/* * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator * * Hypercall based emulated RTAS * * Copyright (c) 2010-2011 David Gibson, IBM Corporation. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "qemu/osdep.h" #include "cpu.h" #include "qemu/log.h" #include "qemu/error-report.h" #include "sysemu/sysemu.h" #include "sysemu/char.h" #include "hw/qdev.h" #include "sysemu/device_tree.h" #include "sysemu/cpus.h" #include "sysemu/kvm.h" #include "hw/ppc/spapr.h" #include "hw/ppc/spapr_vio.h" #include "hw/ppc/ppc.h" #include "qapi-event.h" #include "hw/boards.h" #include #include "hw/ppc/spapr_drc.h" #include "qemu/cutils.h" /* #define DEBUG_SPAPR */ #ifdef DEBUG_SPAPR #define DPRINTF(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif static sPAPRConfigureConnectorState *spapr_ccs_find(sPAPRMachineState *spapr, uint32_t drc_index) { sPAPRConfigureConnectorState *ccs = NULL; QTAILQ_FOREACH(ccs, &spapr->ccs_list, next) { if (ccs->drc_index == drc_index) { break; } } return ccs; } static void spapr_ccs_add(sPAPRMachineState *spapr, sPAPRConfigureConnectorState *ccs) { g_assert(!spapr_ccs_find(spapr, ccs->drc_index)); QTAILQ_INSERT_HEAD(&spapr->ccs_list, ccs, next); } static void spapr_ccs_remove(sPAPRMachineState *spapr, sPAPRConfigureConnectorState *ccs) { QTAILQ_REMOVE(&spapr->ccs_list, ccs, next); g_free(ccs); } void spapr_ccs_reset_hook(void *opaque) { sPAPRMachineState *spapr = opaque; sPAPRConfigureConnectorState *ccs, *ccs_tmp; QTAILQ_FOREACH_SAFE(ccs, &spapr->ccs_list, next, ccs_tmp) { spapr_ccs_remove(spapr, ccs); } } static void rtas_display_character(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint8_t c = rtas_ld(args, 0); VIOsPAPRDevice *sdev = vty_lookup(spapr, 0); if (!sdev) { rtas_st(rets, 0, RTAS_OUT_HW_ERROR); } else { vty_putchars(sdev, &c, sizeof(c)); rtas_st(rets, 0, RTAS_OUT_SUCCESS); } } static void rtas_power_off(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { if (nargs != 2 || nret != 1) { rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } qemu_system_shutdown_request(); cpu_stop_current(); rtas_st(rets, 0, RTAS_OUT_SUCCESS); } static void rtas_system_reboot(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { if (nargs != 0 || nret != 1) { rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } qemu_system_reset_request(); rtas_st(rets, 0, RTAS_OUT_SUCCESS); } static void rtas_query_cpu_stopped_state(PowerPCCPU *cpu_, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { target_ulong id; PowerPCCPU *cpu; if (nargs != 1 || nret != 2) { rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } id = rtas_ld(args, 0); cpu = ppc_get_vcpu_by_dt_id(id); if (cpu != NULL) { if (CPU(cpu)->halted) { rtas_st(rets, 1, 0); } else { rtas_st(rets, 1, 2); } rtas_st(rets, 0, RTAS_OUT_SUCCESS); return; } /* Didn't find a matching cpu */ rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); } /* * Set the timebase offset of the CPU to that of first CPU. * This helps hotplugged CPU to have the correct timebase offset. */ static void spapr_cpu_update_tb_offset(PowerPCCPU *cpu) { PowerPCCPU *fcpu = POWERPC_CPU(first_cpu); cpu->env.tb_env->tb_offset = fcpu->env.tb_env->tb_offset; } static void spapr_cpu_set_endianness(PowerPCCPU *cpu) { PowerPCCPU *fcpu = POWERPC_CPU(first_cpu); PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(fcpu); if (!pcc->interrupts_big_endian(fcpu)) { cpu->env.spr[SPR_LPCR] |= LPCR_ILE; } } static void rtas_start_cpu(PowerPCCPU *cpu_, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { target_ulong id, start, r3; PowerPCCPU *cpu; if (nargs != 3 || nret != 1) { rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } id = rtas_ld(args, 0); start = rtas_ld(args, 1); r3 = rtas_ld(args, 2); cpu = ppc_get_vcpu_by_dt_id(id); if (cpu != NULL) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; if (!cs->halted) { rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } /* This will make sure qemu state is up to date with kvm, and * mark it dirty so our changes get flushed back before the * new cpu enters */ kvm_cpu_synchronize_state(cs); env->msr = (1ULL << MSR_SF) | (1ULL << MSR_ME); env->nip = start; env->gpr[3] = r3; cs->halted = 0; spapr_cpu_set_endianness(cpu); spapr_cpu_update_tb_offset(cpu); qemu_cpu_kick(cs); rtas_st(rets, 0, RTAS_OUT_SUCCESS); return; } /* Didn't find a matching cpu */ rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); } static void rtas_stop_self(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; cs->halted = 1; qemu_cpu_kick(cs); /* * While stopping a CPU, the guest calls H_CPPR which * effectively disables interrupts on XICS level. * However decrementer interrupts in TCG can still * wake the CPU up so here we disable interrupts in MSR * as well. * As rtas_start_cpu() resets the whole MSR anyway, there is * no need to bother with specific bits, we just clear it. */ env->msr = 0; } static inline int sysparm_st(target_ulong addr, target_ulong len, const void *val, uint16_t vallen) { hwaddr phys = ppc64_phys_to_real(addr); if (len < 2) { return RTAS_OUT_SYSPARM_PARAM_ERROR; } stw_be_phys(&address_space_memory, phys, vallen); cpu_physical_memory_write(phys + 2, val, MIN(len - 2, vallen)); return RTAS_OUT_SUCCESS; } static void rtas_ibm_get_system_parameter(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { target_ulong parameter = rtas_ld(args, 0); target_ulong buffer = rtas_ld(args, 1); target_ulong length = rtas_ld(args, 2); target_ulong ret; switch (parameter) { case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: { char *param_val = g_strdup_printf("MaxEntCap=%d," "DesMem=%llu," "DesProcs=%d," "MaxPlatProcs=%d", max_cpus, current_machine->ram_size / M_BYTE, smp_cpus, max_cpus); ret = sysparm_st(buffer, length, param_val, strlen(param_val) + 1); g_free(param_val); break; } case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: { uint8_t param_val = DIAGNOSTICS_RUN_MODE_DISABLED; ret = sysparm_st(buffer, length, ¶m_val, sizeof(param_val)); break; } case RTAS_SYSPARM_UUID: ret = sysparm_st(buffer, length, qemu_uuid, (qemu_uuid_set ? 16 : 0)); break; default: ret = RTAS_OUT_NOT_SUPPORTED; } rtas_st(rets, 0, ret); } static void rtas_ibm_set_system_parameter(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { target_ulong parameter = rtas_ld(args, 0); target_ulong ret = RTAS_OUT_NOT_SUPPORTED; switch (parameter) { case RTAS_SYSPARM_SPLPAR_CHARACTERISTICS: case RTAS_SYSPARM_DIAGNOSTICS_RUN_MODE: case RTAS_SYSPARM_UUID: ret = RTAS_OUT_NOT_AUTHORIZED; break; } rtas_st(rets, 0, ret); } static void rtas_ibm_os_term(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { target_ulong ret = 0; qapi_event_send_guest_panicked(GUEST_PANIC_ACTION_PAUSE, &error_abort); rtas_st(rets, 0, ret); } static void rtas_set_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { int32_t power_domain; if (nargs != 2 || nret != 2) { rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } /* we currently only use a single, "live insert" powerdomain for * hotplugged/dlpar'd resources, so the power is always live/full (100) */ power_domain = rtas_ld(args, 0); if (power_domain != -1) { rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED); return; } rtas_st(rets, 0, RTAS_OUT_SUCCESS); rtas_st(rets, 