram->cfg & 0x40000000) && !(val & 0x40000000)) sdram->status &= ~0x40000000; sdram->cfg = val; break; case 0x24: /* SDRAM_STATUS */ /* Read-only register */ break; case 0x30: /* SDRAM_RTR */ sdram->rtr = val & 0x3FF80000; break; case 0x34: /* SDRAM_PMIT */ sdram->pmit = (val & 0xF8000000) | 0x07C00000; break; case 0x40: /* SDRAM_B0CR */ sdram_set_bcr(&sdram->bcr[0], val, sdram->cfg & 0x80000000); break; case 0x44: /* SDRAM_B1CR */ sdram_set_bcr(&sdram->bcr[1], val, sdram->cfg & 0x80000000); break; case 0x48: /* SDRAM_B2CR */ sdram_set_bcr(&sdram->bcr[2], val, sdram->cfg & 0x80000000); break; case 0x4C: /* SDRAM_B3CR */ sdram_set_bcr(&sdram->bcr[3], val, sdram->cfg & 0x80000000); break; case 0x80: /* SDRAM_TR */ sdram->tr = val & 0x018FC01F; break; case 0x94: /* SDRAM_ECCCFG */ sdram->ecccfg = val & 0x00F00000; break; case 0x98: /* SDRAM_ECCESR */ val &= 0xFFF0F000; if (sdram->eccesr == 0 && val != 0) qemu_irq_raise(sdram->irq); else if (sdram->eccesr != 0 && val == 0) qemu_irq_lower(sdram->irq); sdram->eccesr = val; break; default: /* Error */ break; } break; } } static void sdram_reset (void *opaque) { ppc4xx_sdram_t *sdram; sdram = opaque; sdram->addr = 0x00000000; sdram->bear = 0x00000000; sdram->besr0 = 0x00000000; /* No error */ sdram->besr1 = 0x00000000; /* No error */ sdram->cfg = 0x00000000; sdram->ecccfg = 0x00000000; /* No ECC */ sdram->eccesr = 0x00000000; /* No error */ sdram->pmit = 0x07C00000; sdram->rtr = 0x05F00000; sdram->tr = 0x00854009; /* We pre-initialize RAM banks */ sdram->status = 0x00000000; sdram->cfg = 0x00800000; sdram_unmap_bcr(sdram); } void ppc405_sdram_init (CPUState *env, qemu_irq irq, int nbanks, target_phys_addr_t *ram_bases, target_phys_addr_t *ram_sizes, int do_init) { ppc4xx_sdram_t *sdram; sdram = qemu_mallocz(sizeof(ppc4xx_sdram_t)); if (sdram != NULL) { sdram->irq = irq; sdram->nbanks = nbanks; memset(sdram->ram_bases, 0, 4 * sizeof(target_phys_addr_t)); memcpy(sdram->ram_bases, ram_bases, nbanks * sizeof(target_phys_addr_t)); memset(sdram->ram_sizes, 0, 4 * sizeof(target_phys_addr_t)); memcpy(sdram->ram_sizes, ram_sizes, nbanks * sizeof(target_phys_addr_t)); sdram_reset(sdram); qemu_register_reset(&sdram_reset, sdram); ppc_dcr_register(env, SDRAM0_CFGADDR, sdram, &dcr_read_sdram, &dcr_write_sdram); ppc_dcr_register(env, SDRAM0_CFGDATA, sdram, &dcr_read_sdram, &dcr_write_sdram); if (do_init) sdram_map_bcr(sdram); } } /*****************************************************************************/ /* Peripheral controller */ typedef struct ppc4xx_ebc_t ppc4xx_ebc_t; struct ppc4xx_ebc_t { uint32_t addr; uint32_t bcr[8]; uint32_t bap[8]; uint32_t bear; uint32_t besr0; uint32_t besr1; uint32_t cfg; }; enum { EBC0_CFGADDR = 0x012, EBC0_CFGDATA = 0x013, }; static target_ulong dcr_read_ebc (void *opaque, int dcrn) { ppc4xx_ebc_t *ebc; target_ulong ret; ebc = opaque; switch (dcrn) { case EBC0_CFGADDR: ret = ebc->addr; break; case EBC0_CFGDATA: switch (ebc->addr) { case 0x00: /* B0CR */ ret = ebc->bcr[0]; break; case 0x01: /* B1CR */ ret = ebc->bcr[1]; break; case 0x02: /* B2CR */ ret = ebc->bcr[2]; break; case 0x03: /* B3CR */ ret = ebc->bcr[3]; break; case 0x04: /* B4CR */ ret = ebc->bcr[4]; break; case 0x05: /* B5CR */ ret = ebc->bcr[5]; break; case 0x06: /* B6CR */ ret = ebc->bcr[6]; break; case 0x07: /* B7CR */ ret = ebc->bcr[7]; break; case 0x10: /* B0AP */ ret = ebc->bap[0]; break; case 0x11: /* B1AP */ ret = ebc->bap[1]; break; case 0x12: /* B2AP */ ret = ebc->bap[2]; break; case 0x13: /* B3AP */ ret = ebc->bap[3]; break; case 0x14: /* B4AP */ ret = ebc->bap[4]; break; case 0x15: /* B5AP */ ret = ebc->bap[5]; break; case 0x16: /* B6AP */ ret = ebc->bap[6]; break; case 0x17: /* B7AP */ ret = ebc->bap[7]; break; case 0x20: /* BEAR */ ret = ebc->bear; break; case 0x21: /* BESR0 */ ret = ebc->besr0; break; case 0x22: /* BESR1 */ ret = ebc->besr1; break; case 0x23: /* CFG */ ret = ebc->cfg; break; default: ret = 0x00000000; break; } default: ret = 0x00000000; break; } return ret; } static void dcr_write_ebc (void *opaque, int dcrn, target_ulong val) { ppc4xx_ebc_t *ebc; ebc = opaque; switch (dcrn) { case EBC0_CFGADDR: ebc->addr = val; break; case EBC0_CFGDATA: switch (ebc->addr) { case 0x00: /* B0CR */ break; case 0x01: /* B1CR */ break; case 0x02: /* B2CR */ break; case 0x03: /* B3CR */ break; case 0x04: /* B4CR */ break; case 0x05: /* B5CR */ break; case 0x06: /* B6CR */ break; case 0x07: /* B7CR */ break; case 0x10: /* B0AP */ break; case 0x11: /* B1AP */ break; case 0x12: /* B2AP */ break; case 0x13: /* B3AP */ break; case 0x14: /* B4AP */ break; case 0x15: /* B5AP */ break; case 0x16: /* B6AP */ break; case 0x17: /* B7AP */ break; case 0x20: /* BEAR */ break; case 0x21: /* BESR0 */ break; case 0x22: /* BESR1 */ break; case 0x23: /* CFG */ break; default: break; } break; default: break; } } static void ebc_reset (void *opaque) { ppc4xx_ebc_t *ebc; int i; ebc = opaque; ebc->addr = 0x00000000; ebc->bap[0] = 0x7F8FFE80; ebc->bcr[0] = 0xFFE28000; for (i = 0; i < 8; i++) { ebc->bap[i] = 0x00000000; ebc->bcr[i] = 0x00000000; } ebc->besr0 = 0x00000000; ebc->besr1 = 0x00000000; ebc->cfg = 0x80400000; } void ppc405_ebc_init (CPUState *env) { ppc4xx_ebc_t *ebc; ebc = qemu_mallocz(sizeof(ppc4xx_ebc_t)); if (ebc != NULL) { ebc_reset(ebc); qemu_register_reset(&ebc_reset, ebc); ppc_dcr_register(env, EBC0_CFGADDR, ebc, &dcr_read_ebc, &dcr_write_ebc); ppc_dcr_register(env, EBC0_CFGDATA, ebc, &dcr_read_ebc, &dcr_write_ebc); } } /*****************************************************************************/ /* DMA controller */ enum { DMA0_CR0 = 0x100, DMA0_CT0 = 0x101, DMA0_DA0 = 0x102, DMA0_SA0 = 0x103, DMA0_SG0 = 0x104, DMA0_CR1 = 0x108, DMA0_CT1 = 0x109, DMA0_DA1 = 0x10A, DMA0_SA1 = 0x10B, DMA0_SG1 = 0x10C, DMA0_CR2 = 0x110, DMA0_CT2 = 0x111, DMA0_DA2 = 0x112, DMA0_SA2 = 0x113, DMA0_SG2 = 0x114, DMA0_CR3 = 0x118, DMA0_CT3 = 0x119, DMA0_DA3 = 0x11A, DMA0_SA3 = 0x11B, DMA0_SG3 = 0x11C, DMA0_SR = 0x120, DMA0_SGC = 0x123, DMA0_SLP = 0x125, DMA0_POL = 0x126, }; typedef struct ppc405_dma_t