/* * QEMU sPAPR PCI host originated from Uninorth PCI host * * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. * Copyright (C) 2011 David Gibson, IBM Corporation. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw/hw.h" #include "hw/pci/pci.h" #include "hw/pci/msi.h" #include "hw/pci/msix.h" #include "hw/pci/pci_host.h" #include "hw/ppc/spapr.h" #include "hw/pci-host/spapr.h" #include "exec/address-spaces.h" #include #include "trace.h" #include "qemu/error-report.h" #include "hw/pci/pci_bus.h" /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ #define RTAS_QUERY_FN 0 #define RTAS_CHANGE_FN 1 #define RTAS_RESET_FN 2 #define RTAS_CHANGE_MSI_FN 3 #define RTAS_CHANGE_MSIX_FN 4 /* Interrupt types to return on RTAS_CHANGE_* */ #define RTAS_TYPE_MSI 1 #define RTAS_TYPE_MSIX 2 static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid) { sPAPRPHBState *sphb; QLIST_FOREACH(sphb, &spapr->phbs, list) { if (sphb->buid != buid) { continue; } return sphb; } return NULL; } static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid, uint32_t config_addr) { sPAPRPHBState *sphb = find_phb(spapr, buid); PCIHostState *phb = PCI_HOST_BRIDGE(sphb); int bus_num = (config_addr >> 16) & 0xFF; int devfn = (config_addr >> 8) & 0xFF; if (!phb) { return NULL; } return pci_find_device(phb->bus, bus_num, devfn); } static uint32_t rtas_pci_cfgaddr(uint32_t arg) { /* This handles the encoding of extended config space addresses */ return ((arg >> 20) & 0xf00) | (arg & 0xff); } static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid, uint32_t addr, uint32_t size, target_ulong rets) { PCIDevice *pci_dev; uint32_t val; if ((size != 1) && (size != 2) && (size != 4)) { /* access must be 1, 2 or 4 bytes */ rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } pci_dev = find_dev(spapr, buid, addr); addr = rtas_pci_cfgaddr(addr); if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { /* Access must be to a valid device, within bounds and * naturally aligned */ rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } val = pci_host_config_read_common(pci_dev, addr, pci_config_size(pci_dev), size); rtas_st(rets, 0, RTAS_OUT_SUCCESS); rtas_st(rets, 1, val); } static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint64_t buid; uint32_t size, addr; if ((nargs != 4) || (nret != 2)) { rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); size = rtas_ld(args, 3); addr = rtas_ld(args, 0); finish_read_pci_config(spapr, buid, addr, size, rets); } static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t size, addr; if ((nargs != 2) || (nret != 2)) { rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } size = rtas_ld(args, 1); addr = rtas_ld(args, 0); finish_read_pci_config(spapr, 0, addr, size, rets); } static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid, uint32_t addr, uint32_t size, uint32_t val, target_ulong rets) { PCIDevice *pci_dev; if ((size != 1) && (size != 2) && (size != 4)) { /* access must be 1, 2 or 4 bytes */ rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } pci_dev = find_dev(spapr, buid, addr); addr = rtas_pci_cfgaddr(addr); if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { /* Access must be to a valid device, within bounds and * naturally aligned */ rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), val, size); rtas_st(rets, 0, RTAS_OUT_SUCCESS); } static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint64_t buid; uint32_t val, size, addr; if ((nargs != 5) || (nret != 1)) { rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); val = rtas_ld(args, 4); size = rtas_ld(args, 3); addr = rtas_ld(args, 0); finish_write_pci_config(spapr, buid, addr, size, val, rets); } static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t val, size, addr; if ((nargs != 3) || (nret != 1)) { rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } val = rtas_ld(args, 2); size = rtas_ld(args, 1); addr = rtas_ld(args, 0); finish_write_pci_config(spapr, 0, addr, size, val, rets); } /* * Find an entry with config_addr or returns the empty one if not found AND * alloc_new