/* * QEMU sPAPR PCI host originated from Uninorth PCI host * * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. * Copyright (C) 2011 David Gibson, IBM Corporation. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu-common.h" #include "cpu.h" #include "hw/hw.h" #include "hw/sysbus.h" #include "hw/pci/pci.h" #include "hw/pci/msi.h" #include "hw/pci/msix.h" #include "hw/pci/pci_host.h" #include "hw/ppc/spapr.h" #include "hw/pci-host/spapr.h" #include "exec/address-spaces.h" #include "exec/ram_addr.h" #include #include "trace.h" #include "qemu/error-report.h" #include "qapi/qmp/qerror.h" #include "hw/ppc/fdt.h" #include "hw/pci/pci_bridge.h" #include "hw/pci/pci_bus.h" #include "hw/pci/pci_ids.h" #include "hw/ppc/spapr_drc.h" #include "sysemu/device_tree.h" #include "sysemu/kvm.h" #include "sysemu/hostmem.h" #include "sysemu/numa.h" /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ #define RTAS_QUERY_FN 0 #define RTAS_CHANGE_FN 1 #define RTAS_RESET_FN 2 #define RTAS_CHANGE_MSI_FN 3 #define RTAS_CHANGE_MSIX_FN 4 /* Interrupt types to return on RTAS_CHANGE_* */ #define RTAS_TYPE_MSI 1 #define RTAS_TYPE_MSIX 2 sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid) { sPAPRPHBState *sphb; QLIST_FOREACH(sphb, &spapr->phbs, list) { if (sphb->buid != buid) { continue; } return sphb; } return NULL; } PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid, uint32_t config_addr) { sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid); PCIHostState *phb = PCI_HOST_BRIDGE(sphb); int bus_num = (config_addr >> 16) & 0xFF; int devfn = (config_addr >> 8) & 0xFF; if (!phb) { return NULL; } return pci_find_device(phb->bus, bus_num, devfn); } static uint32_t rtas_pci_cfgaddr(uint32_t arg) { /* This handles the encoding of extended config space addresses */ return ((arg >> 20) & 0xf00) | (arg & 0xff); } static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid, uint32_t addr, uint32_t size, target_ulong rets) { PCIDevice *pci_dev; uint32_t val; if ((size != 1) && (size != 2) && (size != 4)) { /* access must be 1, 2 or 4 bytes */ rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } pci_dev = spapr_pci_find_dev(spapr, buid, addr); addr = rtas_pci_cfgaddr(addr); if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { /* Access must be to a valid device, within bounds and * naturally aligned */ rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } val = pci_host_config_read_common(pci_dev, addr, pci_config_size(pci_dev), size); rtas_st(rets, 0, RTAS_OUT_SUCCESS); rtas_st(rets, 1, val); } static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint64_t buid; uint32_t size, addr; if ((nargs != 4) || (nret != 2)) { rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } buid = rtas_ldq(args, 1); size = rtas_ld(args, 3); addr = rtas_ld(args, 0); finish_read_pci_config(spapr, buid, addr, size, rets); } static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t size, addr; if ((nargs != 2) || (nret != 2)) { rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } size = rtas_ld(args, 1); addr = rtas_ld(args, 0); finish_read_pci_config(spapr, 0, addr, size, rets); } static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid, uint32_t addr, uint32_t size, uint32_t val, target_ulong rets) { PCIDevice *pci_dev; if ((size != 1) && (size != 2) && (size != 4)) { /* access must be 1, 2 or 4 bytes */ rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } pci_dev = spapr_pci_find_dev(spapr, buid, addr); addr = rtas_pci_cfgaddr(addr); if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { /* Access must be to a valid device, within bounds and * naturally aligned */ rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), val, size); rtas_st(rets, 0, RTAS_OUT_SUCCESS); } static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint64_t buid; uint32_t val, size, addr; if ((nargs != 5) || (nret != 1)) { rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } buid = rtas_ldq(args, 1); val = rtas_ld(args, 4); size = rtas_ld(args, 3); addr = rtas_ld(args, 0); finish_write_pci_config(spapr, buid, addr, size, val, rets); } static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t val, size, addr; if ((nargs != 3) || (nret != 1)) { rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } val = rtas_ld(args, 2); size = rtas_ld(args, 1); addr = rtas_ld(args, 0); finish_write_pci_config(spapr, 0, addr, size, val, rets); } /* * Set MSI/MSIX message data. * This is required for msi_notify()/msix_notify() which * will write at the addresses via spapr_msi_write(). * * If hwaddr == 0, all entries will have .data == first_irq i.e. * table will be reset. */ static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, unsigned first_irq, unsigned req_num) { unsigned i; MSIMessage msg = { .address = addr, .data = first_irq }; if (!msix) { msi_set_message(pdev, msg); trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); return; } for (i = 0; i < req_num; ++i) { msix_set_message(pdev, i, msg); trace_spapr_pci_msi_setup(pdev->name, i, msg.address); if (addr) { ++msg.data; } } } static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t config_addr = rtas_ld(args, 0); uint64_t buid = rtas_ldq(args, 1); unsigned int func = rtas_ld(args, 3); unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ unsigned int seq_num = rtas_ld(args, 5); unsigned int ret_intr_type; unsigned int irq, max_irqs = 0; sPAPRPHBState *phb = NULL; PCIDevice *pdev = NULL; spapr_pci_msi *msi; int *config_addr_key; Error *err = NULL; switch (func) { case RTAS_CHANGE_MSI_FN: case RTAS_CHANGE_FN: ret_intr_type = RTAS_TYPE_MSI; break; case RTAS_CHANGE_MSIX_FN: ret_intr_type = RTAS_TYPE_MSIX; break; default: error_report("rtas_ibm_change_msi(%u) is not implemented", func); rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } /* Fins sPAPRPHBState */ phb = spapr_pci_find_phb(spapr, buid); if (phb) { pdev = spapr_pci_find_dev(spapr, buid, config_addr); } if (!phb || !pdev) { rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); /* Releasing MSIs */ if (!req_num) { if (!msi) { trace_spapr_pci_msi("Releasing wrong config", config_addr); rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } spapr_ics_free(spapr->ics, msi->first_irq, msi->num); if (msi_present(pdev)) { spapr_msi_setmsg(pdev, 0, false, 0, 0); } if (msix_present(pdev)) { spapr_msi_setmsg(pdev, 0, true, 0, 0); } g_hash_table_remove(phb->msi, &config_addr); trace_spapr_pci_msi("Released MSIs", config_addr); rtas_st(rets, 0, RTAS_OUT_SUCCESS); rtas_st(rets, 1, 0); return; } /* Enabling MSI */ /* Check if the device supports as many IRQs as requested */ if (ret_intr_type == RTAS_TYPE_MSI) { max_irqs = msi_nr_vectors_allocated(pdev); } else if (ret_intr_type == RTAS_TYPE_MSIX) { max_irqs = pdev->msix_entries_nr; } if (!max_irqs) { error_report("Requested interrupt type %d is not enabled for device %x", ret_intr_type, config_addr); rtas_st(rets, 0, -1); /* Hardware error */ return; } /* Correct the number if the guest asked for too many */ if (req_num > max_irqs) { trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs); req_num = max_irqs; irq = 0; /* to avoid misleading trace */ goto out; } /* Allocate MSIs */ irq = spapr_ics_alloc_block(spapr->ics, req_num, false, ret_intr_type == RTAS_TYPE_MSI, &err); if (err) { error_reportf_err(err, "Can't allocate MSIs for device %x: ", config_addr); rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } /* Release previous MSIs */ if (msi) { spapr_ics_free(spapr->ics, msi->first_irq, msi->num); g_hash_table_remove(phb->msi, &config_addr); } /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX, irq, req_num); /* Add MSI device to cache */ msi = g_new(spapr_pci_msi, 1); msi->first_irq = irq; msi->num = req_num; config_addr_key = g_new(int, 1); *config_addr_key = config_addr; g_hash_table_insert(phb->msi, config_addr_key, msi); out: rtas_st(rets, 0, RTAS_OUT_SUCCESS); rtas_st(rets, 1, req_num); rtas_st(rets, 2, ++seq_num); if (nret > 3) { rtas_st(rets, 3, ret_intr_type); } trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq); } static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t config_addr = rtas_ld(args, 0); uint64_t buid = rtas_ldq(args, 1); unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); sPAPRPHBState *phb = NULL; PCIDevice *pdev = NULL; spapr_pci_msi *msi; /* Find sPAPRPHBState */ phb = spapr_pci_find_phb(spapr, buid); if (phb) { pdev = spapr_pci_find_dev(spapr, buid, config_addr); } if (!phb || !pdev) { rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } /* Find device descriptor and start IRQ */ msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) { trace_spapr_pci_msi("Failed to return vector", config_addr); rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } intr_src_num = msi->first_irq + ioa_intr_num; trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, intr_src_num); rtas_st(rets, 0, RTAS_OUT_SUCCESS); rtas_st(rets, 1, intr_src_num); rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ } static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { sPAPRPHBState *sphb; uint32_t addr, option; uint64_t buid; int ret; if ((nargs != 4) || (nret != 1)) { goto param_error_exit; } buid = rtas_ldq(args, 1); addr = rtas_ld(args, 0); option = rtas_ld(args, 3); sphb = spapr_pci_find_phb(spapr, buid); if (!sphb) { goto param_error_exit; } if (!spapr_phb_eeh_available(sphb)) { goto param_error_exit; } ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option); rtas_st(rets, 0, ret); return; param_error_exit: rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); } static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { sPAPRPHBState *sphb; PCIDevice *pdev; uint32_t addr, option; uint64_t buid; if ((nargs != 4) || (nret != 2)) { goto param_error_exit; } buid = rtas_ldq(args, 1); sphb = spapr_pci_find_phb(spapr, buid); if (!sphb) { goto param_error_exit; } if (!spapr_phb_eeh_available(sphb)) { goto param_error_exit; } /* * We always have PE address of form "00BB0001". "BB" * represents the bus number of PE's primary bus. */ option = rtas_ld(args, 3); switch (option) { case RTAS_GET_PE_ADDR: addr = rtas_ld(args, 0); pdev = spapr_pci_find_dev(spapr, buid, addr); if (!pdev) { goto param_error_exit; } rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1); break; case RTAS_GET_PE_MODE: rtas_st(rets, 1, RTAS_PE_MODE_SHARED); break; default: goto param_error_exit; } rtas_st(rets, 0, RTAS_OUT_SUCCESS); return; param_error_exit: rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); } static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { sPAPRPHBState *sphb; uint64_t buid; int state, ret; if ((nargs != 3) || (nret != 4 && nret != 5)) { goto param_error_exit; } buid = rtas_ldq(args, 1); sphb = spapr_pci_find_phb(spapr, buid); if (!sphb) { goto param_error_exit; } if (!spapr_phb_eeh_available(sphb)) { goto param_error_exit; } ret = spapr_phb_vfio_eeh_get_state(sphb, &state); rtas_st(rets, 0, ret); if (ret != RTAS_OUT_SUCCESS) { return; } rtas_st(rets, 1, state); rtas_st(rets, 2, RTAS_EEH_SUPPORT); rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO); if (nret >= 5) { rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO); } return; param_error_exit: rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); } static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { sPAPRPHBState *sphb; uint32_t option; uint64_t buid; int ret; if ((nargs != 4) || (nret != 1)) { goto param_error_exit; } buid = rtas_ldq(args, 1); option = rtas_ld(args, 3); sphb = spapr_pci_find_phb(spapr, buid); if (!sphb) { goto param_error_exit; } if (!spapr_phb_eeh_available(sphb)) { goto param_error_exit; } ret = spapr_phb_vfio_eeh_reset(sphb, option); rtas_st(rets, 0, ret); return; param_error_exit: rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); } static void rtas_ibm_configure_pe(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { sPAPRPHBState *sphb; uint64_t buid; int ret; if ((nargs != 3) || (nret != 1)) { goto param_error_exit; } buid = rtas_ldq(args, 1); sphb = spapr_pci_find_phb(spapr, buid); if (!sphb) { goto param_error_exit; } if (!spapr_phb_eeh_available(sphb)) { goto param_error_exit; } ret = spapr_phb_vfio_eeh_configure(sphb); rtas_st(rets, 0, ret); return; param_error_exit: rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); } /* To support it later */ static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu, sPAPRMachineState *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { sPAPRPHBState *sphb; int option; uint64_t buid; if ((nargs != 8) || (nret != 1)) { goto param_error_exit; } buid = rtas_ldq(args, 1); sphb = spapr_pci_find_phb(spapr, buid); if (!sphb) { goto param_error_exit; } if (!spapr_phb_eeh_available(sphb)) { goto param_error_exit; } option = rtas_ld(args, 7); switch (option) { case RTAS_SLOT_TEMP_ERR_LOG: case RTAS_SLOT_PERM_ERR_LOG: break; default: goto param_error_exit; } /* We don't have error log yet */ rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND); return; param_error_exit: rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); } static int pci_spapr_swizzle(int slot, int pin) { return (slot + pin) % PCI_NUM_PINS; } static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num) { /* * Here we need to convert pci_dev + irq_num to some unique value * which is less than number of IRQs on the specific bus (4). We * use standard PCI swizzling, that is (slot number + pin number) * % 4. */ return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num); } static void pci_spapr_set_irq(void *opaque, int irq_num, int level) { /* * Here we use the number returned by pci_spapr_map_irq to find a * corresponding qemu_irq. */ sPAPRPHBState *phb = opaque; trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level); } static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) { sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); PCIINTxRoute route; route.mode = PCI_INTX_ENABLED; route.irq = sphb->lsi_table[pin].irq; return route; } /* * MSI/MSIX memory region implementation. * The handler handles both MSI and MSIX. * The vector number is encoded