ppc405_dma_t; struct ppc405_dma_t { qemu_irq irqs[4]; uint32_t cr[4]; uint32_t ct[4]; uint32_t da[4]; uint32_t sa[4]; uint32_t sg[4]; uint32_t sr; uint32_t sgc; uint32_t slp; uint32_t pol; }; static target_ulong dcr_read_dma (void *opaque, int dcrn) { ppc405_dma_t *dma; dma = opaque; return 0; } static void dcr_write_dma (void *opaque, int dcrn, target_ulong val) { ppc405_dma_t *dma; dma = opaque; } static void ppc405_dma_reset (void *opaque) { ppc405_dma_t *dma; int i; dma = opaque; for (i = 0; i < 4; i++) { dma->cr[i] = 0x00000000; dma->ct[i] = 0x00000000; dma->da[i] = 0x00000000; dma->sa[i] = 0x00000000; dma->sg[i] = 0x00000000; } dma->sr = 0x00000000; dma->sgc = 0x00000000; dma->slp = 0x7C000000; dma->pol = 0x00000000; } void ppc405_dma_init (CPUState *env, qemu_irq irqs[4]) { ppc405_dma_t *dma; dma = qemu_mallocz(sizeof(ppc405_dma_t)); if (dma != NULL) { memcpy(dma->irqs, irqs, 4 * sizeof(qemu_irq)); ppc405_dma_reset(dma); qemu_register_reset(&ppc405_dma_reset, dma); ppc_dcr_register(env, DMA0_CR0, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_CT0, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_DA0, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_SA0, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_SG0, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_CR1, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_CT1, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_DA1, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_SA1, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_SG1, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_CR2, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_CT2, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_DA2, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_SA2, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_SG2, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_CR3, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_CT3, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_DA3, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_SA3, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_SG3, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_SR, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_SGC, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_SLP, dma, &dcr_read_dma, &dcr_write_dma); ppc_dcr_register(env, DMA0_POL, dma, &dcr_read_dma, &dcr_write_dma); } } /*****************************************************************************/ /* GPIO */ typedef struct ppc405_gpio_t ppc405_gpio_t; struct ppc405_gpio_t { target_phys_addr_t base; uint32_t or; uint32_t tcr; uint32_t osrh; uint32_t osrl; uint32_t tsrh; uint32_t tsrl; uint32_t odr; uint32_t ir; uint32_t rr1; uint32_t isr1h; uint32_t isr1l; }; static uint32_t ppc405_gpio_readb (void *opaque, target_phys_addr_t addr) { ppc405_gpio_t *gpio; gpio = opaque; #ifdef DEBUG_GPIO printf("%s: addr " PADDRX "\n", __func__, addr); #endif return 0; } static void ppc405_gpio_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) { ppc405_gpio_t *gpio; gpio = opaque; #ifdef DEBUG_GPIO printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif } static uint32_t ppc405_gpio_readw (void *opaque, target_phys_addr_t addr) { ppc405_gpio_t *gpio; gpio = opaque; #ifdef DEBUG_GPIO printf("%s: addr " PADDRX "\n", __func__, addr); #endif return 0; } static void ppc405_gpio_writew (void *opaque, target_phys_addr_t addr, uint32_t value) { ppc405_gpio_t *gpio; gpio = opaque; #ifdef DEBUG_GPIO printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif } static uint32_t ppc405_gpio_readl (void *opaque, target_phys_addr_t addr) { ppc405_gpio_t *gpio; gpio = opaque; #ifdef DEBUG_GPIO printf("%s: addr " PADDRX "\n", __func__, addr); #endif return 0; } static void ppc405_gpio_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { ppc405_gpio_t *gpio; gpio = opaque; #ifdef DEBUG_GPIO printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif } static CPUReadMemoryFunc *ppc405_gpio_read[] = { &ppc405_gpio_readb, &ppc405_gpio_readw, &ppc405_gpio_readl, }; static CPUWriteMemoryFunc *ppc405_gpio_write[] = { &ppc405_gpio_writeb, &ppc405_gpio_writew, &ppc405_gpio_writel, }; static void ppc405_gpio_reset (void *opaque) { ppc405_gpio_t *gpio; gpio = opaque; } void ppc405_gpio_init (CPUState *env, ppc4xx_mmio_t *mmio, target_phys_addr_t offset) { ppc405_gpio_t *gpio; gpio = qemu_mallocz(sizeof(ppc405_gpio_t)); if (gpio != NULL) { gpio->base = offset; ppc405_gpio_reset(gpio); qemu_register_reset(&ppc405_gpio_reset, gpio); #ifdef DEBUG_GPIO printf("%s: offset=" PADDRX "\n", __func__, offset); #endif ppc4xx_mmio_register(env, mmio, offset, 0x038, ppc405_gpio_read, ppc405_gpio_write, gpio); } } /*****************************************************************************/ /* Serial ports */ static CPUReadMemoryFunc *serial_mm_read[] = { &serial_mm_readb, &serial_mm_readw, &serial_mm_readl, }; static CPUWriteMemoryFunc *serial_mm_write[] = { &serial_mm_writeb, &serial_mm_writew, &serial_mm_writel, }; void ppc405_serial_init (CPUState *env, ppc4xx_mmio_t *mmio, target_phys_addr_t offset, qemu_irq irq, CharDriverState *chr) { void *serial; #ifdef DEBUG_SERIAL printf("%s: offset=" PADDRX "\n", __func__, offset); #endif serial = serial_mm_init(offset, 0, irq, chr, 0); ppc4xx_mmio_register(env, mmio, offset, 0x008, serial_mm_read, serial_mm_write, serial); } /*****************************************************************************/ /* On Chip Memory */ enum { OCM0_ISARC = 0x018, OCM0_ISACNTL = 0x019, OCM0_DSARC = 0x01A, OCM0_DSACNTL = 0x01B, }; typedef struct ppc405_ocm_t ppc405_ocm_t; struct ppc405_ocm_t { target_ulong offset; uint32_t isarc; uint32_t isacntl; uint32_t dsarc; uint32_t dsacntl; }; static void ocm_update_mappings (ppc405_ocm_t *ocm, uint32_t isarc, uint32_t isacntl, uint32_t dsarc, uint32_t dsacntl) { #ifdef DEBUG_OCM printf("OCM update ISA %08x %08x (%08x %08x) DSA %08x %08x (%08x %08x)\n", isarc, isacntl, dsarc, dsacntl, ocm->isarc, ocm->isacntl, ocm->dsarc, ocm->dsacntl); #endif if (ocm->isarc != isarc || (ocm->isacntl & 0x80000000) != (isacntl & 0x80000000)) { if (ocm->isacntl & 0x80000000) { /* Unmap previously assigned memory region */ printf("OCM unmap ISA %08x\n", ocm->isarc); cpu_register_physical_memory(ocm->isarc, 0x04000000, IO_MEM_UNASSIGNED); } if (isacntl & 0x80000000) { /* Map new instruction memory region */ #ifdef DEBUG_OCM printf("OCM map ISA %08x\n", isarc); #endif cpu_register_physical_memory(isarc, 0x04000000, ocm->offset | IO_MEM_RAM); } } if (ocm->dsarc != dsarc || (ocm->dsacntl & 0x80000000) != (dsacntl & 0x80000000)) { if (ocm->dsacntl & 0x80000000) { /* Beware not to unmap the region we just mapped */ if (!