is set. * At the moment the msi_table entries are never released so there is * no point to look till the end of the list if we need to find the free entry. */ static int spapr_msicfg_find(sPAPRPHBState *phb, uint32_t config_addr, bool alloc_new) { int i; for (i = 0; i < SPAPR_MSIX_MAX_DEVS; ++i) { if (!phb->msi_table[i].nvec) { break; } if (phb->msi_table[i].config_addr == config_addr) { return i; } } if ((i < SPAPR_MSIX_MAX_DEVS) && alloc_new) { trace_spapr_pci_msi("Allocating new MSI config", i, config_addr); return i; } return -1; } /* * Set MSI/MSIX message data. * This is required for msi_notify()/msix_notify() which * will write at the addresses via spapr_msi_write(). */ static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, unsigned first_irq, unsigned req_num) { unsigned i; MSIMessage msg = { .address = addr, .data = first_irq }; if (!msix) { msi_set_message(pdev, msg); trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); return; } for (i = 0; i < req_num; ++i, ++msg.data) { msix_set_message(pdev, i, msg); trace_spapr_pci_msi_setup(pdev->name, i, msg.address); } } static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t config_addr = rtas_ld(args, 0); uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); unsigned int func = rtas_ld(args, 3); unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ unsigned int seq_num = rtas_ld(args, 5); unsigned int ret_intr_type; int ndev, irq; sPAPRPHBState *phb = NULL; PCIDevice *pdev = NULL; switch (func) { case RTAS_CHANGE_MSI_FN: case RTAS_CHANGE_FN: ret_intr_type = RTAS_TYPE_MSI; break; case RTAS_CHANGE_MSIX_FN: ret_intr_type = RTAS_TYPE_MSIX; break; default: error_report("rtas_ibm_change_msi(%u) is not implemented", func); rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } /* Fins sPAPRPHBState */ phb = find_phb(spapr, buid); if (phb) { pdev = find_dev(spapr, buid, config_addr); } if (!phb || !pdev) { rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } /* Releasing MSIs */ if (!req_num) { ndev = spapr_msicfg_find(phb, config_addr, false); if (ndev < 0) { trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr); rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } trace_spapr_pci_msi("Released MSIs", ndev, config_addr); rtas_st(rets, 0, RTAS_OUT_SUCCESS); rtas_st(rets, 1, 0); return; } /* Enabling MSI */ /* Find a device number in the map to add or reuse the existing one */ ndev = spapr_msicfg_find(phb, config_addr, true); if (ndev >= SPAPR_MSIX_MAX_DEVS || ndev < 0) { error_report("No free entry for a new MSI device"); rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } trace_spapr_pci_msi("Configuring MSI", ndev, config_addr); /* Check if there is an old config and MSI number has not changed */ if (phb->msi_table[ndev].nvec && (req_num != phb->msi_table[ndev].nvec)) { /* Unexpected behaviour */ error_report("Cannot reuse MSI config for device#%d", ndev); rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } /* There is no cached config, allocate MSIs */ if (!phb->msi_table[ndev].nvec) { irq = spapr_allocate_irq_block(req_num, false, ret_intr_type == RTAS_TYPE_MSI); if (irq < 0) { error_report("Cannot allocate MSIs for device#%d", ndev); rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } phb->msi_table[ndev].irq = irq; phb->msi_table[ndev].nvec = req_num; phb->msi_table[ndev].config_addr = config_addr; } /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ spapr_msi_setmsg(pdev, spapr->msi_win_addr, ret_intr_type == RTAS_TYPE_MSIX, phb->msi_table[ndev].irq, req_num); rtas_st(rets, 0, RTAS_OUT_SUCCESS); rtas_st(rets, 1, req_num); rtas_st(rets, 2, ++seq_num); rtas_st(rets, 3, ret_intr_type); trace_spapr_pci_rtas_ibm_change_msi(func, req_num); } static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, sPAPREnvironment *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t config_addr = rtas_ld(args, 0); uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); int ndev; sPAPRPHBState *phb = NULL; /* Fins sPAPRPHBState */ phb = find_phb(spapr, buid); if (!phb) { rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); return; } /* Find device descriptor and start IRQ */ ndev = spapr_msicfg_find(phb, config_addr, false); if (ndev < 0) { trace_spapr_pci_msi("MSI has not been enabled", -1, config_addr); rtas_st(rets, 0, RTAS_OUT_HW_ERROR); return; } intr_src_num = phb->msi_table[ndev].irq + ioa_intr_num; trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, intr_src_num); rtas_st(rets, 0, RTAS_OUT_SUCCESS); rtas_st(rets, 1, intr_src_num); rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ } static int pci_spapr_swizzle(int slot, int pin) { return (slot + pin) % PCI_NUM_PINS; } static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num) { /* * Here we need to convert pci_dev + irq_num to some unique value * which is less than number of IRQs on the specific bus (4). We * use standard PCI swizzling, that is (slot number + pin number) * % 4. */ return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num); } static void pci_spapr_set_irq(void *opaque, int irq_num, int level) { /* * Here we use the number returned by pci_spapr_map_irq to find a * corresponding qemu_irq. */ sPAPRPHBState *phb = opaque; trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level); } static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) { sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); PCIINTxRoute route; route.mode = PCI_INTX_ENABLED; route.irq = sphb->lsi_table[pin].irq; return route; } /* * MSI/MSIX memory region implementation. * The handler handles both MSI and MSIX. * For MSI-X, the vector number is encoded as a part of the address, * data is set to 0. * For MSI, the vector number is encoded in least bits in data. */ static void spapr_msi_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { uint32_t irq = data; trace_spapr_pci_msi_write(addr, data, irq); qemu_irq_pulse(xics_get_qirq(spapr->icp, irq)); } static const MemoryRegionOps spapr_msi_ops = { /* There is no .read as the read result is undefined by PCI spec */ .read = NULL, .write = spapr_msi_write, .endianness = DEVICE_LITTLE_ENDIAN }; void spapr_pci_msi_init(sPAPREnvironment *spapr, hwaddr addr) { uint64_t window_size = 4096; /* * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, * we need to allocate some memory to catch those writes coming * from msi_notify()/msix_notify(). * As MSIMessage:addr is going to be the same and MSIMessage:data * is going to be a VIRQ number, 4 bytes of the MSI MR will only * be used. * * For KVM we want to ensure that this memory is a full page so that * our memory slot is of page size granularity. */ #ifdef CONFIG_KVM if (kvm_enabled()) { window_size = getpagesize(); } #endif spapr->msi_win_addr = addr; memory_region_init_io(&spapr->msiwindow, NULL, &spapr_msi_ops, spapr, "msi", window_size); memory_region_add_subregion(get_system_memory(), spapr->msi_win_addr, &spapr->msiwindow); } /* * PHB PCI device */ static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) { sPAPRPHBState *phb = opaque; return &phb->iommu_as; } static void spapr_phb_realize(DeviceState *dev, Error **errp) { SysBusDevice *s = SYS_BUS_DEVICE(dev); sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); PCIHostState *phb = PCI_HOST_BRIDGE(s); char *namebuf; int i; PCIBus *bus; if (sphb->index != -1) { hwaddr windows_base; if ((sphb->buid != -1) || (sphb->dma_liobn != -1) || (sphb->mem_win_addr != -1) || (sphb->io_win_addr != -1)) { error_setg(errp, "Either \"index\" or other parameters must" " be specified for PAPR PHB, not both"); return; } sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index; sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index; windows_base = SPAPR_PCI_WINDOW_BASE + sphb->index * SPAPR_PCI_WINDOW_SPACING; sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF; sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF; } if (sphb->buid == -1) { error_setg(errp, "BUID not specified for PHB"); return; } if (sphb->dma_liobn == -1) { error_setg(errp, "LIOBN not specified for PHB"); return; } if (sphb->mem_win_addr == -1) { error_setg(errp, "Memory window address not specified