/* * QEMU PAPR Storage Class Memory Interfaces * * Copyright (c) 2019-2020, IBM Corporation. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu/cutils.h" #include "qapi/error.h" #include "hw/ppc/spapr_drc.h" #include "hw/ppc/spapr_nvdimm.h" #include "hw/mem/nvdimm.h" #include "qemu/nvdimm-utils.h" #include "hw/ppc/fdt.h" #include "qemu/range.h" #include "hw/ppc/spapr_numa.h" #include "block/thread-pool.h" #include "migration/vmstate.h" #include "qemu/pmem.h" #include "hw/qdev-properties.h" /* DIMM health bitmap bitmap indicators. Taken from kernel's papr_scm.c */ /* SCM device is unable to persist memory contents */ #define PAPR_PMEM_UNARMED PPC_BIT(0) /* * The nvdimm size should be aligned to SCM block size. * The SCM block size should be aligned to SPAPR_MEMORY_BLOCK_SIZE * in order to have SCM regions not to overlap with dimm memory regions. * The SCM devices can have variable block sizes. For now, fixing the * block size to the minimum value. */ #define SPAPR_MINIMUM_SCM_BLOCK_SIZE SPAPR_MEMORY_BLOCK_SIZE /* Have an explicit check for alignment */ QEMU_BUILD_BUG_ON(SPAPR_MINIMUM_SCM_BLOCK_SIZE % SPAPR_MEMORY_BLOCK_SIZE); #define TYPE_SPAPR_NVDIMM "spapr-nvdimm" OBJECT_DECLARE_TYPE(SpaprNVDIMMDevice, SPAPRNVDIMMClass, SPAPR_NVDIMM) struct SPAPRNVDIMMClass { /* private */ NVDIMMClass parent_class; /* public */ void (*realize)(NVDIMMDevice *dimm, Error **errp); void (*unrealize)(NVDIMMDevice *dimm, Error **errp); }; bool spapr_nvdimm_validate(HotplugHandler *hotplug_dev, NVDIMMDevice *nvdimm, uint64_t size, Error **errp) { const MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); const MachineState *ms = MACHINE(hotplug_dev); PCDIMMDevice *dimm = PC_DIMM(nvdimm); MemoryRegion *mr = host_memory_backend_get_memory(dimm->hostmem); g_autofree char *uuidstr = NULL; QemuUUID uuid; int ret; if (!mc->nvdimm_supported) { error_setg(errp, "NVDIMM hotplug not supported for this machine"); return false; } if (!ms->nvdimms_state->is_enabled) { error_setg(errp, "nvdimm device found but 'nvdimm=off' was set"); return false; } if (object_property_get_int(OBJECT(nvdimm), NVDIMM_LABEL_SIZE_PROP, &error_abort) == 0) { error_setg(errp, "PAPR requires NVDIMM devices to have label-size set"); return false; } if (size % SPAPR_MINIMUM_SCM_BLOCK_SIZE) { error_setg(errp, "PAPR requires NVDIMM memory size (excluding label)" " to be a multiple of %" PRIu64 "MB", SPAPR_MINIMUM_SCM_BLOCK_SIZE / MiB); return false; } uuidstr = object_property_get_str(OBJECT(nvdimm), NVDIMM_UUID_PROP, &error_abort); ret = qemu_uuid_parse(uuidstr, &uuid); g_assert(!ret); if (qemu_uuid_is_null(&uuid)) { error_setg(errp, "NVDIMM device requires the uuid to be set"); return false; } if (object_dynamic_cast(OBJECT(nvdimm), TYPE_SPAPR_NVDIMM) && (memory_region_get_fd(mr) < 0)) { error_setg(errp, "spapr-nvdimm device requires the " "memdev %s to be of memory-backend-file type", object_get_canonical_path_component(OBJECT(dimm->hostmem))); return false; } return true; } void spapr_add_nvdimm(DeviceState *dev, uint64_t slot) { SpaprDrc *drc; bool hotplugged = spapr_drc_hotplugged(dev); drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PMEM, slot); g_assert(drc); /* * pc_dimm_get_free_slot() provided a free slot at pre-plug. The * corresponding DRC is thus assumed to be attachable. */ spapr_drc_attach(drc, dev); if (hotplugged) { spapr_hotplug_req_add_by_index(drc); } } static