(isacntl & 0x80000000) || ocm->dsarc != isarc) { /* Unmap previously assigned memory region */ #ifdef DEBUG_OCM printf("OCM unmap DSA %08x\n", ocm->dsarc); #endif cpu_register_physical_memory(ocm->dsarc, 0x04000000, IO_MEM_UNASSIGNED); } } if (dsacntl & 0x80000000) { /* Beware not to remap the region we just mapped */ if (!(isacntl & 0x80000000) || dsarc != isarc) { /* Map new data memory region */ #ifdef DEBUG_OCM printf("OCM map DSA %08x\n", dsarc); #endif cpu_register_physical_memory(dsarc, 0x04000000, ocm->offset | IO_MEM_RAM); } } } } static target_ulong dcr_read_ocm (void *opaque, int dcrn) { ppc405_ocm_t *ocm; target_ulong ret; ocm = opaque; switch (dcrn) { case OCM0_ISARC: ret = ocm->isarc; break; case OCM0_ISACNTL: ret = ocm->isacntl; break; case OCM0_DSARC: ret = ocm->dsarc; break; case OCM0_DSACNTL: ret = ocm->dsacntl; break; default: ret = 0; break; } return ret; } static void dcr_write_ocm (void *opaque, int dcrn, target_ulong val) { ppc405_ocm_t *ocm; uint32_t isarc, dsarc, isacntl, dsacntl; ocm = opaque; isarc = ocm->isarc; dsarc = ocm->dsarc; isacntl = ocm->isacntl; dsacntl = ocm->dsacntl; switch (dcrn) { case OCM0_ISARC: isarc = val & 0xFC000000; break; case OCM0_ISACNTL: isacntl = val & 0xC0000000; break; case OCM0_DSARC: isarc = val & 0xFC000000; break; case OCM0_DSACNTL: isacntl = val & 0xC0000000; break; } ocm_update_mappings(ocm, isarc, isacntl, dsarc, dsacntl); ocm->isarc = isarc; ocm->dsarc = dsarc; ocm->isacntl = isacntl; ocm->dsacntl = dsacntl; } static void ocm_reset (void *opaque) { ppc405_ocm_t *ocm; uint32_t isarc, dsarc, isacntl, dsacntl; ocm = opaque; isarc = 0x00000000; isacntl = 0x00000000; dsarc = 0x00000000; dsacntl = 0x00000000; ocm_update_mappings(ocm, isarc, isacntl, dsarc, dsacntl); ocm->isarc = isarc; ocm->dsarc = dsarc; ocm->isacntl = isacntl; ocm->dsacntl = dsacntl; } void ppc405_ocm_init (CPUState *env, unsigned long offset) { ppc405_ocm_t *ocm; ocm = qemu_mallocz(sizeof(ppc405_ocm_t)); if (ocm != NULL) { ocm->offset = offset; ocm_reset(ocm); qemu_register_reset(&ocm_reset, ocm); ppc_dcr_register(env, OCM0_ISARC, ocm, &dcr_read_ocm, &dcr_write_ocm); ppc_dcr_register(env, OCM0_ISACNTL, ocm, &dcr_read_ocm, &dcr_write_ocm); ppc_dcr_register(env, OCM0_DSARC, ocm, &dcr_read_ocm, &dcr_write_ocm); ppc_dcr_register(env, OCM0_DSACNTL, ocm, &dcr_read_ocm, &dcr_write_ocm); } } /*****************************************************************************/ /* I2C controller */ typedef struct ppc4xx_i2c_t ppc4xx_i2c_t; struct ppc4xx_i2c_t { target_phys_addr_t base; qemu_irq irq; uint8_t mdata; uint8_t lmadr; uint8_t hmadr; uint8_t cntl; uint8_t mdcntl; uint8_t sts; uint8_t extsts; uint8_t sdata; uint8_t lsadr; uint8_t hsadr; uint8_t clkdiv; uint8_t intrmsk; uint8_t xfrcnt; uint8_t xtcntlss; uint8_t directcntl; }; static uint32_t ppc4xx_i2c_readb (void *opaque, target_phys_addr_t addr) { ppc4xx_i2c_t *i2c; uint32_t ret; #ifdef DEBUG_I2C printf("%s: addr " PADDRX "\n", __func__, addr); #endif i2c = opaque; switch (addr - i2c->base) { case 0x00: // i2c_readbyte(&i2c->mdata); ret = i2c->mdata; break; case 0x02: ret = i2c->sdata; break; case 0x04: ret = i2c->lmadr; break; case 0x05: ret = i2c->hmadr; break; case 0x06: ret = i2c->cntl; break; case 0x07: ret = i2c->mdcntl; break; case 0x08: ret = i2c->sts; break; case 0x09: ret = i2c->extsts; break; case 0x0A: ret = i2c->lsadr; break; case 0x0B: ret = i2c->hsadr; break; case 0x0C: ret = i2c->clkdiv; break; case 0x0D: ret = i2c->intrmsk; break; case 0x0E: ret = i2c->xfrcnt; break; case 0x0F: ret = i2c->xtcntlss; break; case 0x10: ret = i2c->directcntl; break; default: ret = 0x00; break; } #ifdef DEBUG_I2C printf("%s: addr " PADDRX " %02x\n", __func__, addr, ret); #endif return ret; } static void ppc4xx_i2c_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) { ppc4xx_i2c_t *i2c; #ifdef DEBUG_I2C printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif i2c = opaque; switch (addr - i2c->base) { case 0x00: i2c->mdata = value; // i2c_sendbyte(&i2c->mdata); break; case 0x02: i2c->sdata = value; break; case 0x04: i2c->lmadr = value; break; case 0x05: i2c->hmadr = value; break; case 0x06: i2c->cntl = value; break; case 0x07: i2c->mdcntl = value & 0xDF; break; case 0x08: i2c->sts &= ~(value & 0x0A); break; case 0x09: i2c->extsts &= ~(value & 0x8F); break; case 0x0A: i2c->lsadr = value; break; case 0x0B: i2c->hsadr = value; break; case 0x0C: i2c->clkdiv = value; break; case 0x0D: i2c->intrmsk = value; break; case 0x0E: i2c->xfrcnt = value & 0x77; break; case 0x0F: i2c->xtcntlss = value; break; case 0x10: i2c->directcntl = value & 0x7; break; } } static uint32_t ppc4xx_i2c_readw (void *opaque, target_phys_addr_t addr) { uint32_t ret; #ifdef DEBUG_I2C printf("%s: addr " PADDRX "\n", __func__, addr); #endif ret = ppc4xx_i2c_readb(opaque, addr) << 8; ret |= ppc4xx_i2c_readb(opaque, addr + 1); return ret; } static void ppc4xx_i2c_writew (void *opaque, target_phys_addr_t addr, uint32_t value) { #ifdef DEBUG_I2C printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif ppc4xx_i2c_writeb(opaque, addr, value >> 8); ppc4xx_i2c_writeb(opaque, addr + 1, value); } static uint32_t ppc4xx_i2c_readl (void *opaque, target_phys_addr_t addr) { uint32_t ret; #ifdef DEBUG_I2C printf("%s: addr " PADDRX "\n", __func__, addr); #endif ret = ppc4xx_i2c_readb(opaque, addr) << 24; ret |= ppc4xx_i2c_readb(opaque, addr + 1) << 