for PHB"); return; } if (sphb->io_win_addr == -1) { error_setg(errp, "IO window address not specified for PHB"); return; } if (find_phb(spapr, sphb->buid)) { error_setg(errp, "PCI host bridges must have unique BUIDs"); return; } sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); namebuf = alloca(strlen(sphb->dtbusname) + 32); /* Initialize memory regions */ sprintf(namebuf, "%s.mmio", sphb->dtbusname); memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname); memory_region_init_alias(&sphb->memwindow, OBJECT(sphb), namebuf, &sphb->memspace, SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, &sphb->memwindow); /* On ppc, we only have MMIO no specific IO space from the CPU * perspective. In theory we ought to be able to embed the PCI IO * memory region direction in the system memory space. However, * if any of the IO BAR subregions use the old_portio mechanism, * that won't be processed properly unless accessed from the * system io address space. This hack to bounce things via * system_io works around the problem until all the users of * old_portion are updated */ sprintf(namebuf, "%s.io", sphb->dtbusname); memory_region_init(&sphb->iospace, OBJECT(sphb), namebuf, SPAPR_PCI_IO_WIN_SIZE); /* FIXME: fix to support multiple PHBs */ memory_region_add_subregion(get_system_io(), 0, &sphb->iospace); sprintf(namebuf, "%s.io-alias", sphb->dtbusname); memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, get_system_io(), 0, SPAPR_PCI_IO_WIN_SIZE); memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, &sphb->iowindow); bus = pci_register_bus(dev, NULL, pci_spapr_set_irq, pci_spapr_map_irq, sphb, &sphb->memspace, &sphb->iospace, PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS); phb->bus = bus; sphb->dma_window_start = 0; sphb->dma_window_size = 0x40000000; sphb->tcet = spapr_tce_new_table(dev, sphb->dma_liobn, sphb->dma_window_size); if (!sphb->tcet) { error_setg(errp, "Unable to create TCE table for %s", sphb->dtbusname); return; } address_space_init(&sphb->iommu_as, spapr_tce_get_iommu(sphb->tcet), sphb->dtbusname); pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); /* Initialize the LSI table */ for (i = 0; i < PCI_NUM_PINS; i++) { uint32_t irq; irq = spapr_allocate_lsi(0); if (!irq) { error_setg(errp, "spapr_allocate_lsi failed"); return; } sphb->lsi_table[i].irq = irq; } } static void spapr_phb_reset(DeviceState *qdev) { SysBusDevice *s = SYS_BUS_DEVICE(qdev); sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); /* Reset the IOMMU state */ device_reset(DEVICE(sphb->tcet)); } static Property spapr_phb_properties[] = { DEFINE_PROP_INT32("index", sPAPRPHBState, index, -1), DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1), DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1), DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1), DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size, SPAPR_PCI_MMIO_WIN_SIZE), DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1), DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size, SPAPR_PCI_IO_WIN_SIZE), DEFINE_PROP_END_OF_LIST(), }; static const VMStateDescription vmstate_spapr_pci_lsi = { .name = "spapr_pci/lsi", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi), VMSTATE_END_OF_LIST() }, }; static const VMStateDescription vmstate_spapr_pci_msi = { .name = "spapr_pci/lsi", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(config_addr, struct spapr_pci_msi), VMSTATE_UINT32(irq, struct spapr_pci_msi), VMSTATE_UINT32(nvec, struct spapr_pci_msi), VMSTATE_END_OF_LIST() }, }; static const VMStateDescription vmstate_spapr_pci = { .name = "spapr_pci", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState), VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState), VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState), VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState), VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState), VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState), VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0, vmstate_spapr_pci_lsi, struct