1, 100); } static void rtas_get_power_level(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { int32_t power_domain; if (nargs != 1 || nret != 2) { rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } /* we currently only use a single, "live insert" powerdomain for * hotplugged/dlpar'd resources, so the power is always live/full (100) */ power_domain = rtas_ld(args, 0); if (power_domain != -1) { rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED); return; } rtas_st(rets, 0, RTAS_OUT_SUCCESS); rtas_st(rets, 1, 100); } static bool sensor_type_is_dr(uint32_t sensor_type) { switch (sensor_type) { case RTAS_SENSOR_TYPE_ISOLATION_STATE: case RTAS_SENSOR_TYPE_DR: case RTAS_SENSOR_TYPE_ALLOCATION_STATE: return true; } return false; } static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t sensor_type; uint32_t sensor_index; uint32_t sensor_state; uint32_t ret = RTAS_OUT_SUCCESS; sPAPRDRConnector *drc; sPAPRDRConnectorClass *drck; if (nargs != 3 || nret != 1) { ret = RTAS_OUT_PARAM_ERROR; goto out; } sensor_type = rtas_ld(args, 0); sensor_index = rtas_ld(args, 1); sensor_state = rtas_ld(args, 2); if (!sensor_type_is_dr(sensor_type)) { goto out_unimplemented; } /* if this is a DR sensor we can assume sensor_index == drc_index */ drc = spapr_dr_connector_by_index(sensor_index); if (!drc) { DPRINTF("rtas_set_indicator: invalid sensor/DRC index: %xh\n", sensor_index); ret = RTAS_OUT_PARAM_ERROR; goto out; } drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); switch (sensor_type) { case RTAS_SENSOR_TYPE_ISOLATION_STATE: /* if the guest is configuring a device attached to this * DRC, we should reset the configuration state at this * point since it may no longer be reliable (guest released * device and needs to start over, or unplug occurred so * the FDT is no longer valid) */ if (sensor_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) { sPAPRConfigureConnectorState *ccs = spapr_ccs_find(spapr, sensor_index); if (ccs) { spapr_ccs_remove(spapr, ccs); } } ret = drck->set_isolation_state(drc, sensor_state); break; case RTAS_SENSOR_TYPE_DR: ret = drck->set_indicator_state(drc, sensor_state); break; case RTAS_SENSOR_TYPE_ALLOCATION_STATE: ret = drck->set_allocation_state(drc, sensor_state); break; default: goto out_unimplemented; } out: rtas_st(rets, 0, ret); return; out_unimplemented: /* currently only DR-related sensors are implemented */ DPRINTF("rtas_set_indicator: sensor/indicator not implemented: %d\n", sensor_type); rtas_st(rets, 0, RTAS_OUT_NOT_SUPPORTED); } static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t sensor_type; uint32_t sensor_index; uint32_t sensor_state = 0; sPAPRDRConnector *drc; sPAPRDRConnectorClass *drck; uint32_t ret = RTAS_OUT_SUCCESS; if (nargs != 2 || nret != 2) { ret = RTAS_OUT_PARAM_ERROR; goto out; } sensor_type = rtas_ld(args, 0); sensor_index = rtas_ld(args, 1); if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { /* currently only DR-related sensors are implemented */ DPRINTF("rtas_get_sensor_state: sensor/indicator not implemented: %d\n", sensor_type); ret = RTAS_OUT_NOT_SUPPORTED; goto out; } drc = spapr_dr_connector_by_index(sensor_index); if (!drc) { DPRINTF("rtas_get_sensor_state: invalid sensor/DRC index: %xh\n", sensor_index); ret = RTAS_OUT_PARAM_ERROR; goto out; } drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); ret = drck->entity_sense(drc, &sensor_state); out: rtas_st(rets, 0, ret); rtas_st(rets, 1, sensor_state); } /* configure-connector work area offsets, int32_t units for field * indexes, bytes for field offset/len values. * * as documented by