16; ret |= ppc4xx_i2c_readb(opaque, addr + 2) << 8; ret |= ppc4xx_i2c_readb(opaque, addr + 3); return ret; } static void ppc4xx_i2c_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { #ifdef DEBUG_I2C printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif ppc4xx_i2c_writeb(opaque, addr, value >> 24); ppc4xx_i2c_writeb(opaque, addr + 1, value >> 16); ppc4xx_i2c_writeb(opaque, addr + 2, value >> 8); ppc4xx_i2c_writeb(opaque, addr + 3, value); } static CPUReadMemoryFunc *i2c_read[] = { &ppc4xx_i2c_readb, &ppc4xx_i2c_readw, &ppc4xx_i2c_readl, }; static CPUWriteMemoryFunc *i2c_write[] = { &ppc4xx_i2c_writeb, &ppc4xx_i2c_writew, &ppc4xx_i2c_writel, }; static void ppc4xx_i2c_reset (void *opaque) { ppc4xx_i2c_t *i2c; i2c = opaque; i2c->mdata = 0x00; i2c->sdata = 0x00; i2c->cntl = 0x00; i2c->mdcntl = 0x00; i2c->sts = 0x00; i2c->extsts = 0x00; i2c->clkdiv = 0x00; i2c->xfrcnt = 0x00; i2c->directcntl = 0x0F; } void ppc405_i2c_init (CPUState *env, ppc4xx_mmio_t *mmio, target_phys_addr_t offset, qemu_irq irq) { ppc4xx_i2c_t *i2c; i2c = qemu_mallocz(sizeof(ppc4xx_i2c_t)); if (i2c != NULL) { i2c->base = offset; i2c->irq = irq; ppc4xx_i2c_reset(i2c); #ifdef DEBUG_I2C printf("%s: offset=" PADDRX "\n", __func__, offset); #endif ppc4xx_mmio_register(env, mmio, offset, 0x011, i2c_read, i2c_write, i2c); qemu_register_reset(ppc4xx_i2c_reset, i2c); } } /*****************************************************************************/ /* General purpose timers */ typedef struct ppc4xx_gpt_t ppc4xx_gpt_t; struct ppc4xx_gpt_t { target_phys_addr_t base; int64_t tb_offset; uint32_t tb_freq; struct QEMUTimer *timer; qemu_irq irqs[5]; uint32_t oe; uint32_t ol; uint32_t im; uint32_t is; uint32_t ie; uint32_t comp[5]; uint32_t mask[5]; }; static uint32_t ppc4xx_gpt_readb (void *opaque, target_phys_addr_t addr) { #ifdef DEBUG_GPT printf("%s: addr " PADDRX "\n", __func__, addr); #endif /* XXX: generate a bus fault */ return -1; } static void ppc4xx_gpt_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) { #ifdef DEBUG_I2C printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif /* XXX: generate a bus fault */ } static uint32_t ppc4xx_gpt_readw (void *opaque, target_phys_addr_t addr) { #ifdef DEBUG_GPT printf("%s: addr " PADDRX "\n", __func__, addr); #endif /* XXX: generate a bus fault */ return -1; } static void ppc4xx_gpt_writew (void *opaque, target_phys_addr_t addr, uint32_t value) { #ifdef DEBUG_I2C printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif /* XXX: generate a bus fault */ } static int ppc4xx_gpt_compare (ppc4xx_gpt_t *gpt, int n) { /* XXX: TODO */ return 0; } static void ppc4xx_gpt_set_output (ppc4xx_gpt_t *gpt, int n, int level) { /* XXX: TODO */ } static void ppc4xx_gpt_set_outputs (ppc4xx_gpt_t *gpt) { uint32_t mask; int i; mask = 0x80000000; for (i = 0; i < 5; i++) { if (gpt->oe & mask) { /* Output is enabled */ if (ppc4xx_gpt_compare(gpt, i)) { /* Comparison is OK */ ppc4xx_gpt_set_output(gpt, i, gpt->ol & mask); } else { /* Comparison is KO */ ppc4xx_gpt_set_output(gpt, i, gpt->ol & mask ? 0 : 1); } } mask = mask >> 1; } } static void ppc4xx_gpt_set_irqs (ppc4xx_gpt_t *gpt) { uint32_t mask; int i; mask = 0x00008000; for (i = 0; i < 5; i++) { if (gpt->is & gpt->im & mask) qemu_irq_raise(gpt->irqs[i]); else qemu_irq_lower(gpt->irqs[i]); mask = mask >> 1; } } static void ppc4xx_gpt_compute_timer (ppc4xx_gpt_t *gpt) { /* XXX: TODO */ } static uint32_t ppc4xx_gpt_readl (void *opaque, target_phys_addr_t addr) { ppc4xx_gpt_t *gpt; uint32_t ret; int idx; #ifdef DEBUG_GPT printf("%s: addr " PADDRX "\n", __func__, addr); #endif gpt = opaque; switch (addr - gpt->base) { case 0x00: /* Time base counter */ ret = muldiv64(qemu_get_clock(vm_clock) + gpt->tb_offset, gpt->tb_freq, ticks_per_sec); break; case 0x10: /* Output enable */ ret = gpt->oe; break; case 0x14: /* Output level */ ret = gpt->ol; break; case 0x18: /* Interrupt mask */ ret = gpt->im; break; case 0x1C: case 0x20: /* Interrupt status */ ret = gpt->is; break; case 0x24: /* Interrupt enable */ ret = gpt->ie; break; case 0x80 ... 0x90: /* Compare timer */ idx = ((addr - gpt->base) - 0x80) >> 2; ret = gpt->comp[idx]; break; case 0xC0 ... 0xD0: /* Compare mask */ idx = ((addr - gpt->base) - 0xC0) >> 2; ret = gpt->mask[idx]; break; default: ret = -1; break; } return ret; } static void ppc4xx_gpt_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { ppc4xx_gpt_t *gpt; int idx; #ifdef DEBUG_I2C printf("%s: addr " PADDRX " val %08x\n", __func__, addr, value); #endif gpt = opaque; switch (addr - gpt->base) { case 0x00: /* Time base counter */ gpt->tb_offset = muldiv64(value, ticks_per_sec, gpt->tb_freq) - qemu_get_clock(vm_clock); ppc4xx_gpt_compute_timer(gpt); break; case 0x10: /* Output enable */ gpt->oe = value & 0xF8000000; ppc4xx_gpt_set_outputs(gpt); break; case 0x14: /* Output level */ gpt->ol = value & 0xF8000000; ppc4xx_gpt_set_outputs(gpt); break; case 0x18: /* Interrupt mask */ gpt->im = value & 0x0000F800; break; case 0x1C: /* Interrupt status set */ gpt->is |= value & 0x0000F800; ppc4xx_gpt_set_irqs(gpt); break; case 0x20: /* Interrupt status clear */ gpt->is &= ~(value & 0x0000F800); ppc4xx_gpt_set_irqs(gpt); break; case 0x24: /* Interrupt enable */ gpt->ie = value & 0x0000F800; ppc4xx_gpt_set_irqs(gpt); break; case 0x80 ... 0x90: /* Compare timer */ idx = ((addr - gpt->base) - 0x80) >> 2; gpt->comp[idx] = value & 0xF8000000; ppc4xx_gpt_compute_timer(gpt); break; case 0xC0 ... 