spapr_pci_lsi), VMSTATE_STRUCT_ARRAY(msi_table, sPAPRPHBState, SPAPR_MSIX_MAX_DEVS, 0, vmstate_spapr_pci_msi, struct spapr_pci_msi), VMSTATE_END_OF_LIST() }, }; static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, PCIBus *rootbus) { sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); return sphb->dtbusname; } static void spapr_phb_class_init(ObjectClass *klass, void *data) { PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); hc->root_bus_path = spapr_phb_root_bus_path; dc->realize = spapr_phb_realize; dc->props = spapr_phb_properties; dc->reset = spapr_phb_reset; dc->vmsd = &vmstate_spapr_pci; set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); dc->cannot_instantiate_with_device_add_yet = false; } static const TypeInfo spapr_phb_info = { .name = TYPE_SPAPR_PCI_HOST_BRIDGE, .parent = TYPE_PCI_HOST_BRIDGE, .instance_size = sizeof(sPAPRPHBState), .class_init = spapr_phb_class_init, }; PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index) { DeviceState *dev; dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); qdev_prop_set_uint32(dev, "index", index); qdev_init_nofail(dev); return PCI_HOST_BRIDGE(dev); } /* Macros to operate with address in OF binding to PCI */ #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ #define b_ss(x) b_x((x), 24, 2) /* the space code */ #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ #define b_ddddd(x) b_x((x), 11, 5) /* device number */ #define b_fff(x) b_x((x), 8, 3) /* function number */ #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ int spapr_populate_pci_dt(sPAPRPHBState *phb, uint32_t xics_phandle, void *fdt) { int bus_off, i, j; char nodename[256]; uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; struct { uint32_t hi; uint64_t child; uint64_t parent; uint64_t size; } QEMU_PACKED ranges[] = { { cpu_to_be32(b_ss(1)), cpu_to_be64(0), cpu_to_be64(phb->io_win_addr), cpu_to_be64(memory_region_size(&phb->iospace)), }, { cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), cpu_to_be64(phb->mem_win_addr), cpu_to_be64(memory_region_size(&phb->memwindow)), }, }; uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; uint32_t interrupt_map_mask[] = { cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; /* Start populating the FDT */ sprintf(nodename, "pci@%" PRIx64, phb->buid); bus_off = fdt_add_subnode(fdt, 0, nodename); if (bus_off < 0) { return bus_off; } #define _FDT(exp) \ do { \ int ret = (exp); \ if (ret < 0) { \ return ret; \ } \ } while (0) /* Write PHB properties */ _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges))); _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); /* Build the interrupt-map, this must matches what is done * in pci_spapr_map_irq */ _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", &interrupt_map_mask, sizeof(interrupt_map_mask))); for (i = 0; i < PCI_SLOT_MAX; i++) { for (j = 0; j < PCI_NUM_PINS; j++) { uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; int lsi_num = pci_spapr_swizzle(i, j); irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); irqmap[1] = 0; irqmap[2] = 0; irqmap[3] = cpu_to_be32(j+1); irqmap[4] = cpu_to_be32(xics_phandle); irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq); irqmap[6] = cpu_to_be32(0x8); } } /* Write interrupt map */ _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, sizeof(interrupt_map))); spapr_dma_dt(fdt, bus_off, "ibm,dma-window", phb->dma_liobn, phb->dma_window_start, phb->dma_window_size); return 0; } void spapr_pci_rtas_init(void) { spapr_rtas_register("read-pci-config", rtas_read_pci_config); spapr_rtas_register("write-pci-config", rtas_write_pci_config); spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config); spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config); if (msi_supported) { spapr_rtas_register("ibm,query-interrupt-source-number", rtas_ibm_query_interrupt_source_number); spapr_rtas_register("ibm,change-msi", rtas_ibm_change_msi); } } static void spapr_pci_register_types(void) { type_register_static(&spapr_phb_info); } type_init(spapr_pci_register_types)