int spapr_dt_nvdimm(SpaprMachineState *spapr, void *fdt, int parent_offset, NVDIMMDevice *nvdimm) { int child_offset; char *buf; SpaprDrc *drc; uint32_t drc_idx; uint32_t node = object_property_get_uint(OBJECT(nvdimm), PC_DIMM_NODE_PROP, &error_abort); uint64_t slot = object_property_get_uint(OBJECT(nvdimm), PC_DIMM_SLOT_PROP, &error_abort); uint64_t lsize = nvdimm->label_size; uint64_t size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP, NULL); drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PMEM, slot); g_assert(drc); drc_idx = spapr_drc_index(drc); buf = g_strdup_printf("ibm,pmemory@%x", drc_idx); child_offset = fdt_add_subnode(fdt, parent_offset, buf); g_free(buf); _FDT(child_offset); _FDT((fdt_setprop_cell(fdt, child_offset, "reg", drc_idx))); _FDT((fdt_setprop_string(fdt, child_offset, "compatible", "ibm,pmemory"))); _FDT((fdt_setprop_string(fdt, child_offset, "device_type", "ibm,pmemory"))); spapr_numa_write_associativity_dt(spapr, fdt, child_offset, node); buf = qemu_uuid_unparse_strdup(&nvdimm->uuid); _FDT((fdt_setprop_string(fdt, child_offset, "ibm,unit-guid", buf))); g_free(buf); _FDT((fdt_setprop_cell(fdt, child_offset, "ibm,my-drc-index", drc_idx))); _FDT((fdt_setprop_u64(fdt, child_offset, "ibm,block-size", SPAPR_MINIMUM_SCM_BLOCK_SIZE))); _FDT((fdt_setprop_u64(fdt, child_offset, "ibm,number-of-blocks", size / SPAPR_MINIMUM_SCM_BLOCK_SIZE))); _FDT((fdt_setprop_cell(fdt, child_offset, "ibm,metadata-size", lsize))); _FDT((fdt_setprop_string(fdt, child_offset, "ibm,pmem-application", "operating-system"))); _FDT(fdt_setprop(fdt, child_offset, "ibm,cache-flush-required", NULL, 0)); if (object_dynamic_cast(OBJECT(nvdimm), TYPE_SPAPR_NVDIMM)) { bool is_pmem = false, pmem_override = false; PCDIMMDevice *dimm = PC_DIMM(nvdimm); HostMemoryBackend *hostmem = dimm->hostmem; is_pmem = object_property_get_bool(OBJECT(hostmem), "pmem", NULL); pmem_override = object_property_get_bool(OBJECT(nvdimm), "pmem-override", NULL); if (!is_pmem || pmem_override) { _FDT(fdt_setprop(fdt, child_offset, "ibm,hcall-flush-required", NULL, 0)); } } return child_offset; } int spapr_pmem_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, void *fdt, int *fdt_start_offset, Error **errp) { NVDIMMDevice *nvdimm = NVDIMM(drc->dev); *fdt_start_offset = spapr_dt_nvdimm(spapr, fdt, 0, nvdimm); return 0; } void spapr_dt_persistent_memory(SpaprMachineState *spapr, void *fdt) { int offset = fdt_subnode_offset(fdt, 0, "ibm,persistent-memory"); GSList *iter, *nvdimms = nvdimm_get_device_list(); if (offset < 0) { offset = fdt_add_subnode(fdt, 0, "ibm,persistent-memory"); _FDT(offset); _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0x1))); _FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 0x0))); _FDT((fdt_setprop_string(fdt, offset, "device_type", "ibm,persistent-memory"))); } /* Create DT entries for cold plugged NVDIMM devices */ for (iter = nvdimms; iter; iter = iter->next) { NVDIMMDevice *nvdimm = iter->data; spapr_dt_nvdimm(spapr, fdt, offset, nvdimm); } g_slist_free(nvdimms); return; } static target_ulong h_scm_read_metadata(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { uint32_t drc_index = args[0]; uint64_t offset = args[1]; uint64_t len = args[2]; SpaprDrc *drc = spapr_drc_by_index(drc_index); NVDIMMDevice *nvdimm; NVDIMMClass *ddc; uint64_t data = 0; uint8_t buf[8] = { 0 }; if (!drc || !drc->dev || spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) { return H_PARAMETER; } if (len != 1 && len != 2 && len != 4 && len != 8) { return H_P3; } nvdimm = NVDIMM(drc->dev); if ((offset + len < offset) || (nvdimm->label_size < len + offset)) { return H_P2; } ddc = NVDIMM_GET_CLASS(nvdimm); ddc->read_label_data(nvdimm, buf, len, offset); switch (len) { case 1: data = ldub_p(buf); break; case 2: data = lduw_be_p(buf); break; case 4: data = ldl_be_p(buf); break; case 8: data = ldq_be_p(buf); break; default: g_assert_not_reached(); } args[0] = data; return H_SUCCESS; } static target_ulong h_scm_write_metadata(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { uint32_t drc_index = args[0]; uint64_t offset = args[1]; uint64_t data = args[2]; uint64_t len = args[3]; SpaprDrc *drc = spapr_drc_by_index(drc_index); NVDIMMDevice *nvdimm; NVDIMMClass *ddc; uint8_t buf[8] = { 0 }; if (!drc || !drc->dev || spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) { return H_PARAMETER; } if (len != 1 && len != 2 && len != 4 && len != 8) { return H_P4; } nvdimm = NVDIMM(drc->dev); if ((offset + len < offset) || (nvdimm->label_size < len + offset) || nvdimm->readonly) { return H_P2; } switch (len) { case 1: if (data & 0xffffffffffffff00) { return H_P2; } stb_p(buf, data); break; case 2: if (data & 0xffffffffffff0000) { return H_P2; } stw_be_p(buf, data); break; case 4: if (data & 0xffffffff00000000) { return H_P2; } stl_be_p(buf, data); break; case 8: stq_be_p(buf, data); break; default: g_assert_not_reached(); } ddc = NVDIMM_GET_CLASS(nvdimm); ddc->write_label_data(nvdimm, buf, len, offset); return H_SUCCESS; } static target_ulong h_scm_bind_mem(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { uint32_t drc_index = args[0]; uint64_t starting_idx = args[1]; uint64_t no_of_scm_blocks_to_bind = args[2]; uint64_t target_logical_mem_addr = args[3]; uint64_t continue_token = args[4]; uint64_t size; uint64_t total_no_of_scm_blocks; SpaprDrc *drc = spapr_drc_by_index(drc_index); hwaddr addr; NVDIMMDevice *nvdimm; if (!drc || !drc->dev || spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) { return H_PARAMETER; } /* * Currently continue token should be zero qemu has already bound * everything and this hcall doesnt return H_BUSY. */ if (continue_token > 0) { return H_P5; } /* Currently qemu assigns the address. */ if (target_logical_mem_addr != 0xffffffffffffffff) { return H_OVERLAP; } nvdimm = NVDIMM(drc->dev); size = object_property_get_uint(OBJECT(nvdimm), PC_DIMM_SIZE_PROP, &error_abort); total_no_of_scm_blocks = size / SPAPR_MINIMUM_SCM_BLOCK_SIZE; if (starting_idx > total_no_of_scm_blocks) { return H_P2; } if (((starting_idx + no_of_scm_blocks_to_bind) < starting_idx) || ((starting_idx + no_of_scm_blocks_to_bind) > total_no_of_scm_blocks)) { return H_P3; } addr = object_property_get_uint(OBJECT(nvdimm), PC_DIMM_ADDR_PROP, &error_abort); addr += starting_idx * SPAPR_MINIMUM_SCM_BLOCK_SIZE; /* Already bound, Return target logical address in R5 */ args[1] = addr; args[2] = no_of_scm_blocks_to_bind; return H_SUCCESS; } typedef struct SpaprNVDIMMDeviceFlushState { uint64_t continue_token; int64_t hcall_ret; uint32_t drcidx; QLIST_ENTRY(SpaprNVDIMMDeviceFlushState) node; } SpaprNVDIMMDeviceFlushState; typedef struct SpaprNVDIMMDevice SpaprNVDIMMDevice; struct SpaprNVDIMMDevice { /* private */ NVDIMMDevice parent_obj; bool hcall_flush_required; uint64_t