0xD0: /* Compare mask */ idx = ((addr - gpt->base) - 0xC0) >> 2; gpt->mask[idx] = value & 0xF8000000; ppc4xx_gpt_compute_timer(gpt); break; } } static CPUReadMemoryFunc *gpt_read[] = { &ppc4xx_gpt_readb, &ppc4xx_gpt_readw, &ppc4xx_gpt_readl, }; static CPUWriteMemoryFunc *gpt_write[] = { &ppc4xx_gpt_writeb, &ppc4xx_gpt_writew, &ppc4xx_gpt_writel, }; static void ppc4xx_gpt_cb (void *opaque) { ppc4xx_gpt_t *gpt; gpt = opaque; ppc4xx_gpt_set_irqs(gpt); ppc4xx_gpt_set_outputs(gpt); ppc4xx_gpt_compute_timer(gpt); } static void ppc4xx_gpt_reset (void *opaque) { ppc4xx_gpt_t *gpt; int i; gpt = opaque; qemu_del_timer(gpt->timer); gpt->oe = 0x00000000; gpt->ol = 0x00000000; gpt->im = 0x00000000; gpt->is = 0x00000000; gpt->ie = 0x00000000; for (i = 0; i < 5; i++) { gpt->comp[i] = 0x00000000; gpt->mask[i] = 0x00000000; } } void ppc4xx_gpt_init (CPUState *env, ppc4xx_mmio_t *mmio, target_phys_addr_t offset, qemu_irq irqs[5]) { ppc4xx_gpt_t *gpt; int i; gpt = qemu_mallocz(sizeof(ppc4xx_gpt_t)); if (gpt != NULL) { gpt->base = offset; for (i = 0; i < 5; i++) gpt->irqs[i] = irqs[i]; gpt->timer = qemu_new_timer(vm_clock, &ppc4xx_gpt_cb, gpt); ppc4xx_gpt_reset(gpt); #ifdef DEBUG_GPT printf("%s: offset=" PADDRX "\n", __func__, offset); #endif ppc4xx_mmio_register(env, mmio, offset, 0x0D4, gpt_read, gpt_write, gpt); qemu_register_reset(ppc4xx_gpt_reset, gpt); } } /*****************************************************************************/ /* MAL */ enum { MAL0_CFG = 0x180, MAL0_ESR = 0x181, MAL0_IER = 0x182, MAL0_TXCASR = 0x184, MAL0_TXCARR = 0x185, MAL0_TXEOBISR = 0x186, MAL0_TXDEIR = 0x187, MAL0_RXCASR = 0x190, MAL0_RXCARR = 0x191, MAL0_RXEOBISR = 0x192, MAL0_RXDEIR = 0x193, MAL0_TXCTP0R = 0x1A0, MAL0_TXCTP1R = 0x1A1, MAL0_TXCTP2R = 0x1A2, MAL0_TXCTP3R = 0x1A3, MAL0_RXCTP0R = 0x1C0, MAL0_RXCTP1R = 0x1C1, MAL0_RCBS0 = 0x1E0, MAL0_RCBS1 = 0x1E1, }; typedef struct ppc40x_mal_t ppc40x_mal_t; struct ppc40x_mal_t { qemu_irq irqs[4]; uint32_t cfg; uint32_t esr; uint32_t ier; uint32_t txcasr; uint32_t txcarr; uint32_t txeobisr; uint32_t txdeir; uint32_t rxcasr; uint32_t rxcarr; uint32_t rxeobisr; uint32_t rxdeir; uint32_t txctpr[4]; uint32_t rxctpr[2]; uint32_t rcbs[2]; }; static void ppc40x_mal_reset (void *opaque); static target_ulong dcr_read_mal (void *opaque, int dcrn) { ppc40x_mal_t *mal; target_ulong ret; mal = opaque; switch (dcrn) { case MAL0_CFG: ret = mal->cfg; break; case MAL0_ESR: ret = mal->esr; break; case MAL0_IER: ret = mal->ier; break; case MAL0_TXCASR: ret = mal->txcasr; break; case MAL0_TXCARR: ret = mal->txcarr; break; case MAL0_TXEOBISR: ret = mal->txeobisr; break; case MAL0_TXDEIR: ret = mal->txdeir; break; case MAL0_RXCASR: ret = mal->rxcasr; break; case MAL0_RXCARR: ret = mal->rxcarr; break; case MAL0_RXEOBISR: ret = mal->rxeobisr; break; case MAL0_RXDEIR: ret = mal->rxdeir; break; case MAL0_TXCTP0R: ret = mal->txctpr[0]; break; case MAL0_TXCTP1R: ret = mal->txctpr[1]; break; case MAL0_TXCTP2R: ret = mal->txctpr[2]; break; case MAL0_TXCTP3R: ret = mal->txctpr[3]; break; case MAL0_RXCTP0R: ret = mal->rxctpr[0]; break; case MAL0_RXCTP1R: ret = mal->rxctpr[1]; break; case MAL0_RCBS0: ret = mal->rcbs[0]; break; case MAL0_RCBS1: ret = mal->rcbs[1]; break; default: ret = 0; break; } return ret; } static void dcr_write_mal (void *opaque, int dcrn, target_ulong val) { ppc40x_mal_t *mal; int idx; mal = opaque; switch (dcrn) { case MAL0_CFG: if (val & 0x80000000) ppc40x_mal_reset(mal); mal->cfg = val & 0x00FFC087; break; case MAL0_ESR: /* Read/clear */ mal->esr &= ~val; break; case MAL0_IER: mal->ier = val & 0x0000001F; break; case MAL0_TXCASR: mal->txcasr = val & 0xF0000000; break; case MAL0_TXCARR: mal->txcarr = val & 0xF0000000; break; case MAL0_TXEOBISR: /* Read/clear */ mal->txeobisr &= ~val; break; case MAL0_TXDEIR: /* Read/clear */ mal->txdeir &= ~val; break; case MAL0_RXCASR: mal->rxcasr = val & 0xC0000000; break; case MAL0_RXCARR: mal->rxcarr = val & 0xC0000000; break; case MAL0_RXEOBISR: /* Read/clear */ mal->rxeobisr &= ~val; break; case MAL0_RXDEIR: /* Read/clear */ mal->rxdeir &= ~val; break; case MAL0_TXCTP0R: idx = 0; goto update_tx_ptr; case MAL0_TXCTP1R: idx = 1; goto update_tx_ptr; case MAL0_TXCTP2R: idx = 2; goto update_tx_ptr; case MAL0_TXCTP3R: idx = 3; update_tx_ptr: mal->txctpr[idx] = val; break; case MAL0_RXCTP0R: idx = 0; goto update_rx_ptr; case MAL0_RXCTP1R: idx = 1; update_rx_ptr: mal->rxctpr[idx] = val; break; case MAL0_RCBS0: idx = 0; goto update_rx_size; case MAL0_RCBS1: idx = 1; update_rx_size: mal->rcbs[idx] = val & 0x000000FF; break; } } static void ppc40x_mal_reset (void *opaque) { ppc40x_mal_t *mal; mal = opaque; mal->cfg = 0x0007C000; mal->esr = 0x00000000; mal->ier = 0x00000000; mal->rxcasr = 0x00000000; mal->rxdeir = 0x00000000; mal->rxeobisr = 0x00000000; mal->txcasr = 0x00000000; mal->txdeir = 0x00000000; mal->txeobisr = 0x00000000; } void ppc405_mal_init (CPUState *env, qemu_irq irqs[4]) { ppc40x_mal_t *mal; int i; mal = qemu_mallocz(sizeof(ppc40x_mal_t)); if (mal != NULL) { for (i = 0; i < 4; i++) mal->irqs[i] = irqs[i]; ppc40x_mal_reset(mal); qemu_register_reset(&ppc40x_mal_reset, mal); ppc_dcr_register(env, MAL0_CFG, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_ESR, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_IER, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_TXCASR, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_TXCARR, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_TXEOBISR, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_TXDEIR, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_RXCASR, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_RXCARR, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_RXEOBISR, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_RXDEIR, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_TXCTP0R, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_TXCTP1R, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_TXCTP2R, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_TXCTP3R, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_RXCTP0R, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_RXCTP1R, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_RCBS0, mal, &dcr_read_mal, &dcr_write_mal); ppc_dcr_register(env, MAL0_RCBS1, mal, &dcr_read_mal, &dcr_write_mal); } } /*****************************************************************************/ /* SPR */ void ppc40x_core_reset (CPUState *env) { target_ulong dbsr; printf("Reset PowerPC core\n"); cpu_ppc_reset(env); dbsr = env->spr[SPR_40x_DBSR]; dbsr &= ~0x00000300; dbsr |= 0x00000100; env->spr[SPR_40x_DBSR] = dbsr; cpu_loop_exit(); } void