/* * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator * * Copyright (c) 2004-2007 Fabrice Bellard * Copyright (c) 2007 Jocelyn Mayer * Copyright (c) 2010 David Gibson, IBM Corporation. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "sysemu/sysemu.h" #include "hw/hw.h" #include "hw/fw-path-provider.h" #include "elf.h" #include "net/net.h" #include "sysemu/blockdev.h" #include "sysemu/cpus.h" #include "sysemu/kvm.h" #include "kvm_ppc.h" #include "mmu-hash64.h" #include "qom/cpu.h" #include "hw/boards.h" #include "hw/ppc/ppc.h" #include "hw/loader.h" #include "hw/ppc/spapr.h" #include "hw/ppc/spapr_vio.h" #include "hw/pci-host/spapr.h" #include "hw/ppc/xics.h" #include "hw/pci/msi.h" #include "hw/pci/pci.h" #include "hw/scsi/scsi.h" #include "hw/virtio/virtio-scsi.h" #include "exec/address-spaces.h" #include "hw/usb.h" #include "qemu/config-file.h" #include "qemu/error-report.h" #include "trace.h" #include /* SLOF memory layout: * * SLOF raw image loaded at 0, copies its romfs right below the flat * device-tree, then position SLOF itself 31M below that * * So we set FW_OVERHEAD to 40MB which should account for all of that * and more * * We load our kernel at 4M, leaving space for SLOF initial image */ #define FDT_MAX_SIZE 0x40000 #define RTAS_MAX_SIZE 0x10000 #define FW_MAX_SIZE 0x400000 #define FW_FILE_NAME "slof.bin" #define FW_OVERHEAD 0x2800000 #define KERNEL_LOAD_ADDR FW_MAX_SIZE #define MIN_RMA_SLOF 128UL #define TIMEBASE_FREQ 512000000ULL #define MAX_CPUS 256 #define XICS_IRQS 1024 #define PHANDLE_XICP 0x00001111 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) #define TYPE_SPAPR_MACHINE "spapr-machine" sPAPREnvironment *spapr; int spapr_allocate_irq(int hint, bool lsi) { int irq; if (hint) { irq = hint; if (hint >= spapr->next_irq) { spapr->next_irq = hint + 1; } /* FIXME: we should probably check for collisions somehow */ } else { irq = spapr->next_irq++; } /* Configure irq type */ if (!xics_get_qirq(spapr->icp, irq)) { return 0; } xics_set_irq_type(spapr->icp, irq, lsi); return irq; } /* * Allocate block of consequtive IRQs, returns a number of the first. * If msi==true, aligns the first IRQ number to num. */ int spapr_allocate_irq_block(int num, bool lsi, bool msi) { int first = -1; int i, hint = 0; /* * MSIMesage::data is used for storing VIRQ so * it has to be aligned to num to support multiple * MSI vectors. MSI-X is not affected by this. * The hint is used for the first IRQ, the rest should * be allocated continuously. */ if (msi) { assert((num == 1) || (num == 2) || (num == 4) || (num == 8) || (num == 16) || (num == 32)); hint = (spapr->next_irq + num - 1) & ~(num - 1); } for (i = 0; i < num; ++i) { int irq; irq = spapr_allocate_irq(hint, lsi); if (!irq) { return -1; } if (0 == i) { first = irq; hint = 0; } /* If the above doesn't create a consecutive block then that's * an internal bug */ assert(irq == (first + i)); } return first; } static XICSState *try_create_xics(const char *type, int nr_servers, int nr_irqs) { DeviceState *dev; dev = qdev_create(NULL, type); qdev_prop_set_uint32(dev, "nr_servers", nr_servers); qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs); if (qdev_init(dev) < 0) { return NULL; } return XICS_COMMON(dev); } static XICSState *xics_system_init(int nr_servers, int nr_irqs) { XICSState *icp = NULL; if (kvm_enabled()) { QemuOpts *machine_opts = qemu_get_machine_opts(); bool irqchip_allowed = qemu_opt_get_bool(machine_opts, "kernel_irqchip", true); bool irqchip_required = qemu_opt_get_bool(machine_opts, "kernel_irqchip", false); if (irqchip_allowed) { icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs); } if (irqchip_required && !icp) { perror("Failed to create in-kernel XICS\n"); abort(); } } if (!icp) { icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs); } if (!icp) { perror("Failed to create XICS\n"); abort(); } return icp; } static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, int smt_threads) { int i, ret = 0; uint32_t servers_prop[smt_threads]; uint32_t gservers_prop[smt_threads * 2]; int index = ppc_get_vcpu_dt_id(cpu); if (cpu->cpu_version) { ret = fdt_setprop(fdt, offset, "cpu-version", &cpu->cpu_version, sizeof(cpu->cpu_version)); if (ret < 0) { return ret; } } /* Build interrupt servers and gservers properties */ for (i = 0; i < smt_threads; i++) { servers_prop[i] = cpu_to_be32(index + i); /* Hack, direct the group queues back to cpu 0 */ gservers_prop[i*2] = cpu_to_be32(index + i); gservers_prop[i*2 + 1] = 0; } ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", servers_prop, sizeof(servers_prop)); if (ret < 0) { return ret; } ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", gservers_prop, sizeof(gservers_prop)); return ret; } static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr) { int ret = 0, offset, cpus_offset; CPUState *cs; char cpu_model[32]; int smt = kvmppc_smt_threads(); uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); DeviceClass *dc = DEVICE_GET_CLASS(cs); int index = ppc_get_vcpu_dt_id(cpu); uint32_t associativity[] = {cpu_to_be32(0x5), cpu_to_be32(0x0), cpu_to_be32(0x0), cpu_to_be32(0x0), cpu_to_be32(cs->numa_node), cpu_to_be32(index)}; if ((index % smt) != 0) { continue; } snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); cpus_offset = fdt_path_offset(fdt, "/cpus"); if (cpus_offset < 0) { cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus"); if (cpus_offset < 0) { return cpus_offset; } } offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); if (offset < 0) { offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); if (offset < 0) { return offset; } } if (nb_numa_nodes > 1) { ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, sizeof(associativity)); if (ret < 0) { return ret; } } ret = fdt_setprop(fdt, offset, "ibm,pft-size", pft_size_prop, sizeof(pft_size_prop)); if (ret < 0) { return ret; } ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, ppc_get_compat_smt_threads(cpu)); if (ret < 0) { return ret; } } return ret; } static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop, size_t maxsize) { size_t maxcells = maxsize / sizeof(uint32_t); int i, j, count; uint32_t *p = prop; for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; if (!sps->page_shift) { break; } for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) { if (sps->enc[count].page_shift == 0) { break; } } if ((p - prop) >= (maxcells - 3 - count * 2)) { break; } *(p++) = cpu_to_be32(sps->page_shift); *(p++) = cpu_to_be32(sps->slb_enc); *(p++) = cpu_to_be32(count); for (j = 0; j < count; j++) { *(p++) = cpu_to_be32(sps->enc[j].page_shift); *(p++) = cpu_to_be32(sps->enc[j].pte_enc); } } return (p - prop) * sizeof(uint32_t); } #define _FDT(exp) \ do { \ int ret = (exp); \ if (ret < 0) { \ fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ #exp, fdt_strerror(ret)); \ exit(1); \ } \ } while (0) static void add_str(GString *s, const gchar *s1) { g_string_append_len(s, s1, strlen(s1) + 1); } static void *spapr_create_fdt_skel(hwaddr initrd_base, hwaddr initrd_size, hwaddr kernel_size, bool little_endian, const char *boot_device, const char *kernel_cmdline, uint32_t epow_irq) { void *fdt; CPUState *cs; uint32_t start_prop = cpu_to_be32(initrd_base); uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); GString *hypertas = g_string_sized_new(256); GString *qemu_hypertas = g_string_sized_new(256); uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)}; int smt = kvmppc_smt_threads(); unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL); unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0; uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1; add_str(hypertas, "hcall-pft"); add_str(hypertas, "hcall-term"); add_str(hypertas, "hcall-dabr"); add_str(hypertas, "hcall-interrupt"); add_str(hypertas, "hcall-tce"); add_str(hypertas, "hcall-vio"); add_str(hypertas, "hcall-splpar"); add_str(hypertas, "hcall-bulk"); add_str(hypertas, "hcall-set-mode"); add_str(qemu_hypertas, "hcall-memop1"); fdt = g_malloc0(FDT_MAX_SIZE); _FDT((fdt_create(fdt, FDT_MAX_SIZE))); if (kernel_size) { _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size))); } if (initrd_size) { _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size))); } _FDT((fdt_finish_reservemap(fdt))); /* Root node */ _FDT((fdt_begin_node(fdt, ""))); _FDT((fdt_property_string(fdt, "device_type", "chrp"))); _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries"))); _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); /* /chosen */ _FDT((fdt_begin_node(fdt, "chosen"))); /* Set Form1_affinity */ _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); _FDT((fdt_property(fdt, "linux,initrd-start", &start_prop, sizeof(start_prop)))); _FDT((fdt_property(fdt, "linux,initrd-end", &end_prop, sizeof(end_prop)))); if (kernel_size) { uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), cpu_to_be64(kernel_size) }; _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop)))); if (little_endian) { _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0))); } } if (boot_device) { _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device))); } _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width))); _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height))); _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth))); _FDT((fdt_end_node(fdt))); /* cpus */ _FDT((fdt_begin_node(fdt, "cpus"))); _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); CPU_FOREACH(cs) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; DeviceClass *dc = DEVICE_GET_CLASS(cs); PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); int index = ppc_get_vcpu_dt_id(cpu); char *nodename; uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 0xffffffff, 0xffffffff}; uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; uint32_t page_sizes_prop[64]; size_t page_sizes_prop_size; if ((index % smt) != 0) { continue; } nodename = g_strdup_printf("%s@%x", dc->fw_name, index); _FDT((fdt_begin_node(fdt, nodename))); g_free(nodename); _FDT((fdt_property_cell(fdt, "reg", index))); _FDT((fdt_property_string(fdt, "device_type", "cpu"))); _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR]))); _FDT((fdt_property_cell(fdt, "d-cache-block-size", env->dcache_line_size))); _FDT((fdt_property_cell(fdt, "d-cache-line-size", env->dcache_line_size))); _FDT((fdt_property_cell(fdt, "i-cache-block-size", env->icache_line_size))); _FDT((fdt_property_cell(fdt, "i-cache-line-size", env->icache_line_size))); if (pcc->l1_dcache_size) { _FDT((fdt_property_cell(fdt, "d-cache-size", pcc->l1_dcache_size))); } else { fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n"); } if (pcc->l1_icache_size) { _FDT((fdt_property_cell(fdt, "i-cache-size", pcc->l1_icache_size))); } else { fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n"); } _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq))); _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq))); _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr))); _FDT((fdt_property_string(fdt, "status", "okay"))); _FDT((fdt_property(fdt, "64-bit", NULL, 0))); if (env->spr_cb[SPR_PURR].oea_read) { _FDT((fdt_property(fdt, "ibm,purr", NULL, 0))); } if (env->mmu_model & POWERPC_MMU_1TSEG) { _FDT((fdt_property(fdt, "ibm,processor-segment-sizes", segs, sizeof(segs)))); } /* Advertise VMX/VSX (vector extensions) if available * 0 / no property == no vector extensions * 1 == VMX / Altivec available * 2 == VSX available */ if (env->insns_flags & PPC_ALTIVEC) { uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx))); } /* Advertise DFP (Decimal Floating Point) if available * 0 / no property == no DFP * 1 == DFP available */ if (env->insns_flags2 & PPC2_DFP) { _FDT((fdt_property_cell(fdt, "ibm,dfp", 1))); } page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop, sizeof(page_sizes_prop)); if (page_sizes_prop_size) { _FDT((fdt_property(fdt, "ibm,segment-page-sizes", page_sizes_prop, page_sizes_prop_size))); } _FDT((fdt_property_cell(fdt, "ibm,chip-id", cs->cpu_index / cpus_per_socket))); _FDT((fdt_end_node(fdt))); } _FDT((fdt_end_node(fdt))); /* RTAS */ _FDT((fdt_begin_node(fdt, "rtas"))); _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str, hypertas->len))); g_string_free(hypertas, TRUE); _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str, qemu_hypertas->len))); g_string_free(qemu_hypertas, TRUE); _FDT((fdt_property(fdt, "ibm,associativity-reference-points", refpoints, sizeof(refpoints)))); _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX))); _FDT((fdt_end_node(fdt))); /* interrupt controller */ _FDT((fdt_begin_node(fdt, "interrupt-controller"))); _FDT((fdt_property_string(fdt, "device_type", "PowerPC-External-Interrupt-Presentation"))); _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", interrupt_server_ranges_prop, sizeof(interrupt_server_ranges_prop)))); _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); _FDT((fdt_end_node(fdt))); /* vdevice */ _FDT((fdt_begin_node(fdt, "vdevice"))); _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); _FDT((fdt_end_node(fdt))); /* event-sources */ spapr_events_fdt_skel(fdt, epow_irq); _FDT((fdt_end_node(fdt))); /* close root node */ _FDT((fdt_finish(fdt))); return fdt; } int spapr_h_cas_compose_response(target_ulong addr, target_ulong size) { void *fdt, *fdt_skel; sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; size -= sizeof(hdr); /* Create sceleton */ fdt_skel = g_malloc0(size); _FDT((fdt_create(fdt_skel, size))); _FDT((fdt_begin_node(fdt_skel, ""))); _FDT((fdt_end_node(fdt_skel))); _FDT((fdt_finish(fdt_skel))); fdt = g_malloc0(size); _FDT((fdt_open_into(fdt_skel, fdt, size))); g_free(fdt_skel); /* Fix skeleton up */ _FDT((spapr_fixup_cpu_dt(fdt, spapr))); /* Pack resulting tree */ _FDT((fdt_pack(fdt))); if (fdt_totalsize(fdt) + sizeof(hdr) > size) { trace_spapr_cas_failed(size); return -1; } cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); g_free(fdt); return 0; } static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt) { uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0), cpu_to_be32(0x0), cpu_to_be32(0x0), cpu_to_be32(0x0)}; char mem_name[32]; hwaddr node0_size, mem_start, node_size; uint64_t mem_reg_property[2]; int i, off; /* memory node(s) */ if (nb_numa_nodes > 1 && node_mem[0] < ram_size) { node0_size = node_mem[0]; } else { node0_size = ram_size; } /* RMA */ mem_reg_property[0] = 0; mem_reg_property[1] = cpu_to_be64(spapr->rma_size); off = fdt_add_subnode(fdt, 0, "memory@0"); _FDT(off); _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, sizeof(mem_reg_property)))); _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, sizeof(associativity)))); /* RAM: Node 0 */ if (node0_size > spapr->rma_size) { mem_reg_property[0] = cpu_to_be64(spapr->rma_size); mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size); sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size); off = fdt_add_subnode(fdt, 0, mem_name); _FDT(off); _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, sizeof(mem_reg_property)))); _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, sizeof(associativity)))); } /* RAM: Node 1 and beyond */ mem_start = node0_size; for (i = 1; i < nb_numa_nodes; i++) { mem_reg_property[0] = cpu_to_be64(mem_start); if (mem_start >= ram_size) { node_size = 0; } else { node_size = node_mem[i]; if (node_size > ram_size - mem_start) { node_size = ram_size - mem_start; } } mem_reg_property[1] = cpu_to_be64(node_size); associativity[3] = associativity[4] = cpu_to_be32(i); sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start); off = fdt_add_subnode(fdt, 0, mem_name); _FDT(off); _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, sizeof(mem_reg_property)))); _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, sizeof(associativity)))); mem_start += node_size; } return 0; } static void spapr_finalize_fdt(sPAPREnvironment *spapr, hwaddr fdt_addr, hwaddr rtas_addr, hwaddr rtas_size) { int ret, i; size_t cb = 0; char *bootlist; void *fdt; sPAPRPHBState *phb; fdt = g_malloc(FDT_MAX_SIZE); /* open out the base tree into a temp buffer for the final tweaks */ _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); ret = spapr_populate_memory(spapr, fdt); if (ret < 0) { fprintf(stderr, "couldn't setup memory nodes in fdt\n"); exit(1); } ret = spapr_populate_vdevice(spapr->vio_bus, fdt); if (ret < 0) { fprintf(stderr, "couldn't setup vio devices in fdt\n"); exit(1); } QLIST_FOREACH(phb, &spapr->phbs, list) { ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); } if (ret < 0) { fprintf(stderr, "couldn't setup PCI devices in fdt\n"); exit(1); } /* RTAS */ ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); if (ret < 0) { fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); } /* Advertise NUMA via ibm,associativity */ ret = spapr_fixup_cpu_dt(fdt, spapr); if (ret < 0) { fprintf(stderr, "Couldn't finalize CPU device tree properties\n"); } bootlist = get_boot_devices_list(&cb, true); if (cb && bootlist) { int offset = fdt_path_offset(fdt, "/chosen"); if (offset < 0) { exit(1); } for (i = 0; i < cb; i++) { if (bootlist[i] == '\n') { bootlist[i] = ' '; } } ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist); } if (!spapr->has_graphics) { spapr_populate_chosen_stdout(fdt, spapr->vio_bus); } _FDT((fdt_pack(fdt))); if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n", fdt_totalsize(fdt), FDT_MAX_SIZE); exit(1); } cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); g_free(fdt); } static uint64_t translate_kernel_address(void *opaque, uint64_t addr) { return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; } static void emulate_spapr_hypercall(PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; if (msr_pr) { hcall_dprintf("Hypercall made with MSR[PR]=1\n"); env->gpr[3] = H_PRIVILEGE; } else { env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); } } static void spapr_reset_htab(sPAPREnvironment *spapr) { long shift; /* allocate hash page table. For now we always make this 16mb, * later we should probably make it scale to the size of guest * RAM */ shift = kvmppc_reset_htab(spapr->htab_shift); if (shift > 0) { /* Kernel handles htab, we don't need to allocate one */ spapr->htab_shift = shift; kvmppc_kern_htab = true; } else { if (!spapr->htab) { /* Allocate an htab if we don't yet have one */ spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr)); } /* And clear it */ memset(spapr->htab, 0, HTAB_SIZE(spapr)); } /* Update the RMA size if necessary */ if (spapr->vrma_adjust) { hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; spapr->rma_size = kvmppc_rma_size(node0_size, spapr->htab_shift); } } static void ppc_spapr_reset(void) { PowerPCCPU *first_ppc_cpu; /* Reset the hash table & recalc the RMA */ spapr_reset_htab(spapr); qemu_devices_reset(); /* Load the fdt */ spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, spapr->rtas_size); /* Set up the entry state */ first_ppc_cpu = POWERPC_CPU(first_cpu); first_ppc_cpu->env.gpr[3] = spapr->fdt_addr; first_ppc_cpu->env.gpr[5] = 0; first_cpu->halted = 0; first_ppc_cpu->env.nip = spapr->entry_point; } static void spapr_cpu_reset(void *opaque) { PowerPCCPU *cpu = opaque; CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; cpu_reset(cs); /* All CPUs start halted. CPU0 is unhalted from the machine level * reset code and the rest are explicitly started up by the guest * using an RTAS call */ cs->halted = 1; env->spr[SPR_HIOR] = 0; env->external_htab = (uint8_t *)spapr->htab; if (kvm_enabled() && !env->external_htab) { /* * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte* * functions do the right thing. */ env->external_htab = (void *)1; } env->htab_base = -1; /* * htab_mask is the mask used to normalize hash value to PTEG index. * htab_shift is log2 of hash table size. * We have 8 hpte per group, and each hpte is 16 bytes. * ie have 128 bytes per hpte entry. */ env->htab_mask = (1ULL << ((spapr)->htab_shift - 7)) - 1; env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); } static void spapr_create_nvram(sPAPREnvironment *spapr) { DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); if (dinfo) { qdev_prop_set_drive_nofail(dev, "drive", dinfo->bdrv); } qdev_init_nofail(dev); spapr->nvram = (struct sPAPRNVRAM *)dev; } /* Returns whether we want to use VGA or not */ static int spapr_vga_init(PCIBus *pci_bus) { switch (vga_interface_type) { case VGA_NONE: return false; case VGA_DEVICE: return true; case VGA_STD: return pci_vga_init(pci_bus) != NULL; default: fprintf(stderr, "This vga model is not supported," "currently it only supports -vga std\n"); exit(0); } } static const VMStateDescription vmstate_spapr = { .name = "spapr", .version_id = 2, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(next_irq, sPAPREnvironment), /* RTC offset */ VMSTATE_UINT64(rtc_offset, sPAPREnvironment), VMSTATE_PPC_TIMEBASE_V(tb, sPAPREnvironment, 2), VMSTATE_END_OF_LIST() }, }; #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) static int htab_save_setup(QEMUFile *f, void *opaque) { sPAPREnvironment *spapr = opaque; /* "Iteration" header */ qemu_put_be32(f, spapr->htab_shift); if (spapr->htab) { spapr->htab_save_index = 0; spapr->htab_first_pass = true; } else { assert(kvm_enabled()); spapr->htab_fd = kvmppc_get_htab_fd(false); if (spapr->htab_fd < 0) { fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n", strerror(errno)); return -1; } } return 0; } static void htab_save_first_pass(QEMUFile *f, sPAPREnvironment *spapr, int64_t max_ns) { int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; int index = spapr->htab_save_index; int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); assert(spapr->htab_first_pass); do { int chunkstart; /* Consume invalid HPTEs */ while ((index < htabslots) && !HPTE_VALID(HPTE(spapr->htab, index))) { index++; CLEAN_HPTE(HPTE(spapr->htab, index)); } /* Consume valid HPTEs */ chunkstart = index; while ((index < htabslots) && HPTE_VALID(HPTE(spapr->htab, index))) { index++; CLEAN_HPTE(HPTE(spapr->htab, index)); } if (index > chunkstart) { int n_valid = index - chunkstart; qemu_put_be32(f, chunkstart); qemu_put_be16(f, n_valid); qemu_put_be16(f, 0); qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), HASH_PTE_SIZE_64 * n_valid); if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { break; } } } while ((index < htabslots) && !qemu_file_rate_limit(f)); if (index >= htabslots) { assert(index == htabslots); index = 0; spapr->htab_first_pass = false; } spapr->htab_save_index = index; } static int htab_save_later_pass(QEMUFile *f, sPAPREnvironment *spapr, int64_t