nvdimm_flush_token; QLIST_HEAD(, SpaprNVDIMMDeviceFlushState) pending_nvdimm_flush_states; QLIST_HEAD(, SpaprNVDIMMDeviceFlushState) completed_nvdimm_flush_states; /* public */ /* * The 'on' value for this property forced the qemu to enable the hcall * flush for the nvdimm device even if the backend is a pmem */ bool pmem_override; }; static int flush_worker_cb(void *opaque) { SpaprNVDIMMDeviceFlushState *state = opaque; SpaprDrc *drc = spapr_drc_by_index(state->drcidx); PCDIMMDevice *dimm; HostMemoryBackend *backend; int backend_fd; g_assert(drc != NULL); dimm = PC_DIMM(drc->dev); backend = MEMORY_BACKEND(dimm->hostmem); backend_fd = memory_region_get_fd(&backend->mr); if (object_property_get_bool(OBJECT(backend), "pmem", NULL)) { MemoryRegion *mr = host_memory_backend_get_memory(dimm->hostmem); void *ptr = memory_region_get_ram_ptr(mr); size_t size = object_property_get_uint(OBJECT(dimm), PC_DIMM_SIZE_PROP, NULL); /* flush pmem backend */ pmem_persist(ptr, size); } else { /* flush raw backing image */ if (qemu_fdatasync(backend_fd) < 0) { error_report("papr_scm: Could not sync nvdimm to backend file: %s", strerror(errno)); return H_HARDWARE; } } return H_SUCCESS; } static void spapr_nvdimm_flush_completion_cb(void *opaque, int hcall_ret) { SpaprNVDIMMDeviceFlushState *state = opaque; SpaprDrc *drc = spapr_drc_by_index(state->drcidx); SpaprNVDIMMDevice *s_nvdimm; g_assert(drc != NULL); s_nvdimm = SPAPR_NVDIMM(drc->dev); state->hcall_ret = hcall_ret; QLIST_REMOVE(state, node); QLIST_INSERT_HEAD(&s_nvdimm->completed_nvdimm_flush_states, state, node); } static int spapr_nvdimm_flush_post_load(void *opaque, int version_id) { SpaprNVDIMMDevice *s_nvdimm = (SpaprNVDIMMDevice *)opaque; SpaprNVDIMMDeviceFlushState *state; HostMemoryBackend *backend = MEMORY_BACKEND(PC_DIMM(s_nvdimm)->hostmem); bool is_pmem = object_property_get_bool(OBJECT(backend), "pmem", NULL); bool pmem_override = object_property_get_bool(OBJECT(s_nvdimm), "pmem-override", NULL); bool dest_hcall_flush_required = pmem_override || !is_pmem; if (!s_nvdimm->hcall_flush_required && dest_hcall_flush_required) { error_report("The file backend for the spapr-nvdimm device %s at " "source is a pmem, use pmem=on and pmem-override=off to " "continue.", DEVICE(s_nvdimm)->id); return -EINVAL; } if (s_nvdimm->hcall_flush_required && !dest_hcall_flush_required) { error_report("The guest expects hcall-flush support for the " "spapr-nvdimm device %s, use pmem_override=on to " "continue.", DEVICE(s_nvdimm)->id); return -EINVAL; } QLIST_FOREACH(state, &s_nvdimm->pending_nvdimm_flush_states, node) { thread_pool_submit_aio(flush_worker_cb, state, spapr_nvdimm_flush_completion_cb, state); } return 0; } static const VMStateDescription vmstate_spapr_nvdimm_flush_state = { .name = "spapr_nvdimm_flush_state", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT64(continue_token, SpaprNVDIMMDeviceFlushState), VMSTATE_INT64(hcall_ret, SpaprNVDIMMDeviceFlushState), VMSTATE_UINT32(drcidx, SpaprNVDIMMDeviceFlushState), VMSTATE_END_OF_LIST() }, }; const VMStateDescription vmstate_spapr_nvdimm_states = { .name = "spapr_nvdimm_states", .version_id = 1, .minimum_version_id = 1, .post_load = spapr_nvdimm_flush_post_load, .fields = (VMStateField[]) { VMSTATE_BOOL(hcall_flush_required, SpaprNVDIMMDevice), VMSTATE_UINT64(nvdimm_flush_token, SpaprNVDIMMDevice), VMSTATE_QLIST_V(completed_nvdimm_flush_states, SpaprNVDIMMDevice, 