ppc40x_chip_reset (CPUState *env) { target_ulong dbsr; printf("Reset PowerPC chip\n"); cpu_ppc_reset(env); /* XXX: TODO reset all internal peripherals */ dbsr = env->spr[SPR_40x_DBSR]; dbsr &= ~0x00000300; dbsr |= 0x00000200; env->spr[SPR_40x_DBSR] = dbsr; cpu_loop_exit(); } void ppc40x_system_reset (CPUState *env) { printf("Reset PowerPC system\n"); qemu_system_reset_request(); } void store_40x_dbcr0 (CPUState *env, uint32_t val) { switch ((val >> 28) & 0x3) { case 0x0: /* No action */ break; case 0x1: /* Core reset */ ppc40x_core_reset(env); break; case 0x2: /* Chip reset */ ppc40x_chip_reset(env); break; case 0x3: /* System reset */ ppc40x_system_reset(env); break; } } /*****************************************************************************/ /* PowerPC 405CR */ enum { PPC405CR_CPC0_PLLMR = 0x0B0, PPC405CR_CPC0_CR0 = 0x0B1, PPC405CR_CPC0_CR1 = 0x0B2, PPC405CR_CPC0_PSR = 0x0B4, PPC405CR_CPC0_JTAGID = 0x0B5, PPC405CR_CPC0_ER = 0x0B9, PPC405CR_CPC0_FR = 0x0BA, PPC405CR_CPC0_SR = 0x0BB, }; enum { PPC405CR_CPU_CLK = 0, PPC405CR_TMR_CLK = 1, PPC405CR_PLB_CLK = 2, PPC405CR_SDRAM_CLK = 3, PPC405CR_OPB_CLK = 4, PPC405CR_EXT_CLK = 5, PPC405CR_UART_CLK = 6, PPC405CR_CLK_NB = 7, }; typedef struct ppc405cr_cpc_t ppc405cr_cpc_t; struct ppc405cr_cpc_t { clk_setup_t clk_setup[PPC405CR_CLK_NB]; uint32_t sysclk; uint32_t psr; uint32_t cr0; uint32_t cr1; uint32_t jtagid; uint32_t pllmr; uint32_t er; uint32_t fr; }; static void ppc405cr_clk_setup (ppc405cr_cpc_t *cpc) { uint64_t VCO_out, PLL_out; uint32_t CPU_clk, TMR_clk, SDRAM_clk, PLB_clk, OPB_clk, EXT_clk, UART_clk; int M, D0, D1, D2; D0 = ((cpc->pllmr >> 26) & 0x3) + 1; /* CBDV */ if (cpc->pllmr & 0x80000000) { D1 = (((cpc->pllmr >> 20) - 1) & 0xF) + 1; /* FBDV */ D2 = 8 - ((cpc->pllmr >> 16) & 0x7); /* FWDVA */ M = D0 * D1 * D2; VCO_out = cpc->sysclk * M; if (VCO_out < 400000000 || VCO_out > 800000000) { /* PLL cannot lock */ cpc->pllmr &= ~0x80000000; goto bypass_pll; } PLL_out = VCO_out / D2; } else { /* Bypass PLL */ bypass_pll: M = D0; PLL_out = cpc->sysclk * M; } CPU_clk = PLL_out; if (cpc->cr1 & 0x00800000) TMR_clk = cpc->sysclk; /* Should have a separate clock */ else TMR_clk = CPU_clk; PLB_clk = CPU_clk / D0; SDRAM_clk = PLB_clk; D0 = ((cpc->pllmr >> 10) & 0x3) + 1; OPB_clk = PLB_clk / D0; D0 = ((cpc->pllmr >> 24) & 0x3) + 2; EXT_clk = PLB_clk / D0; D0 = ((cpc->cr0 >> 1) & 0x1F) + 1; UART_clk = CPU_clk / D0; /* Setup CPU clocks */ clk_setup(&cpc->clk_setup[PPC405CR_CPU_CLK], CPU_clk); /* Setup time-base clock */ clk_setup(&cpc->clk_setup[PPC405CR_TMR_CLK], TMR_clk); /* Setup PLB clock */ clk_setup(&cpc->clk_setup[PPC405CR_PLB_CLK], PLB_clk); /* Setup SDRAM clock */ clk_setup(&cpc->clk_setup[PPC405CR_SDRAM_CLK], SDRAM_clk); /* Setup OPB clock */ clk_setup(&cpc->clk_setup[PPC405CR_OPB_CLK], OPB_clk); /* Setup external clock */ clk_setup(&cpc->clk_setup[PPC405CR_EXT_CLK], EXT_clk); /* Setup UART clock */ clk_setup(&cpc->clk_setup[PPC405CR_UART_CLK], UART_clk); } static target_ulong dcr_read_crcpc (void *opaque, int dcrn) { ppc405cr_cpc_t *cpc; target_ulong ret; cpc = opaque; switch (dcrn) { case PPC405CR_CPC0_PLLMR: ret = cpc->pllmr; break; case PPC405CR_CPC0_CR0: ret = cpc->cr0; break; case PPC405CR_CPC0_CR1: ret = cpc->cr1; break; case PPC405CR_CPC0_PSR: ret = cpc->psr; break; case PPC405CR_CPC0_JTAGID: ret = cpc->jtagid; break; case PPC405CR_CPC0_ER: ret = cpc->er; break; case PPC405CR_CPC0_FR: ret = cpc->fr; break; case PPC405CR_CPC0_SR: ret = ~(cpc->er | cpc->fr) & 0xFFFF0000; break; default: /* Avoid gcc warning */ ret = 0; break; } return ret; } static void dcr_write_crcpc (void *opaque, int dcrn, target_ulong val) { ppc405cr_cpc_t *cpc; cpc = opaque; switch (dcrn) { case PPC405CR_CPC0_PLLMR: cpc->pllmr = val & 0xFFF77C3F; break; case PPC405CR_CPC0_CR0: cpc->cr0 = val & 0x0FFFFFFE; break; case PPC405CR_CPC0_CR1: cpc->cr1 = val & 0x00800000; break; case PPC405CR_CPC0_PSR: /* Read-only */ break; case PPC405CR_CPC0_JTAGID: /* Read-only */ break; case PPC405CR_CPC0_ER: cpc->er = val & 0xBFFC0000; break; case PPC405CR_CPC0_FR: cpc->fr = val & 0xBFFC0000; break; case PPC405CR_CPC0_SR: /* Read-only */ break; } } static void ppc405cr_cpc_reset (void *opaque) { ppc405cr_cpc_t *cpc; int D; cpc = opaque; /* Compute PLLMR value from PSR settings */ cpc->pllmr = 0x80000000; /* PFWD */ switch ((cpc->psr >> 30) & 3) { case 0: /* Bypass */ cpc->pllmr &= ~0x80000000; break; case 1: /* Divide by 3 */ cpc->pllmr |= 5 << 16; break; case 2: /* Divide by 4 */ cpc->pllmr |= 4 << 16; break; case 3: /* Divide by 6 */ cpc->pllmr |= 2 << 16; break; } /* PFBD */ D = (cpc->psr >> 28) & 3; cpc->pllmr |= (D + 1) << 20; /* PT */ D = (cpc->psr >> 25) & 7; switch (D) { case 0x2: cpc->pllmr |= 0x13; break; case 0x4: cpc->pllmr |= 0x15; break; case 0x5: cpc->pllmr |= 0x16; break; default: break; } /* PDC */ D = (cpc->psr >> 23) & 3; cpc->pllmr |= D << 26; /* ODP */ D = (cpc->psr >> 21) & 3; cpc->pllmr |= D << 10; /* EBPD */ D = (cpc->psr >> 17) & 3; cpc->pllmr |= D << 24; cpc->cr0 = 0x0000003C; cpc->cr1 = 0x2B0D8800; cpc->er = 0x00000000; cpc->fr = 0x00000000; ppc405cr_clk_setup(cpc); } static void ppc405cr_clk_init (ppc405cr_cpc_t *cpc) { int D; /* XXX: this should be read from IO pins */ cpc->psr = 0x00000000; /* 8 bits ROM */ /* PFWD */ D = 0x2; /* Divide by 4 */ cpc->psr |= D << 30; /* PFBD */ D = 0x1; /* Divide by 2 */ cpc->psr |= D << 28; /* PDC */ D = 0x1; /* Divide by 2 */ cpc->psr |= D << 23; /* PT */ D = 0x5; /* M = 16 */ cpc->psr |= D << 25; /* ODP */ D = 0x1; /* Divide by 2 */ cpc->psr |= D << 21; /* EBDP */ D = 0x2; /* Divide by 4 */ cpc->psr |= D << 17; } static void ppc405cr_cpc_init (CPUState *env, clk_setup_t clk_setup[7], uint32_t sysclk) { ppc405cr_cpc_t *cpc; cpc = qemu_mallocz(sizeof(ppc405cr_cpc_t)); if (cpc != NULL) { memcpy(cpc->clk_setup, clk_setup, PPC405CR_CLK_NB * sizeof(clk_setup_t)); cpc->sysclk = sysclk; cpc->jtagid = 