in least bits in data. */ static void spapr_msi_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); uint32_t irq = data; trace_spapr_pci_msi_write(addr, data, irq); qemu_irq_pulse(xics_get_qirq(XICS_FABRIC(spapr), irq)); } static const MemoryRegionOps spapr_msi_ops = { /* There is no .read as the read result is undefined by PCI spec */ .read = NULL, .write = spapr_msi_write, .endianness = DEVICE_LITTLE_ENDIAN }; /* * PHB PCI device */ static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) { sPAPRPHBState *phb = opaque; return &phb->iommu_as; } static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev) { char *path = NULL, *buf = NULL, *host = NULL; /* Get the PCI VFIO host id */ host = object_property_get_str(OBJECT(pdev), "host", NULL); if (!host) { goto err_out; } /* Construct the path of the file that will give us the DT location */ path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host); g_free(host); if (!g_file_get_contents(path, &buf, NULL, NULL)) { goto err_out; } g_free(path); /* Construct and read from host device tree the loc-code */ path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf); g_free(buf); if (!g_file_get_contents(path, &buf, NULL, NULL)) { goto err_out; } return buf; err_out: g_free(path); return NULL; } static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev) { char *buf; const char *devtype = "qemu"; uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) { buf = spapr_phb_vfio_get_loc_code(sphb, pdev); if (buf) { return buf; } devtype = "vfio"; } /* * For emulated devices and VFIO-failure case, make up * the loc-code. */ buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x", devtype, pdev->name, sphb->index, busnr, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); return buf; } /* Macros to operate with address in OF binding to PCI */ #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ #define b_ss(x) b_x((x), 24, 2) /* the space code */ #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ #define b_ddddd(x) b_x((x), 11, 5) /* device number */ #define b_fff(x) b_x((x), 8, 3) /* function number */ #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ /* for 'reg'/'assigned-addresses' OF properties */ #define RESOURCE_CELLS_SIZE 2 #define RESOURCE_CELLS_ADDRESS 3 typedef struct ResourceFields { uint32_t phys_hi; uint32_t phys_mid; uint32_t phys_lo; uint32_t size_hi; uint32_t size_lo; } QEMU_PACKED ResourceFields; typedef struct ResourceProps { ResourceFields reg[8]; ResourceFields assigned[7]; uint32_t reg_len; uint32_t assigned_len; } ResourceProps; /* fill in the 'reg'/'assigned-resources' OF properties for * a PCI device. 'reg' describes resource requirements for a * device's IO/MEM regions, 'assigned-addresses' describes the * actual resource assignments. * * the properties are arrays of ('phys-addr', 'size') pairs describing * the addressable regions of the PCI device, where 'phys-addr' is a * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to * (phys.hi, phys.mid, phys.lo), and 'size' is a * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo). * * phys.hi = 0xYYXXXXZZ, where: * 0xYY = npt000ss * ||| | * ||| +-- space code * ||| | * ||| + 00 if configuration space * ||| + 01 if IO region, * ||| + 10 if 32-bit MEM region * ||| + 11 if 64-bit MEM region * ||| * ||+------ for non-relocatable IO: 1 if aliased * || for relocatable IO: 1 if below 64KB * || for MEM: 1 if below 1MB * |+------- 1 if region is prefetchable * +-------- 1 if region is non-relocatable * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function * bits respectively * 0xZZ = rrrrrrrr, the register number of the BAR corresponding * to the region * * phys.mid and phys.lo correspond respectively to the hi/lo portions * of the actual address of the region. * * how the phys-addr/size values are used differ slightly between * 'reg' and 'assigned-addresses' properties. namely, 'reg' has * an additional description for the config space region of the * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0 * to describe the region as relocatable, with an address-mapping * that corresponds directly to the PHB's address space for the * resource. 'assigned-addresses' always has n=1 set with an absolute * address assigned for the resource. in general, 'assigned-addresses' * won't be populated, since addresses for PCI devices are generally * unmapped initially and left to the guest to assign. * * note also that addresses defined in these properties are, at least * for PAPR guests, relative to the PHBs IO/MEM windows, and * correspond directly to the addresses in the BARs. * * in accordance with PCI Bus Binding to Open Firmware, * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7, * Appendix C. */ static void populate_resource_props(PCIDevice *d, ResourceProps *rp) { int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d)))); uint32_t dev_id = (b_bbbbbbbb(bus_num) | b_ddddd(PCI_SLOT(d->devfn)) | b_fff(PCI_FUNC(d->devfn))); ResourceFields *reg, *assigned; int i, reg_idx = 0, assigned_idx = 0; /* config space region */ reg = &rp->reg[reg_idx++]; reg->phys_hi = cpu_to_be32(dev_id); reg->phys_mid = 0; reg->phys_lo = 0; reg->size_hi = 0; reg->size_lo = 0; for (i = 0; i < PCI_NUM_REGIONS; i++) { if (!d->io_regions[i].size) { continue; } reg = &rp->reg[reg_idx++]; reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i))); if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) { reg->phys_hi |= cpu_to_be32(b_ss(1)); } else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) { reg->phys_hi |= cpu_to_be32(b_ss(3)); } else { reg->phys_hi |= cpu_to_be32(b_ss(2)); } reg->phys_mid = 0; reg->phys_lo = 0; reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32); reg->size_lo = cpu_to_be32(d->io_regions[i].size); if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) { continue; } assigned = &rp->assigned[assigned_idx++]; assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1)); assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32); assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr); assigned->size_hi = reg->size_hi; assigned->size_lo = reg->size_lo; } rp->reg_len = reg_idx * sizeof(ResourceFields); rp->assigned_len = assigned_idx * sizeof(ResourceFields); } typedef struct PCIClass PCIClass; typedef struct PCISubClass PCISubClass; typedef struct PCIIFace PCIIFace; struct PCIIFace { int iface; const char *name; }; struct PCISubClass { int subclass; const char *name; const PCIIFace *iface; }; struct PCIClass { const char *name; const PCISubClass *subc; }; static const PCISubClass undef_subclass[] = { { PCI_CLASS_NOT_DEFINED_VGA, "display", NULL }, { 0xFF, NULL, NULL }, }; static const PCISubClass mass_subclass[] = { { PCI_CLASS_STORAGE_SCSI, "scsi", NULL }, { PCI_CLASS_STORAGE_IDE, "ide", NULL }, { PCI_CLASS_STORAGE_FLOPPY, "fdc", NULL }, { PCI_CLASS_STORAGE_IPI, "ipi", NULL }, { PCI_CLASS_STORAGE_RAID, "raid", NULL }, { PCI_CLASS_STORAGE_ATA, "ata", NULL }, { PCI_CLASS_STORAGE_SATA, "sata", NULL }, { PCI_CLASS_STORAGE_SAS, "sas", NULL }, { 