1, vmstate_spapr_nvdimm_flush_state, SpaprNVDIMMDeviceFlushState, node), VMSTATE_QLIST_V(pending_nvdimm_flush_states, SpaprNVDIMMDevice, 1, vmstate_spapr_nvdimm_flush_state, SpaprNVDIMMDeviceFlushState, node), VMSTATE_END_OF_LIST() }, }; /* * Assign a token and reserve it for the new flush state. */ static SpaprNVDIMMDeviceFlushState *spapr_nvdimm_init_new_flush_state( SpaprNVDIMMDevice *spapr_nvdimm) { SpaprNVDIMMDeviceFlushState *state; state = g_malloc0(sizeof(*state)); spapr_nvdimm->nvdimm_flush_token++; /* Token zero is presumed as no job pending. Assert on overflow to zero */ g_assert(spapr_nvdimm->nvdimm_flush_token != 0); state->continue_token = spapr_nvdimm->nvdimm_flush_token; QLIST_INSERT_HEAD(&spapr_nvdimm->pending_nvdimm_flush_states, state, node); return state; } /* * spapr_nvdimm_finish_flushes * Waits for all pending flush requests to complete * their execution and free the states */ void spapr_nvdimm_finish_flushes(void) { SpaprNVDIMMDeviceFlushState *state, *next; GSList *list, *nvdimms; /* * Called on reset path, the main loop thread which calls * the pending BHs has gotten out running in the reset path, * finally reaching here. Other code path being guest * h_client_architecture_support, thats early boot up. */ nvdimms = nvdimm_get_device_list(); for (list = nvdimms; list; list = list->next) { NVDIMMDevice *nvdimm = list->data; if (object_dynamic_cast(OBJECT(nvdimm), TYPE_SPAPR_NVDIMM)) { SpaprNVDIMMDevice *s_nvdimm = SPAPR_NVDIMM(nvdimm); while (!QLIST_EMPTY(&s_nvdimm->pending_nvdimm_flush_states)) { aio_poll(qemu_get_aio_context(), true); } QLIST_FOREACH_SAFE(state, &s_nvdimm->completed_nvdimm_flush_states, node, next) { QLIST_REMOVE(state, node); g_free(state); } } } g_slist_free(nvdimms); } /* * spapr_nvdimm_get_flush_status * Fetches the status of the hcall worker and returns * H_LONG_BUSY_ORDER_10_MSEC if the worker is still running. */ static int spapr_nvdimm_get_flush_status(SpaprNVDIMMDevice *s_nvdimm, uint64_t token) { SpaprNVDIMMDeviceFlushState *state, *node; QLIST_FOREACH(state, &s_nvdimm->pending_nvdimm_flush_states, node) { if (state->continue_token == token) { return H_LONG_BUSY_ORDER_10_MSEC; } } QLIST_FOREACH_SAFE(state, &s_nvdimm->completed_nvdimm_flush_states, node, node) { if (state->continue_token == token) { int ret = state->hcall_ret; QLIST_REMOVE(state, node); g_free(state); return ret; } } /* If not found in complete list too, invalid token */ return H_P2; } /* * H_SCM_FLUSH * Input: drc_index, continue-token * Out: continue-token * Return Value: H_SUCCESS, H_Parameter, H_P2, H_LONG_BUSY_ORDER_10_MSEC, * H_UNSUPPORTED * * Given a DRC Index Flush the data to backend NVDIMM device. The hcall returns * H_LONG_BUSY_ORDER_10_MSEC when the flush takes longer time and the hcall * needs to be issued multiple times in order to be completely serviced. The * continue-token from the output to be passed in the argument list of * subsequent hcalls until the hcall is completely serviced at which point * H_SUCCESS or other error is returned. */ static target_ulong h_scm_flush(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { int ret; uint32_t drc_index = args[0]; uint64_t continue_token = args[1]; SpaprDrc *drc = spapr_drc_by_index(drc_index); PCDIMMDevice *dimm; HostMemoryBackend *backend = NULL; SpaprNVDIMMDeviceFlushState *state; int fd; if (!drc || !drc->dev || spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) { return H_PARAMETER; } dimm = PC_DIMM(drc->dev); if (!object_dynamic_cast(OBJECT(dimm), TYPE_SPAPR_NVDIMM)) { return H_PARAMETER; } if (continue_token == 0) { bool is_pmem = false, pmem_override = false; backend = MEMORY_BACKEND(dimm->hostmem); fd = memory_region_get_fd(&backend->mr); if (fd < 0) { return H_UNSUPPORTED; } is_pmem = object_property_get_bool(OBJECT(backend), "pmem", NULL); pmem_override = object_property_get_bool(OBJECT(dimm), "pmem-override", NULL); if (is_pmem && !pmem_override) { return H_UNSUPPORTED; } state = spapr_nvdimm_init_new_flush_state(SPAPR_NVDIMM(dimm)); if (!state) { return H_HARDWARE; } state->drcidx = drc_index; thread_pool_submit_aio(flush_worker_cb, state, spapr_nvdimm_flush_completion_cb, state); continue_token = state->continue_token; } ret = spapr_nvdimm_get_flush_status(SPAPR_NVDIMM(dimm), continue_token); if (H_IS_LONG_BUSY(ret)) { args[0] = continue_token; } return ret; } static target_ulong h_scm_unbind_mem(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { uint32_t drc_index = args[0]; uint64_t starting_scm_logical_addr = args[1]; uint64_t no_of_scm_blocks_to_unbind = args[2]; uint64_t continue_token = args[3]; uint64_t size_to_unbind; Range blockrange = range_empty; Range nvdimmrange = range_empty; SpaprDrc *drc = spapr_drc_by_index(drc_index); NVDIMMDevice *nvdimm; uint64_t size, addr; if (!drc || !drc->dev || spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) { return H_PARAMETER; } /* continue_token should be zero as this hcall doesn't return H_BUSY. */ if (continue_token > 0) { return H_P4; } /* Check if starting_scm_logical_addr is block aligned */ if (!QEMU_IS_ALIGNED(starting_scm_logical_addr, SPAPR_MINIMUM_SCM_BLOCK_SIZE)) { return H_P2; } size_to_unbind = no_of_scm_blocks_to_unbind * SPAPR_MINIMUM_SCM_BLOCK_SIZE; if (no_of_scm_blocks_to_unbind == 0 || no_of_scm_blocks_to_unbind != size_to_unbind / SPAPR_MINIMUM_SCM_BLOCK_SIZE) { return H_P3; } nvdimm = NVDIMM(drc->dev); size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP, &error_abort); addr = object_property_get_int(OBJECT(nvdimm), PC_DIMM_ADDR_PROP, &error_abort); range_init_nofail(&nvdimmrange, addr, size); range_init_nofail(&blockrange, starting_scm_logical_addr, size_to_unbind); if (!range_contains_range(&nvdimmrange, &blockrange)) { return H_P3; } args[1] = no_of_scm_blocks_to_unbind; /* let unplug take care of actual unbind */ return H_SUCCESS; } #define H_UNBIND_SCOPE_ALL 0x1 #define H_UNBIND_SCOPE_DRC 0x2 static target_ulong h_scm_unbind_all(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { uint64_t target_scope = args[0]; uint32_t drc_index = args[1]; uint64_t continue_token = args[2]; NVDIMMDevice *nvdimm; uint64_t size; uint64_t no_of_scm_blocks_unbound = 0; /* continue_token should be zero as this hcall doesn't return H_BUSY. */ if (continue_token > 0) { return H_P4; } if (target_scope == H_UNBIND_SCOPE_DRC) { SpaprDrc *drc = spapr_drc_by_index(drc_index); if (!drc || !drc->dev || spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) { return H_P2; } nvdimm = NVDIMM(drc->dev); size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP, &error_abort); no_of_scm_blocks_unbound = size / SPAPR_MINIMUM_SCM_BLOCK_SIZE; } else if (target_scope == H_UNBIND_SCOPE_ALL) { GSList *list, *nvdimms; nvdimms = nvdimm_get_device_list(); for (list = nvdimms; list; list = list->next) { nvdimm = list->data; size = object_property_get_int(OBJECT(nvdimm), PC_DIMM_SIZE_PROP, &error_abort); no_of_scm_blocks_unbound += size / SPAPR_MINIMUM_SCM_BLOCK_SIZE; } g_slist_free(nvdimms); } else { return H_PARAMETER; } args[1] = no_of_scm_blocks_unbound; /* let unplug take care of actual unbind */ return H_SUCCESS; } static target_ulong h_scm_health(PowerPCCPU *cpu, SpaprMachineState *spapr, target_ulong opcode, target_ulong *args) { NVDIMMDevice *nvdimm; uint64_t hbitmap = 0; uint32_t drc_index = args[0]; SpaprDrc *drc = spapr_drc_by_index(drc_index); const uint64_t hbitmap_mask = PAPR_PMEM_UNARMED; /* Ensure that the drc is valid & is valid PMEM dimm and is plugged in */ if (!drc || !drc->dev || spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PMEM) { return H_PARAMETER; } nvdimm = NVDIMM(drc->dev); /* Update if the nvdimm is unarmed and send its status via health bitmaps */ if (object_property_get_bool(OBJECT(nvdimm), NVDIMM_UNARMED_PROP, NULL)) { hbitmap |= PAPR_PMEM_UNARMED; } /* Update the out args with health bitmap/mask */ args[0] = hbitmap; args[1] = hbitmap_mask; return H_SUCCESS; } static void spapr_scm_register_types(void) { /* qemu/scm specific hcalls */ spapr_register_hypercall(H_SCM_READ_METADATA, h_scm_read_metadata); spapr_register_hypercall(H_SCM_WRITE_METADATA, h_scm_write_metadata); spapr_register_hypercall(H_SCM_BIND_MEM, h_scm_bind_mem); spapr_register_hypercall(H_SCM_UNBIND_MEM, h_scm_unbind_mem); spapr_register_hypercall(H_SCM_UNBIND_ALL, h_scm_unbind_all); spapr_register_hypercall(H_SCM_HEALTH, h_scm_health); spapr_register_hypercall(H_SCM_FLUSH, h_scm_flush); } type_init(spapr_scm_register_types) static void spapr_nvdimm_realize(NVDIMMDevice *dimm, Error **errp) { SpaprNVDIMMDevice *s_nvdimm = SPAPR_NVDIMM(dimm); HostMemoryBackend *backend = MEMORY_BACKEND(PC_DIMM(dimm)->hostmem); bool is_pmem = object_property_get_bool(OBJECT(backend), "pmem", NULL); bool pmem_override = object_property_get_bool(OBJECT(dimm), "pmem-override", NULL); if (!is_pmem || pmem_override) { s_nvdimm->hcall_flush_required = true; } vmstate_register(NULL, VMSTATE_INSTANCE_ID_ANY, &vmstate_spapr_nvdimm_states, dimm); } static void spapr_nvdimm_unrealize(NVDIMMDevice *dimm) { vmstate_unregister(NULL, &vmstate_spapr_nvdimm_states, dimm); } static Property spapr_nvdimm_properties[] = { #ifdef CONFIG_LIBPMEM DEFINE_PROP_BOOL("pmem-override", SpaprNVDIMMDevice, pmem_override, false), #endif DEFINE_PROP_END_OF_LIST(), }; static void spapr_nvdimm_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); NVDIMMClass *nvc = NVDIMM_CLASS(oc); nvc->realize = spapr_nvdimm_realize; nvc->unrealize = spapr_nvdimm_unrealize; device_class_set_props(dc, spapr_nvdimm_properties); } static void spapr_nvdimm_init(Object *obj) { SpaprNVDIMMDevice *s_nvdimm = SPAPR_NVDIMM(obj); s_nvdimm->hcall_flush_required = false; QLIST_INIT(&s_nvdimm->pending_nvdimm_flush_states); QLIST_INIT(&s_nvdimm->completed_nvdimm_flush_states); } static TypeInfo spapr_nvdimm_info = { .name = TYPE_SPAPR_NVDIMM, .parent = TYPE_NVDIMM, .class_init = spapr_nvdimm_class_init, .class_size = sizeof(SPAPRNVDIMMClass), .instance_size = sizeof(SpaprNVDIMMDevice), .instance_init = spapr_nvdimm_init, }; static void spapr_nvdimm_register_types(void) { type_register_static(&spapr_nvdimm_info); } type_init(spapr_nvdimm_register_types)