0x42051049; ppc_dcr_register(env, PPC405CR_CPC0_PSR, cpc, &dcr_read_crcpc, &dcr_write_crcpc); ppc_dcr_register(env, PPC405CR_CPC0_CR0, cpc, &dcr_read_crcpc, &dcr_write_crcpc); ppc_dcr_register(env, PPC405CR_CPC0_CR1, cpc, &dcr_read_crcpc, &dcr_write_crcpc); ppc_dcr_register(env, PPC405CR_CPC0_JTAGID, cpc, &dcr_read_crcpc, &dcr_write_crcpc); ppc_dcr_register(env, PPC405CR_CPC0_PLLMR, cpc, &dcr_read_crcpc, &dcr_write_crcpc); ppc_dcr_register(env, PPC405CR_CPC0_ER, cpc, &dcr_read_crcpc, &dcr_write_crcpc); ppc_dcr_register(env, PPC405CR_CPC0_FR, cpc, &dcr_read_crcpc, &dcr_write_crcpc); ppc_dcr_register(env, PPC405CR_CPC0_SR, cpc, &dcr_read_crcpc, &dcr_write_crcpc); ppc405cr_clk_init(cpc); qemu_register_reset(ppc405cr_cpc_reset, cpc); ppc405cr_cpc_reset(cpc); } } CPUState *ppc405cr_init (target_phys_addr_t ram_bases[4], target_phys_addr_t ram_sizes[4], uint32_t sysclk, qemu_irq **picp, ram_addr_t *offsetp, int do_init) { clk_setup_t clk_setup[PPC405CR_CLK_NB]; qemu_irq dma_irqs[4]; CPUState *env; ppc4xx_mmio_t *mmio; qemu_irq *pic, *irqs; ram_addr_t offset; int i; memset(clk_setup, 0, sizeof(clk_setup)); env = ppc405_init("405cr", &clk_setup[PPC405CR_CPU_CLK], &clk_setup[PPC405CR_TMR_CLK], sysclk); /* Memory mapped devices registers */ mmio = ppc4xx_mmio_init(env, 0xEF600000); /* PLB arbitrer */ ppc4xx_plb_init(env); /* PLB to OPB bridge */ ppc4xx_pob_init(env); /* OBP arbitrer */ ppc4xx_opba_init(env, mmio, 0x600); /* Universal interrupt controller */ irqs = qemu_mallocz(sizeof(qemu_irq) * PPCUIC_OUTPUT_NB); irqs[PPCUIC_OUTPUT_INT] = ((qemu_irq *)env->irq_inputs)[PPC40x_INPUT_INT]; irqs[PPCUIC_OUTPUT_CINT] = ((qemu_irq *)env->irq_inputs)[PPC40x_INPUT_CINT]; pic = ppcuic_init(env, irqs, 0x0C0, 0, 1); *picp = pic; /* SDRAM controller */ ppc405_sdram_init(env, pic[14], 1, ram_bases, ram_sizes, do_init); offset = 0; for (i = 0; i < 4; i++) offset += ram_sizes[i]; /* External bus controller */ ppc405_ebc_init(env); /* DMA controller */ dma_irqs[0] = pic[26]; dma_irqs[1] = pic[25]; dma_irqs[2] = pic[24]; dma_irqs[3] = pic[23]; ppc405_dma_init(env, dma_irqs); /* Serial ports */ if (serial_hds[0] != NULL) { ppc405_serial_init(env, mmio, 0x300, pic[31], serial_hds[0]); } if (serial_hds[1] != NULL) { ppc405_serial_init(env, mmio, 0x400, pic[30], serial_hds[1]); } /* IIC controller */ ppc405_i2c_init(env, mmio, 0x500, pic[29]); /* GPIO */ ppc405_gpio_init(env, mmio, 0x700); /* CPU control */ ppc405cr_cpc_init(env, clk_setup, sysclk); *offsetp = offset; return env; } /*****************************************************************************/ /* PowerPC 405EP */ /* CPU control */ enum { PPC405EP_CPC0_PLLMR0 = 0x0F0, PPC405EP_CPC0_BOOT = 0x0F1, PPC405EP_CPC0_EPCTL = 0x0F3, PPC405EP_CPC0_PLLMR1 = 0x0F4, PPC405EP_CPC0_UCR = 0x0F5, PPC405EP_CPC0_SRR = 0x0F6, PPC405EP_CPC0_JTAGID = 0x0F7, PPC405EP_CPC0_PCI = 0x0F9, #if 0 PPC405EP_CPC0_ER = xxx, PPC405EP_CPC0_FR = xxx, PPC405EP_CPC0_SR = xxx, #endif }; enum { PPC405EP_CPU_CLK = 0, PPC405EP_PLB_CLK = 1, PPC405EP_OPB_CLK = 2, PPC405EP_EBC_CLK = 3, PPC405EP_MAL_CLK = 4, PPC405EP_PCI_CLK = 5, PPC405EP_UART0_CLK = 6, PPC405EP_UART1_CLK = 7, PPC405EP_CLK_NB = 8, }; typedef struct ppc405ep_cpc_t ppc405ep_cpc_t; struct ppc405ep_cpc_t { uint32_t sysclk; clk_setup_t clk_setup[PPC405EP_CLK_NB]; uint32_t boot; uint32_t epctl; uint32_t pllmr[2]; uint32_t ucr; uint32_t srr; uint32_t jtagid; uint32_t pci; /* Clock and power management */ uint32_t er; uint32_t fr; uint32_t sr; }; static void ppc405ep_compute_clocks (ppc405ep_cpc_t *cpc) { uint32_t CPU_clk, PLB_clk, OPB_clk, EBC_clk, MAL_clk, PCI_clk; uint32_t UART0_clk, UART1_clk; uint64_t VCO_out, PLL_out; int M, D; VCO_out = 0; if ((cpc->pllmr[1] & 0x80000000) && !(cpc->pllmr[1] & 0x40000000)) { M = (((cpc->pllmr[1] >> 20) - 1) & 0xF) + 1; /* FBMUL */ // printf("FBMUL %01x %d\n", (cpc->pllmr[1] >> 20) & 0xF, M); D = 8 - ((cpc->pllmr[1] >> 16) & 0x7); /* FWDA */ // printf("FWDA %01x %d\n", (cpc->pllmr[1] >> 16) & 0x7, D); VCO_out = cpc->sysclk * M * D; if (VCO_out < 500000000UL || VCO_out > 1000000000UL) { /* Error - unlock the PLL */ printf("VCO out of range %" PRIu64 "\n", VCO_out); #if 0 cpc->pllmr[1] &= ~0x80000000; goto pll_bypass; #endif } PLL_out = VCO_out / D; /* Pretend the PLL is locked */ cpc->boot |= 0x00000001; } else { #if 0 pll_bypass: #endif PLL_out = cpc->sysclk; if (cpc->pllmr[1] & 0x40000000) { /* Pretend the PLL is not locked */ cpc->boot &= ~0x00000001; } } /* Now, compute all other clocks */ D = ((cpc->pllmr[0] >> 20) & 0x3) + 1; /* CCDV */ #ifdef DEBUG_CLOCKS // printf("CCDV %01x %d\n", (cpc->pllmr[0] >> 20) & 0x3, D); #endif CPU_clk = PLL_out / D; D = ((cpc->pllmr[0] >> 16) & 0x3) + 1; /* CBDV */ #ifdef DEBUG_CLOCKS // printf("CBDV %01x %d\n", (cpc->pllmr[0] >> 16) & 0x3, D); #endif PLB_clk = CPU_clk / D; D = ((cpc->pllmr[0] >> 12) & 0x3) + 1; /* OPDV */ #ifdef DEBUG_CLOCKS // printf("OPDV %01x %d\n", (cpc->pllmr[0] >> 12) & 0x3, D); #endif OPB_clk = PLB_clk / D; D = ((cpc->pllmr[0] >> 8) & 0x3) + 2; /* EPDV */ #ifdef DEBUG_CLOCKS // printf("EPDV %01x %d\n", (cpc->pllmr[0] >> 8) & 0x3, D); #endif EBC_clk = PLB_clk / D; D = ((cpc->pllmr[0] >> 4) & 0x3) + 1; /* MPDV */ #ifdef DEBUG_CLOCKS // printf("MPDV %01x %d\n", (cpc->pllmr[0] >> 4) & 0x3, D); #endif MAL_clk = PLB_clk / D; D = (cpc->pllmr[0] & 0x3) + 1; /* PPDV */ #ifdef DEBUG_CLOCKS // printf("PPDV %01x %d\n", cpc->pllmr[0] & 0x3, D); #endif PCI_clk = PLB_clk / D; D = ((cpc->ucr - 1) & 0x7F) + 1; /* U0DIV */ #ifdef DEBUG_CLOCKS // printf("U0DIV %01x %d\n", cpc->ucr & 0x7F, D); #endif UART0_clk = PLL_out / D; D = (((cpc->ucr >> 8) - 1) & 0x7F) + 1; /* U1DIV */ #ifdef DEBUG_CLOCKS // printf("U1DIV %01x %d\n", (cpc->ucr >> 8) & 0x7F, D); #endif UART1_clk = PLL_out / D; #ifdef DEBUG_CLOCKS printf("Setup PPC405EP clocks - sysclk %d VCO %" PRIu64 " PLL out %" PRIu64 " Hz\n", cpc->sysclk, VCO_out, PLL_out); printf("CPU %d PLB %d OPB %d EBC %d MAL %d PCI %d UART0 %d UART1 %d\n", CPU_clk, PLB_clk, OPB_clk, EBC_clk, MAL_clk, PCI_clk, UART0_clk, UART1_clk); printf("CB %p opaque %p\n", cpc->clk_setup[PPC405EP_CPU_CLK].cb, cpc->clk_setup[PPC405EP_CPU_CLK].opaque); #endif /* Setup CPU clocks */ clk_setup(&cpc->clk_setup[PPC405EP_CPU_CLK], CPU_clk); /* Setup PLB clock */ clk_setup(&cpc->clk_setup[PPC405EP_PLB_CLK], PLB_clk); /* Setup OPB clock */ clk_setup(&cpc->clk_setup[PPC405EP_OPB_CLK], OPB_clk); /* Setup external clock */ clk_setup(&cpc->clk_setup[PPC405EP_EBC_CLK], EBC_clk); /* Setup MAL clock */ clk_setup(&cpc->clk_setup[PPC405EP_MAL_CLK], MAL_clk); /* Setup PCI clock */ clk_setup(&cpc->clk_setup[PPC405EP_PCI_CLK], PCI_clk); /* Setup UART0 clock */ clk_setup(&cpc->clk_setup[PPC405EP_UART0_CLK], UART0_clk); /* Setup UART1 clock */ clk_setup(&cpc->clk_setup[PPC405EP_UART1_CLK], UART1_clk); } static target_ulong dcr_read_epcpc (void *opaque, int dcrn) { ppc405ep_cpc_t *cpc; target_ulong ret; cpc = opaque; switch (dcrn) { case PPC405EP_CPC0_BOOT: ret = cpc->boot; break; case PPC405EP_CPC0_EPCTL: ret = cpc->epctl; break; case PPC405EP_CPC0_PLLMR0: ret = cpc->pllmr[0]; break; case PPC405EP_CPC0_PLLMR1: ret = cpc->pllmr[1]; break; case PPC405EP_CPC0_UCR: ret = cpc->ucr; break; case PPC405EP_CPC0_SRR: ret = cpc->srr; break; case PPC405EP_CPC0_JTAGID: ret = cpc->jtagid; break; case PPC405EP_CPC0_PCI: ret = cpc->pci; break; default: /* Avoid gcc warning */ ret = 0; break; } return ret; } static void dcr_write_epcpc (void *opaque, int dcrn, target_ulong val) { ppc405ep_cpc_t *cpc; cpc = opaque; switch (dcrn) { case PPC405EP_CPC0_BOOT: /* Read-only register */ break; case PPC405EP_CPC0_EPCTL: /* Don't care for now */ cpc->epctl = val & 0xC00000F3; break; case PPC405EP_CPC0_PLLMR0: cpc->pllmr[0] = val & 0x00633333; ppc405ep_compute_clocks(cpc); break; case PPC405EP_CPC0_PLLMR1: cpc->pllmr[1] = val & 0xC0F73FFF; ppc405ep_compute_clocks(cpc); break; case PPC405EP_CPC0_UCR: /* UART control - don't care for now */ cpc->ucr = val & 0x003F7F7F; break; case PPC405EP_CPC0_SRR: cpc->srr = val; break; case PPC405EP_CPC0_JTAGID: /* Read-only */ break; case PPC405EP_CPC0_PCI: cpc->pci = val; break; } } static void ppc405ep_cpc_reset (void *opaque) { ppc405ep_cpc_t *cpc = opaque; cpc->boot = 0x00000010; /* Boot from PCI - IIC EEPROM disabled */ cpc->epctl = 0x00000000; cpc->pllmr[0] = 0x00011010; cpc->pllmr[1] = 0x40000000; cpc->ucr = 0x00000000; cpc->srr = 0x00040000; cpc->pci = 0x00000000; cpc->er = 0x00000000; cpc->fr = 0x00000000; cpc->sr = 0x00000000; ppc405ep_compute_clocks(cpc); } /* XXX: sysclk should be between 25 and 100 MHz */ static void ppc405ep_cpc_init (CPUState *env, clk_setup_t clk_setup[8], uint32_t sysclk) { ppc405ep_cpc_t *cpc; cpc = qemu_mallocz(sizeof(ppc405ep_cpc_t)); if (cpc != NULL) { memcpy(cpc->clk_setup, clk_setup, PPC405EP_CLK_NB * sizeof(clk_setup_t)); cpc->jtagid = 0x20267049; cpc->sysclk = sysclk; ppc405ep_cpc_reset(cpc); qemu_register_reset(&ppc405ep_cpc_reset, cpc); ppc_dcr_register(env, PPC405EP_CPC0_BOOT, cpc, &dcr_read_epcpc, &dcr_write_epcpc); ppc_dcr_register(env, PPC405EP_CPC0_EPCTL, cpc, &dcr_read_epcpc, &dcr_write_epcpc); ppc_dcr_register(env, PPC405EP_CPC0_PLLMR0, cpc, &dcr_read_epcpc, &dcr_write_epcpc); ppc_dcr_register(env, PPC405EP_CPC0_PLLMR1, cpc, &dcr_read_epcpc, &dcr_write_epcpc); ppc_dcr_register(env, PPC405EP_CPC0_UCR, cpc, &dcr_read_epcpc, &dcr_write_epcpc); ppc_dcr_register(env, PPC405EP_CPC0_SRR, cpc, &dcr_read_epcpc, &dcr_write_epcpc); ppc_dcr_register(env, PPC405EP_CPC0_JTAGID, cpc, &dcr_read_epcpc, &dcr_write_epcpc); ppc_dcr_register(env, PPC405EP_CPC0_PCI, cpc, &dcr_read_epcpc, &dcr_write_epcpc); #if 0 ppc_dcr_register(env, PPC405EP_CPC0_ER, cpc, &dcr_read_epcpc, &dcr_write_epcpc); ppc_dcr_register(env, PPC405EP_CPC0_FR, cpc, &dcr_read_epcpc, &dcr_write_epcpc); ppc_dcr_register(env, PPC405EP_CPC0_SR, cpc, &dcr_read_epcpc, &dcr_write_epcpc); #endif } } CPUState *ppc405ep_init (target_phys_addr_t ram_bases[2], target_phys_addr_t ram_sizes[2], uint32_t sysclk, qemu_irq **picp, ram_addr_t *offsetp, int do_init) { clk_setup_t clk_setup[PPC405EP_CLK_NB], tlb_clk_setup; qemu_irq dma_irqs[4], gpt_irqs[5], mal_irqs[4]; CPUState *env; ppc4xx_mmio_t *mmio; qemu_irq *pic, *irqs; ram_addr_t offset; int i; memset(clk_setup, 0, sizeof(clk_setup)); /* init CPUs */ env = ppc405_init("405ep", &clk_setup[PPC405EP_CPU_CLK], &tlb_clk_setup, sysclk); clk_setup[PPC405EP_CPU_CLK].cb = tlb_clk_setup.cb; clk_setup[PPC405EP_CPU_CLK].opaque = tlb_clk_setup.opaque; /* Internal devices init */ /* Memory mapped devices registers */ mmio = ppc4xx_mmio_init(env, 0xEF600000); /* PLB arbitrer */ ppc4xx_plb_init(env); /* PLB to OPB bridge */ ppc4xx_pob_init(env); /* OBP arbitrer */ ppc4xx_opba_init(env, mmio, 0x600); /* Universal interrupt controller */ irqs = qemu_mallocz(sizeof(qemu_irq) * PPCUIC_OUTPUT_NB); irqs[PPCUIC_OUTPUT_INT] = ((qemu_irq *)env->irq_inputs)[PPC40x_INPUT_INT]; irqs[PPCUIC_OUTPUT_CINT] = ((qemu_irq *)env->irq_inputs)[PPC40x_INPUT_CINT]; pic = ppcuic_init(env, irqs, 0x0C0, 0, 1); *picp = pic; /* SDRAM controller */ ppc405_sdram_init(env, pic[14], 2, ram_bases, ram_sizes, do_init); offset = 0; for (i = 0; i < 2; i++) offset += ram_sizes[i]; /* External bus controller */ ppc405_ebc_init(env); /* DMA controller */ dma_irqs[0] = pic[26]; dma_irqs[1] = pic[25]; dma_irqs[2] = pic[24]; dma_irqs[3] = pic[23]; ppc405_dma_init(env, dma_irqs); /* IIC controller */ ppc405_i2c_init(env, mmio, 0x500, pic[29]); /* GPIO */ ppc405_gpio_init(env, mmio, 0x700); /* Serial ports */ if (serial_hds[0] != NULL) { ppc405_serial_init(env, mmio, 0x300, pic[31], serial_hds[0]); } if (serial_hds[1] != NULL) { ppc405_serial_init(env, mmio, 0x400, pic[30], serial_hds[1]); } /* OCM */ ppc405_ocm_init(env, ram_sizes[0] + ram_sizes[1]); offset += 4096; /* GPT */ gpt_irqs[0] = pic[12]; gpt_irqs[1] = pic[11]; gpt_irqs[2] = pic[10]; gpt_irqs[3] = pic[9]; gpt_irqs[4] = pic[8]; ppc4xx_gpt_init(env, mmio, 0x000, gpt_irqs); /* PCI */ /* Uses pic[28], pic[15], pic[13] */ /* MAL */ mal_irqs[0] = pic[20]; mal_irqs[1] = pic[19]; mal_irqs[2] = pic[18]; mal_irqs[3] = pic[17]; ppc405_mal_init(env, mal_irqs); /* Ethernet */ /* Uses pic[22], pic[16], pic[14] */ /* CPU control */ ppc405ep_cpc_init(env, clk_setup, sysclk); *offsetp = offset; return env; }