PAPR+ v2.7, 13.5.3.5 */ #define CC_IDX_NODE_NAME_OFFSET 2 #define CC_IDX_PROP_NAME_OFFSET 2 #define CC_IDX_PROP_LEN 3 #define CC_IDX_PROP_DATA_OFFSET 4 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) #define CC_WA_LEN 4096 static void configure_connector_st(target_ulong addr, target_ulong offset, const void *buf, size_t len) { cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), buf, MIN(len, CC_WA_LEN - offset)); } static void rtas_ibm_configure_connector(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint64_t wa_addr; uint64_t wa_offset; uint32_t drc_index; sPAPRDRConnector *drc; sPAPRDRConnectorClass *drck; sPAPRConfigureConnectorState *ccs; sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; int rc; const void *fdt; if (nargs != 2 || nret != 1) { rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); drc_index = rtas_ld(wa_addr, 0); drc = spapr_dr_connector_by_index(drc_index); if (!drc) { DPRINTF("rtas_ibm_configure_connector: invalid DRC index: %xh\n", drc_index); rc = RTAS_OUT_PARAM_ERROR; goto out; } drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); fdt = drck->get_fdt(drc, NULL); if (!fdt) { DPRINTF("rtas_ibm_configure_connector: Missing FDT for DRC index: %xh\n", drc_index); rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; goto out; } ccs = spapr_ccs_find(spapr, drc_index); if (!ccs) { ccs = g_new0(sPAPRConfigureConnectorState, 1); (void)drck->get_fdt(drc, &ccs->fdt_offset); ccs->drc_index = drc_index; spapr_ccs_add(spapr, ccs); } do { uint32_t tag; const char *name; const struct fdt_property *prop; int fdt_offset_next, prop_len; tag = fdt_next_tag(fdt, ccs->fdt_offset, &fdt_offset_next); switch (tag) { case FDT_BEGIN_NODE: ccs->fdt_depth++; name = fdt_get_name(fdt, ccs->fdt_offset, NULL); /* provide the name of the next OF node */ wa_offset = CC_VAL_DATA_OFFSET; rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; break; case FDT_END_NODE: ccs->fdt_depth--; if (ccs->fdt_depth == 0) { /* done sending the device tree, don't need to track * the state anymore */ drck->set_configured(drc); spapr_ccs_remove(spapr, ccs); ccs = NULL; resp = SPAPR_DR_CC_RESPONSE_SUCCESS; } else { resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; } break; case FDT_PROP: prop = fdt_get_property_by_offset(fdt, ccs->fdt_offset, &prop_len); name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); /* provide the name of the next OF property */ wa_offset = CC_VAL_DATA_OFFSET; rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); /* provide the length and value of the OF property. data gets * placed immediately after NULL terminator of the OF property's * name string */ wa_offset += strlen(name) + 1, rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; break; case FDT_END: resp = SPAPR_DR_CC_RESPONSE_ERROR; default: /* keep seeking for an actionable tag */ break; } if (ccs) { ccs->fdt_offset = fdt_offset_next; } } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); rc = resp; out: rtas_st(rets, 0, rc); } static struct rtas_call { const char *name; spapr_rtas_fn fn; } rtas_table[RTAS_TOKEN_MAX - RTAS_TOKEN_BASE]; target_ulong spapr_rtas_call(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { if ((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX)) { struct rtas_call *call = rtas_table + (token - RTAS_TOKEN_BASE); if (call->fn) { call->fn(cpu, spapr, token, nargs, args, nret, rets); return H_SUCCESS; } } /* HACK: Some Linux early debug code uses RTAS display-character, * but assumes the token value is 0xa (which it is on some real * machines) without looking it up in the device tree. This * special case makes this work */ if (token == 0xa) { rtas_display_character(cpu, spapr, 0xa, nargs, args, nret, rets); return H_SUCCESS; } hcall_dprintf("Unknown RTAS token 0x%x\n", token); rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return H_PARAMETER; } void spapr_rtas_register(int token, const char *name, spapr_rtas_fn fn) { assert((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX)); token -= RTAS_TOKEN_BASE; assert(!rtas_table[token].name); rtas_table[token].name = name; rtas_table[token].fn = fn; } int spapr_rtas_device_tree_setup(void *fdt, hwaddr rtas_addr, hwaddr rtas_size) { int ret; int i; uint32_t lrdr_capacity[5]; MachineState *machine = MACHINE(qdev_get_machine()); sPAPRMachineState *spapr = SPAPR_MACHINE(machine); uint64_t max_hotplug_addr = spapr->hotplug_memory.base + memory_region_size(&spapr->hotplug_memory.mr); ret = fdt_add_mem_rsv(fdt, rtas_addr, rtas_size); if (ret < 0) { error_report("Couldn't add RTAS reserve entry: %s", fdt_strerror(ret)); return ret; } ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-base", rtas_addr); if (ret < 0) { error_report("Couldn't add linux,rtas-base property: %s", fdt_strerror(ret)); return ret; } ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-entry", rtas_addr); if (ret < 0) { error_report("Couldn't add linux,rtas-entry property: %s", fdt_strerror(ret)); return ret; } ret = qemu_fdt_setprop_cell(fdt, "/rtas", "rtas-size", rtas_size); if (ret < 0) { error_report("Couldn't add rtas-size property: %s", fdt_strerror(ret)); return ret; } for (i = 0; i < RTAS_TOKEN_MAX - RTAS_TOKEN_BASE; i++) { struct rtas_call *call = &rtas_table[i]; if (!call->name) { continue; } ret = qemu_fdt_setprop_cell(fdt, "/rtas", call->name, i + RTAS_TOKEN_BASE); if (ret < 0) { error_report("Couldn't add rtas token for %s: %s", call->name, fdt_strerror(ret)); return ret; } } lrdr_capacity[0] = cpu_to_be32(max_hotplug_addr >> 32); lrdr_capacity[1] = cpu_to_be32(max_hotplug_addr & 0xffffffff); lrdr_capacity[2] = 0; lrdr_capacity[3] = cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE); lrdr_capacity[4] = cpu_to_be32(max_cpus/smp_threads); ret = qemu_fdt_setprop(fdt, "/rtas", "ibm,lrdr-capacity", lrdr_capacity, sizeof(lrdr_capacity)); if (ret < 0) { error_report("Couldn't add ibm,lrdr-capacity rtas property"); return ret; } return 0; } static void core_rtas_register_types(void) { spapr_rtas_register(RTAS_DISPLAY_CHARACTER, "display-character", rtas_display_character); spapr_rtas_register(RTAS_POWER_OFF, "power-off", rtas_power_off); spapr_rtas_register(RTAS_SYSTEM_REBOOT, "system-reboot", rtas_system_reboot); spapr_rtas_register(RTAS_QUERY_CPU_STOPPED_STATE, "query-cpu-stopped-state", rtas_query_cpu_stopped_state); spapr_rtas_register(RTAS_START_CPU, "start-cpu", rtas_start_cpu); spapr_rtas_register(RTAS_STOP_SELF, "stop-self", rtas_stop_self); spapr_rtas_register(RTAS_IBM_GET_SYSTEM_PARAMETER, "ibm,get-system-parameter", rtas_ibm_get_system_parameter); spapr_rtas_register(RTAS_IBM_SET_SYSTEM_PARAMETER, "ibm,set-system-parameter", rtas_ibm_set_system_parameter); spapr_rtas_register(RTAS_IBM_OS_TERM, "ibm,os-term", rtas_ibm_os_term); spapr_rtas_register(RTAS_SET_POWER_LEVEL, "set-power-level", rtas_set_power_level); spapr_rtas_register(RTAS_GET_POWER_LEVEL, "get-power-level", rtas_get_power_level); spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", rtas_set_indicator); spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", rtas_get_sensor_state); spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", rtas_ibm_configure_connector); } type_init(core_rtas_register_types)