max_ns) { bool final = max_ns < 0; int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; int examined = 0, sent = 0; int index = spapr->htab_save_index; int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); assert(!spapr->htab_first_pass); do { int chunkstart, invalidstart; /* Consume non-dirty HPTEs */ while ((index < htabslots) && !HPTE_DIRTY(HPTE(spapr->htab, index))) { index++; examined++; } chunkstart = index; /* Consume valid dirty HPTEs */ while ((index < htabslots) && HPTE_DIRTY(HPTE(spapr->htab, index)) && HPTE_VALID(HPTE(spapr->htab, index))) { CLEAN_HPTE(HPTE(spapr->htab, index)); index++; examined++; } invalidstart = index; /* Consume invalid dirty HPTEs */ while ((index < htabslots) && HPTE_DIRTY(HPTE(spapr->htab, index)) && !HPTE_VALID(HPTE(spapr->htab, index))) { CLEAN_HPTE(HPTE(spapr->htab, index)); index++; examined++; } if (index > chunkstart) { int n_valid = invalidstart - chunkstart; int n_invalid = index - invalidstart; qemu_put_be32(f, chunkstart); qemu_put_be16(f, n_valid); qemu_put_be16(f, n_invalid); qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), HASH_PTE_SIZE_64 * n_valid); sent += index - chunkstart; if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { break; } } if (examined >= htabslots) { break; } if (index >= htabslots) { assert(index == htabslots); index = 0; } } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); if (index >= htabslots) { assert(index == htabslots); index = 0; } spapr->htab_save_index = index; return (examined >= htabslots) && (sent == 0) ? 1 : 0; } #define MAX_ITERATION_NS 5000000 /* 5 ms */ #define MAX_KVM_BUF_SIZE 2048 static int htab_save_iterate(QEMUFile *f, void *opaque) { sPAPREnvironment *spapr = opaque; int rc = 0; /* Iteration header */ qemu_put_be32(f, 0); if (!spapr->htab) { assert(kvm_enabled()); rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); if (rc < 0) { return rc; } } else if (spapr->htab_first_pass) { htab_save_first_pass(f, spapr, MAX_ITERATION_NS); } else { rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); } /* End marker */ qemu_put_be32(f, 0); qemu_put_be16(f, 0); qemu_put_be16(f, 0); return rc; } static int htab_save_complete(QEMUFile *f, void *opaque) { sPAPREnvironment *spapr = opaque; /* Iteration header */ qemu_put_be32(f, 0); if (!spapr->htab) { int rc; assert(kvm_enabled()); rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1); if (rc < 0) { return rc; } close(spapr->htab_fd); spapr->htab_fd = -1; } else { htab_save_later_pass(f, spapr, -1); } /* End marker */ qemu_put_be32(f, 0); qemu_put_be16(f, 0); qemu_put_be16(f, 0); return 0; } static int htab_load(QEMUFile *f, void *opaque, int version_id) { sPAPREnvironment *spapr = opaque; uint32_t section_hdr; int fd = -1; if (version_id < 1 || version_id > 1) { fprintf(stderr, "htab_load() bad version\n"); return -EINVAL; } section_hdr = qemu_get_be32(f); if (section_hdr) { /* First section, just the hash shift */ if (spapr->htab_shift != section_hdr) { return -EINVAL; } return 0; } if (!spapr->htab) { assert(kvm_enabled()); fd = kvmppc_get_htab_fd(true); if (fd < 0) { fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n", strerror(errno)); } } while (true) { uint32_t index; uint16_t n_valid, n_invalid; index = qemu_get_be32(f); n_valid = qemu_get_be16(f); n_invalid = qemu_get_be16(f); if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { /* End of Stream */ break; } if ((index + n_valid + n_invalid) > (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { /* Bad index in stream */ fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) " "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid, spapr->htab_shift); return -EINVAL; } if (spapr->htab) { if (n_valid) { qemu_get_buffer(f, HPTE(spapr->htab, index), HASH_PTE_SIZE_64 * n_valid); } if (n_invalid) { memset(HPTE(spapr->htab, index + n_valid), 0, HASH_PTE_SIZE_64 * n_invalid); } } else { int rc; assert(fd >= 0); rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); if (rc < 0) { return rc; } } } if (!spapr->htab) { assert(fd >= 0); close(fd); } return 0; } static SaveVMHandlers savevm_htab_handlers = { .save_live_setup = htab_save_setup, .save_live_iterate = htab_save_iterate, .save_live_complete = htab_save_complete, .load_state = htab_load, }; /* pSeries LPAR / sPAPR hardware init */ static void ppc_spapr_init(MachineState *machine) { ram_addr_t ram_size = machine->ram_size; const char *cpu_model = machine->cpu_model; const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; const char *initrd_filename = machine->initrd_filename; const char *boot_device = machine->boot_order; PowerPCCPU *cpu; CPUPPCState *env; PCIHostState *phb; int i; MemoryRegion *sysmem = get_system_memory(); MemoryRegion *ram = g_new(MemoryRegion, 1); hwaddr rma_alloc_size; hwaddr node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; uint32_t initrd_base = 0; long kernel_size = 0, initrd_size = 0; long load_limit, rtas_limit, fw_size; bool kernel_le = false; char *filename; msi_supported = true; spapr = g_malloc0(sizeof(*spapr)); QLIST_INIT(&spapr->phbs); cpu_ppc_hypercall = emulate_spapr_hypercall; /* Allocate RMA if necessary */ rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem); if (rma_alloc_size == -1) { hw_error("qemu: Unable to create RMA\n"); exit(1); } if (rma_alloc_size && (rma_alloc_size < node0_size)) { spapr->rma_size = rma_alloc_size; } else { spapr->rma_size = node0_size; /* With KVM, we don't actually know whether KVM supports an * unbounded RMA (PR KVM) or is limited by the hash table size * (HV KVM using VRMA), so we always assume the latter * * In that case, we also limit the initial allocations for RTAS * etc... to 256M since we have no way to know what the VRMA size * is going to be as it depends on the size of the hash table * isn't determined yet. */ if (kvm_enabled()) { spapr->vrma_adjust = 1; spapr->rma_size = MIN(spapr->rma_size, 0x10000000); } } if (spapr->rma_size > node0_size) { fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n", spapr->rma_size); exit(1); } /* We place the device tree and RTAS just below either the top of the RMA, * or just below 2GB, whichever is lowere, so that it can be * processed with 32-bit real mode code if necessary */ rtas_limit = MIN(spapr->rma_size, 0x80000000); spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; load_limit = spapr->fdt_addr - FW_OVERHEAD; /* We aim for a hash table of size 1/128 the size of RAM. The * normal rule of thumb is 1/64 the size of RAM, but that's much * more than needed for the Linux guests we support. */ spapr->htab_shift = 18; /* Minimum architected size */ while (spapr->htab_shift <= 46) { if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) { break; } spapr->htab_shift++; } /* Set up Interrupt Controller before we create the VCPUs */ spapr->icp = xics_system_init(smp_cpus * kvmppc_smt_threads() / smp_threads, XICS_IRQS); spapr->next_irq = XICS_IRQ_BASE; /* init CPUs */ if (cpu_model == NULL) { cpu_model = kvm_enabled() ? "host" : "POWER7"; } for (i = 0; i < smp_cpus; i++) { cpu = cpu_ppc_init(cpu_model); if (cpu == NULL) { fprintf(stderr, "Unable to find PowerPC CPU definition\n"); exit(1); } env = &cpu->env; /* Set time-base frequency to 512 MHz */ cpu_ppc_tb_init(env, TIMEBASE_FREQ); /* PAPR always has exception vectors in RAM not ROM. To ensure this, * MSR[IP] should never be set. */ env->msr_mask &= ~(1 << 6); /* Tell KVM that we're in PAPR mode */ if (kvm_enabled()) { kvmppc_set_papr(cpu); } if (cpu->max_compat) { if (ppc_set_compat(cpu, cpu->max_compat) < 0) { exit(1); } } xics_cpu_setup(spapr->icp, cpu); qemu_register_reset(spapr_cpu_reset, cpu); } /* allocate RAM */ spapr->ram_limit = ram_size; if (spapr->ram_limit > rma_alloc_size) { ram_addr_t nonrma_base = rma_alloc_size; ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size; memory_region_init_ram(ram, NULL, "ppc_spapr.ram", nonrma_size); vmstate_register_ram_global(ram); memory_region_add_subregion(sysmem, nonrma_base, ram); } filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr, rtas_limit - spapr->rtas_addr); if (spapr->rtas_size < 0) { hw_error("qemu: could not load LPAR rtas '%s'\n", filename); exit(1); } if (spapr->rtas_size > RTAS_MAX_SIZE) { hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n", spapr->rtas_size, RTAS_MAX_SIZE); exit(1); } g_free(filename); /* Set up EPOW events infrastructure */ spapr_events_init(spapr); /* Set up VIO bus */ spapr->vio_bus = spapr_vio_bus_init(); for (i = 0; i < MAX_SERIAL_PORTS; i++) { if (serial_hds[i]) { spapr_vty_create(spapr->vio_bus, serial_hds[i]); } } /* We always have at least the nvram device on VIO */ spapr_create_nvram(spapr); /* Set up PCI */ spapr_pci_msi_init(spapr, SPAPR_PCI_MSI_WINDOW); spapr_pci_rtas_init(); phb = spapr_create_phb(spapr, 0); for (i = 0; i < nb_nics; i++) { NICInfo *nd = &nd_table[i]; if (!nd->model) { nd->model = g_strdup("ibmveth"); } if (strcmp(nd->model, "ibmveth") == 0) { spapr_vlan_create(spapr->vio_bus, nd); } else { pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); } } for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { spapr_vscsi_create(spapr->vio_bus); } /* Graphics */ if (spapr_vga_init(phb->bus)) { spapr->has_graphics = true; } if (usb_enabled(spapr->has_graphics)) { pci_create_simple(phb->bus, -1, "pci-ohci"); if (spapr->has_graphics) { usbdevice_create("keyboard"); usbdevice_create("mouse"); } } if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { fprintf(stderr, "qemu: pSeries SLOF firmware requires >= " "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF); exit(1); } if (kernel_filename) { uint64_t lowaddr = 0; kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0); if (kernel_size == ELF_LOAD_WRONG_ENDIAN) { kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0); kernel_le = kernel_size > 0; } if (kernel_size < 0) { fprintf(stderr, "qemu: error loading %s: %s\n", kernel_filename, load_elf_strerror(kernel_size)); exit(1); } /* load initrd */ if (initrd_filename) { /* Try to locate the initrd in the gap between the kernel * and the firmware. Add a bit of space just in case */ initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff; initrd_size = load_image_targphys(initrd_filename, initrd_base, load_limit - initrd_base); if (initrd_size < 0) { fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", initrd_filename); exit(1); } } else { initrd_base = 0; initrd_size = 0; } } if (bios_name == NULL) { bios_name = FW_FILE_NAME; } filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); if (fw_size < 0) { hw_error("qemu: could not load LPAR rtas '%s'\n", filename); exit(1); } g_free(filename); spapr->entry_point = 0x100; vmstate_register(NULL, 0, &vmstate_spapr, spapr); register_savevm_live(NULL, "spapr/htab", -1, 1, &savevm_htab_handlers, spapr); /* Prepare the device tree */ spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size, kernel_size, kernel_le, boot_device, kernel_cmdline, spapr->epow_irq); assert(spapr->fdt_skel != NULL); } static int spapr_kvm_type(const char *vm_type) { if (!vm_type) { return 0; } if (!strcmp(vm_type, "HV")) { return 1; } if (!strcmp(vm_type, "PR")) { return 2; } error_report("Unknown kvm-type specified '%s'", vm_type); exit(1); } /* * Implementation of an interface to adjust firmware patch * for the bootindex property handling. */ static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, DeviceState *dev) { #define CAST(type, obj, name) \ ((type *)object_dynamic_cast(OBJECT(obj), (name))) SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); if (d) { void *spapr = CAST(void, bus->parent, "spapr-vscsi"); VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); if (spapr) { /* * Replace "channel@0/disk@0,0" with "disk@8000000000000000": * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun * in the top 16 bits of the 64-bit LUN */ unsigned id = 0x8000 | (d->id << 8) | d->lun; return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), (uint64_t)id << 48); } else if (virtio) { /* * We use SRP luns of the form 01000000 | (target << 8) | lun * in the top 32 bits of the 64-bit LUN * Note: the quote above is from SLOF and it is wrong, * the actual binding is: * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) */ unsigned id = 0x1000000 | (d->id << 16) | d->lun; return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), (uint64_t)id << 32); } else if (usb) { /* * We use SRP luns of the form 01000000 | (usb-port << 16) | lun * in the top 32 bits of the 64-bit LUN */ unsigned usb_port = atoi(usb->port->path); unsigned id = 0x1000000 | (usb_port << 16) | d->lun; return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), (uint64_t)id << 32); } } if (phb) { /* Replace "pci" with "pci@800000020000000" */ return g_strdup_printf("pci@%"PRIX64, phb->buid); } return NULL; } static void spapr_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); mc->name = "pseries"; mc->desc = "pSeries Logical Partition (PAPR compliant)"; mc->is_default = 1; mc->init = ppc_spapr_init; mc->reset = ppc_spapr_reset; mc->block_default_type = IF_SCSI; mc->max_cpus = MAX_CPUS; mc->no_parallel = 1; mc->default_boot_order = NULL; mc->kvm_type = spapr_kvm_type; fwc->get_dev_path = spapr_get_fw_dev_path; } static const TypeInfo spapr_machine_info = { .name = TYPE_SPAPR_MACHINE, .parent = TYPE_MACHINE, .class_init = spapr_machine_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_FW_PATH_PROVIDER }, { } }, }; static void spapr_machine_register_types(void) { type_register_static(&spapr_machine_info); } type_init(spapr_machine_register_types)