0xFF, NULL, NULL }, }; static const PCISubClass net_subclass[] = { { PCI_CLASS_NETWORK_ETHERNET, "ethernet", NULL }, { PCI_CLASS_NETWORK_TOKEN_RING, "token-ring", NULL }, { PCI_CLASS_NETWORK_FDDI, "fddi", NULL }, { PCI_CLASS_NETWORK_ATM, "atm", NULL }, { PCI_CLASS_NETWORK_ISDN, "isdn", NULL }, { PCI_CLASS_NETWORK_WORLDFIP, "worldfip", NULL }, { PCI_CLASS_NETWORK_PICMG214, "picmg", NULL }, { 0xFF, NULL, NULL }, }; static const PCISubClass displ_subclass[] = { { PCI_CLASS_DISPLAY_VGA, "vga", NULL }, { PCI_CLASS_DISPLAY_XGA, "xga", NULL }, { PCI_CLASS_DISPLAY_3D, "3d-controller", NULL }, { 0xFF, NULL, NULL }, }; static const PCISubClass media_subclass[] = { { PCI_CLASS_MULTIMEDIA_VIDEO, "video", NULL }, { PCI_CLASS_MULTIMEDIA_AUDIO, "sound", NULL }, { PCI_CLASS_MULTIMEDIA_PHONE, "telephony", NULL }, { 0xFF, NULL, NULL }, }; static const PCISubClass mem_subclass[] = { { PCI_CLASS_MEMORY_RAM, "memory", NULL }, { PCI_CLASS_MEMORY_FLASH, "flash", NULL }, { 0xFF, NULL, NULL }, }; static const PCISubClass bridg_subclass[] = { { PCI_CLASS_BRIDGE_HOST, "host", NULL }, { PCI_CLASS_BRIDGE_ISA, "isa", NULL }, { PCI_CLASS_BRIDGE_EISA, "eisa", NULL }, { PCI_CLASS_BRIDGE_MC, "mca", NULL }, { PCI_CLASS_BRIDGE_PCI, "pci", NULL }, { PCI_CLASS_BRIDGE_PCMCIA, "pcmcia", NULL }, { PCI_CLASS_BRIDGE_NUBUS, "nubus", NULL }, { PCI_CLASS_BRIDGE_CARDBUS, "cardbus", NULL }, { PCI_CLASS_BRIDGE_RACEWAY, "raceway", NULL }, { PCI_CLASS_BRIDGE_PCI_SEMITP, "semi-transparent-pci", NULL }, { PCI_CLASS_BRIDGE_IB_PCI, "infiniband", NULL }, { 0xFF, NULL, NULL }, }; static const PCISubClass comm_subclass[] = { { PCI_CLASS_COMMUNICATION_SERIAL, "serial", NULL }, { PCI_CLASS_COMMUNICATION_PARALLEL, "parallel", NULL }, { PCI_CLASS_COMMUNICATION_MULTISERIAL, "multiport-serial", NULL }, { PCI_CLASS_COMMUNICATION_MODEM, "modem", NULL }, { PCI_CLASS_COMMUNICATION_GPIB, "gpib", NULL }, { PCI_CLASS_COMMUNICATION_SC, "smart-card", NULL }, { 0xFF, NULL, NULL, }, }; static const PCIIFace pic_iface[] = { { PCI_CLASS_SYSTEM_PIC_IOAPIC, "io-apic" }, { PCI_CLASS_SYSTEM_PIC_IOXAPIC, "io-xapic" }, { 0xFF, NULL }, }; static const PCISubClass sys_subclass[] = { { PCI_CLASS_SYSTEM_PIC, "interrupt-controller", pic_iface }, { PCI_CLASS_SYSTEM_DMA, "dma-controller", NULL }, { PCI_CLASS_SYSTEM_TIMER, "timer", NULL }, { PCI_CLASS_SYSTEM_RTC, "rtc", NULL }, { PCI_CLASS_SYSTEM_PCI_HOTPLUG, "hot-plug-controller", NULL }, { PCI_CLASS_SYSTEM_SDHCI, "sd-host-controller", NULL }, { 0xFF, NULL, NULL }, }; static const PCISubClass inp_subclass[] = { { PCI_CLASS_INPUT_KEYBOARD, "keyboard", NULL }, { PCI_CLASS_INPUT_PEN, "pen", NULL }, { PCI_CLASS_INPUT_MOUSE, "mouse", NULL }, { PCI_CLASS_INPUT_SCANNER, "scanner", NULL }, { PCI_CLASS_INPUT_GAMEPORT, "gameport", NULL }, { 0xFF, NULL, NULL }, }; static const PCISubClass dock_subclass[] = { { PCI_CLASS_DOCKING_GENERIC, "dock", NULL }, { 0xFF, NULL, NULL }, }; static const PCISubClass cpu_subclass[] = { { PCI_CLASS_PROCESSOR_PENTIUM, "pentium", NULL }, { PCI_CLASS_PROCESSOR_POWERPC, "powerpc", NULL }, { PCI_CLASS_PROCESSOR_MIPS, "mips", NULL }, { PCI_CLASS_PROCESSOR_CO, "co-processor", NULL }, { 0xFF, NULL, NULL }, }; static const PCIIFace usb_iface[] = { { PCI_CLASS_SERIAL_USB_UHCI, "usb-uhci" }, { PCI_CLASS_SERIAL_USB_OHCI, "usb-ohci", }, { PCI_CLASS_SERIAL_USB_EHCI, "usb-ehci" }, { PCI_CLASS_SERIAL_USB_XHCI, "usb-xhci" }, { PCI_CLASS_SERIAL_USB_UNKNOWN, "usb-unknown" }, { PCI_CLASS_SERIAL_USB_DEVICE, "usb-device" }, { 0xFF, NULL }, }; static const PCISubClass ser_subclass[] = { { PCI_CLASS_SERIAL_FIREWIRE, "firewire", NULL }, { PCI_CLASS_SERIAL_ACCESS, "access-bus", NULL }, { PCI_CLASS_SERIAL_SSA, "ssa", NULL }, { PCI_CLASS_SERIAL_USB, "usb", usb_iface }, { PCI_CLASS_SERIAL_FIBER, "fibre-channel", NULL }, { PCI_CLASS_SERIAL_SMBUS, "smb", NULL }, { PCI_CLASS_SERIAL_IB, "infiniband", NULL }, { PCI_CLASS_SERIAL_IPMI, "ipmi", NULL }, { PCI_CLASS_SERIAL_SERCOS, "sercos", NULL }, { PCI_CLASS_SERIAL_CANBUS, "canbus", NULL }, { 0xFF, NULL, NULL }, }; static const PCISubClass wrl_subclass[] = { { PCI_CLASS_WIRELESS_IRDA, "irda", NULL }, { PCI_CLASS_WIRELESS_CIR, "consumer-ir", NULL }, { PCI_CLASS_WIRELESS_RF_CONTROLLER, "rf-controller", NULL }, { PCI_CLASS_WIRELESS_BLUETOOTH, "bluetooth", NULL }, { PCI_CLASS_WIRELESS_BROADBAND, "broadband", NULL }, { 0xFF, NULL, NULL }, }; static const PCISubClass sat_subclass[] = { { PCI_CLASS_SATELLITE_TV, "satellite-tv", NULL }, { PCI_CLASS_SATELLITE_AUDIO, "satellite-audio", NULL }, { PCI_CLASS_SATELLITE_VOICE, "satellite-voice", NULL }, { PCI_CLASS_SATELLITE_DATA, "satellite-data", NULL }, { 0xFF, NULL, NULL }, }; static const PCISubClass crypt_subclass[] = { { PCI_CLASS_CRYPT_NETWORK, "network-encryption", NULL }, { PCI_CLASS_CRYPT_ENTERTAINMENT, "entertainment-encryption", NULL }, { 0xFF, NULL, NULL }, }; static const PCISubClass spc_subclass[] = { { PCI_CLASS_SP_DPIO, "dpio", NULL }, { PCI_CLASS_SP_PERF, "counter", NULL }, { PCI_CLASS_SP_SYNCH, "measurement", NULL }, { PCI_CLASS_SP_MANAGEMENT, "management-card", NULL }, { 0xFF, NULL, NULL }, }; static const PCIClass pci_classes[] = { { "legacy-device", undef_subclass }, { "mass-storage", mass_subclass }, { "network", net_subclass }, { "display", displ_subclass, }, { "multimedia-device", media_subclass }, { "memory-controller", mem_subclass }, { "unknown-bridge", bridg_subclass }, { "communication-controller", comm_subclass}, { "system-peripheral", sys_subclass }, { "input-controller", inp_subclass }, { "docking-station", dock_subclass }, { "cpu", cpu_subclass }, { "serial-bus", ser_subclass }, { "wireless-controller", wrl_subclass }, { "intelligent-io", NULL }, { "satellite-device", sat_subclass }, { "encryption", crypt_subclass }, { "data-processing-controller", spc_subclass }, }; static const char *pci_find_device_name(uint8_t class, uint8_t subclass, uint8_t iface) { const PCIClass *pclass; const PCISubClass *psubclass; const PCIIFace *piface; const char *name; if (class >= ARRAY_SIZE(pci_classes)) { return "pci"; } pclass = pci_classes + class; name = pclass->name; if (pclass->subc == NULL) { return name; } psubclass = pclass->subc; while ((psubclass->subclass & 0xff) != 0xff) { if ((psubclass->subclass & 0xff) == subclass) { name = psubclass->name; break; } psubclass++; } piface = psubclass->iface; if (piface == NULL) { return name; } while ((piface->iface & 0xff) != 0xff) { if ((piface->iface & 0xff) == iface) { name = piface->name; break; } piface++; } return name; } static gchar *pci_get_node_name(PCIDevice *dev) { int slot = PCI_SLOT(dev->devfn); int func = PCI_FUNC(dev->devfn); uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); const char *name; name = pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff, ccode & 0xff); if (func != 0) { return g_strdup_printf("%s@%x,%x", name, slot, func); } else { return g_strdup_printf("%s@%x", name, slot); } } static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb, PCIDevice *pdev); static void spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset, sPAPRPHBState *sphb) { ResourceProps rp; bool is_bridge = false; int pci_status; char *buf = NULL; uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev); uint32_t ccode = pci_default_read_config(dev, PCI_CLASS_PROG, 3); uint32_t max_msi, max_msix; if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) == PCI_HEADER_TYPE_BRIDGE) { is_bridge = true; } /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */ _FDT(fdt_setprop_cell(fdt, offset, "vendor-id", pci_default_read_config(dev, PCI_VENDOR_ID, 2))); _FDT(fdt_setprop_cell(fdt, offset, "device-id", pci_default_read_config(dev, PCI_DEVICE_ID, 2))); _FDT(fdt_setprop_cell(fdt, offset, "revision-id", pci_default_read_config(dev, PCI_REVISION_ID, 1))); _FDT(fdt_setprop_cell(fdt, offset, "class-code", ccode)); if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) { _FDT(fdt_setprop_cell(fdt, offset, "interrupts", pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1))); } if (!is_bridge) { _FDT(fdt_setprop_cell(fdt, offset, "min-grant", pci_default_read_config(dev, PCI_MIN_GNT, 1))); _FDT(fdt_setprop_cell(fdt, offset, "max-latency", pci_default_read_config(dev, PCI_MAX_LAT, 1))); } if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) { _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id", pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2))); } if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) { _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id", pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2))); } _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size", pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1))); /* the following fdt cells are masked off the pci status register */ pci_status = pci_default_read_config(dev, PCI_STATUS, 2); _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed", PCI_STATUS_DEVSEL_MASK & pci_status)); if (pci_status & PCI_STATUS_FAST_BACK) { _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0)); } if (pci_status & PCI_STATUS_66MHZ) { _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0)); } if (pci_status & PCI_STATUS_UDF) { _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0)); } _FDT(fdt_setprop_string(fdt, offset, "name", pci_find_device_name((ccode >> 16) & 0xff, (ccode >> 8) & 0xff, ccode & 0xff))); buf = spapr_phb_get_loc_code(sphb, dev); _FDT(fdt_setprop_string(fdt, offset, "ibm,loc-code", buf)); g_free(buf); if (drc_index) { _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)); } _FDT(fdt_setprop_cell(fdt, offset, "#address-cells", RESOURCE_CELLS_ADDRESS)); _FDT(fdt_setprop_cell(fdt, offset, "#size-cells", RESOURCE_CELLS_SIZE)); max_msi = msi_nr_vectors_allocated(dev); if (max_msi) { _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi)); } max_msix = dev->msix_entries_nr; if (max_msix) { _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix)); } populate_resource_props(dev, &rp); _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len)); _FDT(fdt_setprop(fdt, offset, "assigned-addresses", (uint8_t *)rp.assigned, rp.assigned_len)); if (sphb->pcie_ecs && pci_is_express(dev)) { _FDT(fdt_setprop_cell(fdt, offset, "ibm,pci-config-space-type", 0x1)); } } /* create OF node for pci device and required OF DT properties */ static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev, void *fdt, int node_offset) { int offset; gchar *nodename; nodename = pci_get_node_name(dev); _FDT(offset = fdt_add_subnode(fdt, node_offset, nodename)); g_free(nodename); spapr_populate_pci_child_dt(dev, fdt, offset, phb); return offset; } /* Callback to be called during DRC release. */ void spapr_phb_remove_pci_device_cb(DeviceState *dev) { /* some version guests do not wait for completion of a device * cleanup (generally done asynchronously by the kernel) before * signaling to QEMU that the device is safe, but instead sleep * for some 'safe' period of time. unfortunately on a busy host * this sleep isn't guaranteed to be long enough, resulting in * bad things like IRQ lines being left asserted during final * device removal. to deal with this we call reset just prior * to finalizing the device, which will put the device back into * an 'idle' state, as the device cleanup code expects. */ pci_device_reset(PCI_DEVICE(dev)); object_unparent(OBJECT(dev)); } static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb, uint32_t busnr, int32_t devfn) { return spapr_drc_by_id(TYPE_SPAPR_DRC_PCI, (phb->index << 16) | (busnr << 8) | devfn); } static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb, PCIDevice *pdev) { uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)))); return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn); } static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb, PCIDevice *pdev) { sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); if (!drc) { return 0; } return spapr_drc_index(drc); } static void spapr_pci_plug(HotplugHandler *plug_handler, DeviceState *plugged_dev, Error **errp) { sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); PCIDevice *pdev = PCI_DEVICE(plugged_dev); sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); Error *local_err = NULL; PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); uint32_t slotnr = PCI_SLOT(pdev->devfn); void *fdt = NULL; int fdt_start_offset, fdt_size; /* if DR is disabled we don't need to do anything in the case of * hotplug or coldplug callbacks */ if (!phb->dr_enabled) { /* if this is a hotplug operation initiated by the user * we need to let them know it's not enabled */ if (plugged_dev->hotplugged) { error_setg(&local_err, QERR_BUS_NO_HOTPLUG, object_get_typename(OBJECT(phb))); } goto out; } g_assert(drc); /* Following the QEMU convention used for PCIe multifunction * hotplug, we do not allow functions to be hotplugged to a * slot that already has function 0 present */ if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] && PCI_FUNC(pdev->devfn) != 0) { error_setg(&local_err, "PCI: slot %d function 0 already ocuppied by %s," " additional functions can no longer be exposed to guest.", slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name); goto out; } fdt = create_device_tree(&fdt_size); fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0); spapr_drc_attach(drc, DEVICE(pdev), fdt, fdt_start_offset, &local_err); if (local_err) { goto out; } /* If this is function 0, signal hotplug for all the device functions. * Otherwise defer sending the hotplug event. */ if (!spapr_drc_hotplugged(plugged_dev)) { spapr_drc_reset(drc); } else if (PCI_FUNC(pdev->devfn) == 0) { int i; for (i = 0; i < 8; i++) { sPAPRDRConnector *func_drc; sPAPRDRConnectorClass *func_drck; sPAPRDREntitySense state; func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), PCI_DEVFN(slotnr, i)); func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); state = func_drck->dr_entity_sense(func_drc); if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { spapr_hotplug_req_add_by_index(func_drc); } } } out: if (local_err) { error_propagate(errp, local_err); g_free(fdt); } } static void spapr_pci_unplug_request(HotplugHandler *plug_handler, DeviceState *plugged_dev, Error **errp) { sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler)); PCIDevice *pdev = PCI_DEVICE(plugged_dev); sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev); if (!phb->dr_enabled) { error_setg(errp, QERR_BUS_NO_HOTPLUG, object_get_typename(OBJECT(phb))); return; } g_assert(drc); g_assert(drc->dev == plugged_dev); if (!spapr_drc_unplug_requested(drc)) { PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))); uint32_t slotnr = PCI_SLOT(pdev->devfn); sPAPRDRConnector *func_drc; sPAPRDRConnectorClass *func_drck; sPAPRDREntitySense state; int i; /* ensure any other present functions are pending unplug */ if (PCI_FUNC(pdev->devfn) == 0) { for (i = 1; i < 8; i++) { func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), PCI_DEVFN(slotnr, i)); func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); state = func_drck->dr_entity_sense(func_drc); if (state == SPAPR_DR_ENTITY_SENSE_PRESENT && !spapr_drc_unplug_requested(func_drc)) { error_setg(errp, "PCI: slot %d, function %d still present. " "Must unplug all non-0 functions first.", slotnr, i); return; } } } spapr_drc_detach(drc); /* if this isn't func 0, defer unplug event. otherwise signal removal * for all present functions */ if (PCI_FUNC(pdev->devfn) == 0) { for (i = 7; i >= 0; i--) { func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus), PCI_DEVFN(slotnr, i)); func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc); state = func_drck->dr_entity_sense(func_drc); if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) { spapr_hotplug_req_remove_by_index(func_drc); } } } } } static void spapr_phb_realize(DeviceState *dev, Error **errp) { /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user * tries to add a sPAPR PHB to a non-pseries machine. */ sPAPRMachineState *spapr = (sPAPRMachineState *) object_dynamic_cast(qdev_get_machine(), TYPE_SPAPR_MACHINE); SysBusDevice *s = SYS_BUS_DEVICE(dev); sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); PCIHostState *phb = PCI_HOST_BRIDGE(s); char *namebuf; int i; PCIBus *bus; uint64_t msi_window_size = 4096; sPAPRTCETable *tcet; const unsigned windows_supported = sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1; if (!spapr) { error_setg(errp, TYPE_SPAPR_PCI_HOST_BRIDGE " needs a pseries machine"); return; } if (sphb->index != (uint32_t)-1) { sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); Error *local_err = NULL; smc->phb_placement(spapr, sphb->index, &sphb->buid, &sphb->io_win_addr, &sphb->mem_win_addr, &sphb->mem64_win_addr, windows_supported, sphb->dma_liobn, &local_err); if (local_err) { error_propagate(errp, local_err); return; } } else { error_setg(errp, "\"index\" for PAPR PHB is mandatory"); return; } if (sphb->mem64_win_size != 0) { if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { error_setg(errp, "32-bit memory window of size 0x%"HWADDR_PRIx " (max 2 GiB)", sphb->mem_win_size); return; } /* 64-bit window defaults to identity mapping */ sphb->mem64_win_pciaddr = sphb->mem64_win_addr; } else if (sphb->mem_win_size > SPAPR_PCI_MEM32_WIN_SIZE) { /* * For compatibility with old configuration, if no 64-bit MMIO * window is specified, but the ordinary (32-bit) memory * window is specified as > 2GiB, we treat it as a 2GiB 32-bit * window, with a 64-bit MMIO window following on immediately * afterwards */ sphb->mem64_win_size = sphb->mem_win_size - SPAPR_PCI_MEM32_WIN_SIZE; sphb->mem64_win_addr = sphb->mem_win_addr + SPAPR_PCI_MEM32_WIN_SIZE; sphb->mem64_win_pciaddr = SPAPR_PCI_MEM_WIN_BUS_OFFSET + SPAPR_PCI_MEM32_WIN_SIZE; sphb->mem_win_size = SPAPR_PCI_MEM32_WIN_SIZE; } if (spapr_pci_find_phb(spapr, sphb->buid)) { error_setg(errp, "PCI host bridges must have unique BUIDs"); return; } if (sphb->numa_node != -1 && (sphb->numa_node >= MAX_NODES || !numa_info[sphb->numa_node].present)) { error_setg(errp, "Invalid NUMA node ID for PCI host bridge"); return; } sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); /* Initialize memory regions */ namebuf = g_strdup_printf("%s.mmio", sphb->dtbusname); memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); g_free(namebuf); namebuf = g_strdup_printf("%s.mmio32-alias", sphb->dtbusname); memory_region_init_alias(&sphb->mem32window, OBJECT(sphb), namebuf, &sphb->memspace, SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); g_free(namebuf); memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, &sphb->mem32window); if (sphb->mem64_win_size != 0) { namebuf = g_strdup_printf("%s.mmio64-alias", sphb->dtbusname); memory_region_init_alias(&sphb->mem64window, OBJECT(sphb), namebuf, &sphb->memspace, sphb->mem64_win_pciaddr, sphb->mem64_win_size); g_free(namebuf); memory_region_add_subregion(get_system_memory(), sphb->mem64_win_addr, &sphb->mem64window); } /* Initialize IO regions */ namebuf = g_strdup_printf("%s.io", sphb->dtbusname); memory_region_init(&sphb->iospace, OBJECT(sphb), namebuf, SPAPR_PCI_IO_WIN_SIZE); g_free(namebuf); namebuf = g_strdup_printf("%s.io-alias", sphb->dtbusname); memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); g_free(namebuf); memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, &sphb->iowindow); bus = pci_register_root_bus(dev, NULL, pci_spapr_set_irq, pci_spapr_map_irq, sphb, &sphb->memspace, &sphb->iospace, PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS); phb->bus = bus; qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL); /* * Initialize PHB address space. * By default there will be at least one subregion for default * 32bit DMA window. * Later the guest might want to create another DMA window * which will become another memory subregion. */ namebuf = g_strdup_printf("%s.iommu-root", sphb->dtbusname); memory_region_init(&sphb->iommu_root, OBJECT(sphb), namebuf, UINT64_MAX); g_free(namebuf); address_space_init(&sphb->iommu_as, &sphb->iommu_root, sphb->dtbusname); /* * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, * we need to allocate some memory to catch those writes coming * from msi_notify()/msix_notify(). * As MSIMessage:addr is going to be the same and MSIMessage:data * is going to be a VIRQ number, 4 bytes of the MSI MR will only * be used. * * For KVM we want to ensure that this memory is a full page so that * our memory slot is of page size granularity. */ #ifdef CONFIG_KVM if (kvm_enabled()) { msi_window_size = getpagesize(); } #endif memory_region_init_io(&sphb->msiwindow, OBJECT(sphb), &spapr_msi_ops, spapr, "msi", msi_window_size); memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW, &sphb->msiwindow); pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); /* Initialize the LSI table */ for (i = 0; i < PCI_NUM_PINS; i++) { uint32_t irq; Error *local_err = NULL; irq = spapr_ics_alloc_block(spapr->ics, 1, true, false, &local_err); if (local_err) { error_propagate(errp, local_err); error_prepend(errp, "can't allocate LSIs: "); return; } sphb->lsi_table[i].irq = irq; } /* allocate connectors for child PCI devices */ if (sphb->dr_enabled) { for (i = 0; i < PCI_SLOT_MAX * 8; i++) { spapr_dr_connector_new(OBJECT(phb), TYPE_SPAPR_DRC_PCI, (sphb->index << 16) | i); } } /* DMA setup */ if (((sphb->page_size_mask & qemu_getrampagesize()) == 0) && kvm_enabled()) { error_report("System page size 0x%lx is not enabled in page_size_mask " "(0x%"PRIx64"). Performance may be slow", qemu_getrampagesize(), sphb->page_size_mask); } for (i = 0; i < windows_supported; ++i) { tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]); if (!tcet) { error_setg(errp, "Creating window#%d failed for %s", i, sphb->dtbusname); return; } memory_region_add_subregion(&sphb->iommu_root, 0, spapr_tce_get_iommu(tcet)); } sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free); } static int spapr_phb_children_reset(Object *child, void *opaque) { DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); if (dev) { device_reset(dev); } return 0; } void spapr_phb_dma_reset(sPAPRPHBState *sphb) { int i; sPAPRTCETable *tcet; for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) { tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]); if (tcet && tcet->nb_table) { spapr_tce_table_disable(tcet); } } /* Register default 32bit DMA window */ tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]); spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr, sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT); } static void spapr_phb_reset(DeviceState *qdev) { sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev); spapr_phb_dma_reset(sphb); /* Reset the IOMMU state */ object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) { spapr_phb_vfio_reset(qdev); } } static Property spapr_phb_properties[] = { DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1), DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size, SPAPR_PCI_MEM32_WIN_SIZE), DEFINE_PROP_UINT64("mem64_win_size", sPAPRPHBState, mem64_win_size, SPAPR_PCI_MEM64_WIN_SIZE), DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size, SPAPR_PCI_IO_WIN_SIZE), DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled, true), /* Default DMA window is 0..1GB */ DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0), DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000), DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr, 0x800000000000000ULL), DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true), DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask, (1ULL << 12) | (1ULL << 16)), DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1), DEFINE_PROP_BOOL("pre-2.8-migration", sPAPRPHBState, pre_2_8_migration, false), DEFINE_PROP_BOOL("pcie-extended-configuration-space", sPAPRPHBState, pcie_ecs, true), DEFINE_PROP_END_OF_LIST(), }; static const VMStateDescription vmstate_spapr_pci_lsi = { .name = "spapr_pci/lsi", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi, NULL), VMSTATE_END_OF_LIST() }, }; static const VMStateDescription vmstate_spapr_pci_msi = { .name = "spapr_pci/msi", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField []) { VMSTATE_UINT32(key, spapr_pci_msi_mig), VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig), VMSTATE_UINT32(value.num, spapr_pci_msi_mig), VMSTATE_END_OF_LIST() }, }; static int spapr_pci_pre_save(void *opaque) { sPAPRPHBState *sphb = opaque; GHashTableIter iter; gpointer key, value; int i; if (sphb->pre_2_8_migration) { sphb->mig_liobn = sphb->dma_liobn[0]; sphb->mig_mem_win_addr = sphb->mem_win_addr; sphb->mig_mem_win_size = sphb->mem_win_size; sphb->mig_io_win_addr = sphb->io_win_addr; sphb->mig_io_win_size = sphb->io_win_size; if ((sphb->mem64_win_size != 0) && (sphb->mem64_win_addr == (sphb->mem_win_addr + sphb->mem_win_size))) { sphb->mig_mem_win_size += sphb->mem64_win_size; } } g_free(sphb->msi_devs); sphb->msi_devs = NULL; sphb->msi_devs_num = g_hash_table_size(sphb->msi); if (!sphb->msi_devs_num) { return 0; } sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig)); g_hash_table_iter_init(&iter, sphb->msi); for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) { sphb->msi_devs[i].key = *(uint32_t *) key; sphb->msi_devs[i].value = *(spapr_pci_msi *) value; } return 0; } static int spapr_pci_post_load(void *opaque, int version_id) { sPAPRPHBState *sphb = opaque; gpointer key, value; int i; for (i = 0; i < sphb->msi_devs_num; ++i) { key = g_memdup(&sphb->msi_devs[i].key, sizeof(sphb->msi_devs[i].key)); value = g_memdup(&sphb->msi_devs[i].value, sizeof(sphb->msi_devs[i].value)); g_hash_table_insert(sphb->msi, key, value); } g_free(sphb->msi_devs); sphb->msi_devs = NULL; sphb->msi_devs_num = 0; return 0; } static bool pre_2_8_migration(void *opaque, int version_id) { sPAPRPHBState *sphb = opaque; return sphb->pre_2_8_migration; } static const VMStateDescription vmstate_spapr_pci = { .name = "spapr_pci", .version_id = 2, .minimum_version_id = 2, .pre_save = spapr_pci_pre_save, .post_load = spapr_pci_post_load, .fields = (VMStateField[]) { VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState, NULL), VMSTATE_UINT32_TEST(mig_liobn, sPAPRPHBState, pre_2_8_migration), VMSTATE_UINT64_TEST(mig_mem_win_addr, sPAPRPHBState, pre_2_8_migration), VMSTATE_UINT64_TEST(mig_mem_win_size, sPAPRPHBState, pre_2_8_migration), VMSTATE_UINT64_TEST(mig_io_win_addr, sPAPRPHBState, pre_2_8_migration), VMSTATE_UINT64_TEST(mig_io_win_size, sPAPRPHBState, pre_2_8_migration), VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0, vmstate_spapr_pci_lsi, struct spapr_pci_lsi), VMSTATE_INT32(msi_devs_num, sPAPRPHBState), VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0, vmstate_spapr_pci_msi, spapr_pci_msi_mig), VMSTATE_END_OF_LIST() }, }; static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, PCIBus *rootbus) { sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); return sphb->dtbusname; } static void spapr_phb_class_init(ObjectClass *klass, void *data) { PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass); hc->root_bus_path = spapr_phb_root_bus_path; dc->realize = spapr_phb_realize; dc->props = spapr_phb_properties; dc->reset = spapr_phb_reset; dc->vmsd = &vmstate_spapr_pci; /* Supported by TYPE_SPAPR_MACHINE */ dc->user_creatable = true; set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); hp->plug = spapr_pci_plug; hp->unplug_request = spapr_pci_unplug_request; } static const TypeInfo spapr_phb_info = { .name = TYPE_SPAPR_PCI_HOST_BRIDGE, .parent = TYPE_PCI_HOST_BRIDGE, .instance_size = sizeof(sPAPRPHBState), .class_init = spapr_phb_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_HOTPLUG_HANDLER }, { } } }; PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index) { DeviceState *dev; dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); qdev_prop_set_uint32(dev, "index", index); qdev_init_nofail(dev); return PCI_HOST_BRIDGE(dev); } typedef struct sPAPRFDT { void *fdt; int node_off; sPAPRPHBState *sphb; } sPAPRFDT; static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev, void *opaque) { PCIBus *sec_bus; sPAPRFDT *p = opaque; int offset; sPAPRFDT s_fdt; offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off); if (!offset) { error_report("Failed to create pci child device tree node"); return; } if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != PCI_HEADER_TYPE_BRIDGE)) { return; } sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); if (!sec_bus) { return; } s_fdt.fdt = p->fdt; s_fdt.node_off = offset; s_fdt.sphb = p->sphb; pci_for_each_device_reverse(sec_bus, pci_bus_num(sec_bus), spapr_populate_pci_devices_dt, &s_fdt); } static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev, void *opaque) { unsigned int *bus_no = opaque; unsigned int primary = *bus_no; unsigned int subordinate = 0xff; PCIBus *sec_bus = NULL; if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) != PCI_HEADER_TYPE_BRIDGE)) { return; } (*bus_no)++; pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1); pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1); pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); if (!sec_bus) { return; } pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1); pci_for_each_device(sec_bus, pci_bus_num(sec_bus), spapr_phb_pci_enumerate_bridge, bus_no); pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1); } static void spapr_phb_pci_enumerate(sPAPRPHBState *phb) { PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; unsigned int bus_no = 0; pci_for_each_device(bus, pci_bus_num(bus), spapr_phb_pci_enumerate_bridge, &bus_no); } int spapr_populate_pci_dt(sPAPRPHBState *phb, uint32_t xics_phandle, void *fdt) { int bus_off, i, j, ret; gchar *nodename; uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; struct { uint32_t hi; uint64_t child; uint64_t parent; uint64_t size; } QEMU_PACKED ranges[] = { { cpu_to_be32(b_ss(1)), cpu_to_be64(0), cpu_to_be64(phb->io_win_addr), cpu_to_be64(memory_region_size(&phb->iospace)), }, { cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), cpu_to_be64(phb->mem_win_addr), cpu_to_be64(phb->mem_win_size), }, { cpu_to_be32(b_ss(3)), cpu_to_be64(phb->mem64_win_pciaddr), cpu_to_be64(phb->mem64_win_addr), cpu_to_be64(phb->mem64_win_size), }, }; const unsigned sizeof_ranges = (phb->mem64_win_size ? 3 : 2) * sizeof(ranges[0]); uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; uint32_t interrupt_map_mask[] = { cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; uint32_t ddw_applicable[] = { cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW), cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW), cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW) }; uint32_t ddw_extensions[] = { cpu_to_be32(1), cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW) }; uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0), cpu_to_be32(0x0), cpu_to_be32(0x0), cpu_to_be32(phb->numa_node)}; sPAPRTCETable *tcet; PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus; sPAPRFDT s_fdt; /* Start populating the FDT */ nodename = g_strdup_printf("pci@%" PRIx64, phb->buid); _FDT(bus_off = fdt_add_subnode(fdt, 0, nodename)); g_free(nodename); /* Write PHB properties */ _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges)); _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR)); /* Dynamic DMA window */ if (phb->ddw_enabled) { _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable, sizeof(ddw_applicable))); _FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions", &ddw_extensions, sizeof(ddw_extensions))); } /* Advertise NUMA via ibm,associativity */ if (phb->numa_node != -1) { _FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity, sizeof(associativity))); } /* Build the interrupt-map, this must matches what is done * in pci_spapr_map_irq */ _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", &interrupt_map_mask, sizeof(interrupt_map_mask))); for (i = 0; i < PCI_SLOT_MAX; i++) { for (j = 0; j < PCI_NUM_PINS; j++) { uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; int lsi_num = pci_spapr_swizzle(i, j); irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); irqmap[1] = 0; irqmap[2] = 0; irqmap[3] = cpu_to_be32(j+1); irqmap[4] = cpu_to_be32(xics_phandle); irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq); irqmap[6] = cpu_to_be32(0x8); } } /* Write interrupt map */ _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, sizeof(interrupt_map))); tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]); if (!tcet) { return -1; } spapr_dma_dt(fdt, bus_off, "ibm,dma-window", tcet->liobn, tcet->bus_offset, tcet->nb_table << tcet->page_shift); /* Walk the bridges and program the bus numbers*/ spapr_phb_pci_enumerate(phb); _FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1)); /* Populate tree nodes with PCI devices attached */ s_fdt.fdt = fdt; s_fdt.node_off = bus_off; s_fdt.sphb = phb; pci_for_each_device_reverse(bus, pci_bus_num(bus), spapr_populate_pci_devices_dt, &s_fdt); ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb), SPAPR_DR_CONNECTOR_TYPE_PCI); if (ret) { return ret; } return 0; } void spapr_pci_rtas_init(void) { spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config", rtas_read_pci_config); spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config", rtas_write_pci_config); spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config", rtas_ibm_read_pci_config); spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config", rtas_ibm_write_pci_config); if (msi_nonbroken) { spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER, "ibm,query-interrupt-source-number", rtas_ibm_query_interrupt_source_number); spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi", rtas_ibm_change_msi); } spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION, "ibm,set-eeh-option", rtas_ibm_set_eeh_option); spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2, "ibm,get-config-addr-info2", rtas_ibm_get_config_addr_info2); spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2, "ibm,read-slot-reset-state2", rtas_ibm_read_slot_reset_state2); spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET, "ibm,set-slot-reset", rtas_ibm_set_slot_reset); spapr_rtas_register(RTAS_IBM_CONFIGURE_PE, "ibm,configure-pe", rtas_ibm_configure_pe); spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL, "ibm,slot-error-detail", rtas_ibm_slot_error_detail); } static void spapr_pci_register_types(void) { type_register_static(&spapr_phb_info); } type_init(spapr_pci_register_types) static int spapr_switch_one_vga(DeviceState *dev, void *opaque) { bool be = *(bool *)opaque; if (object_dynamic_cast(OBJECT(dev), "VGA") || object_dynamic_cast(OBJECT(dev), "secondary-vga")) { object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer", &error_abort); } return 0; } void spapr_pci_switch_vga(bool big_endian) { sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); sPAPRPHBState *sphb; /* * For backward compatibility with existing guests, we switch * the endianness of the VGA controller when changing the guest * interrupt mode */ QLIST_FOREACH(sphb, &spapr->phbs, list) { BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus; qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL, &big_endian); } }