/* * QEMU generic PowerPC hardware System Emulator * * Copyright (c) 2003-2007 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "ppc.h" #include "qemu-timer.h" #include "sysemu.h" #include "nvram.h" #include "qemu-log.h" //#define PPC_DEBUG_IRQ //#define PPC_DEBUG_TB #ifdef PPC_DEBUG_IRQ # define LOG_IRQ(...) do { \ if (loglevel & CPU_LOG_INT) \ fprintf(logfile, ## __VA_ARGS__); \ } while (0) #else # define LOG_IRQ(...) do { } while (0) #endif #ifdef PPC_DEBUG_TB # define LOG_TB(...) do { \ if (loglevel) \ fprintf(logfile, ## __VA_ARGS__); \ } while (0) #else # define LOG_TB(...) do { } while (0) #endif static void cpu_ppc_tb_stop (CPUState *env); static void cpu_ppc_tb_start (CPUState *env); static void ppc_set_irq (CPUState *env, int n_IRQ, int level) { if (level) { env->pending_interrupts |= 1 << n_IRQ; cpu_interrupt(env, CPU_INTERRUPT_HARD); } else { env->pending_interrupts &= ~(1 << n_IRQ); if (env->pending_interrupts == 0) cpu_reset_interrupt(env, CPU_INTERRUPT_HARD); } LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32 "req %08x\n", __func__, env, n_IRQ, level, env->pending_interrupts, env->interrupt_request); } /* PowerPC 6xx / 7xx internal IRQ controller */ static void ppc6xx_set_irq (void *opaque, int pin, int level) { CPUState *env = opaque; int cur_level; LOG_IRQ("%s: env %p pin %d level %d\n", __func__, env, pin, level); cur_level = (env->irq_input_state >> pin) & 1; /* Don't generate spurious events */ if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { switch (pin) { case PPC6xx_INPUT_TBEN: /* Level sensitive - active high */ LOG_IRQ("%s: %s the time base\n", __func__, level ? "start" : "stop"); if (level) { cpu_ppc_tb_start(env); } else { cpu_ppc_tb_stop(env); } case PPC6xx_INPUT_INT: /* Level sensitive - active high */ LOG_IRQ("%s: set the external IRQ state to %d\n", __func__, level); ppc_set_irq(env, PPC_INTERRUPT_EXT, level); break; case PPC6xx_INPUT_SMI: /* Level sensitive - active high */ LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__, level); ppc_set_irq(env, PPC_INTERRUPT_SMI, level); break; case PPC6xx_INPUT_MCP: /* Negative edge sensitive */ /* XXX: TODO: actual reaction may depends on HID0 status * 603/604/740/750: check HID0[EMCP] */ if (cur_level == 1 && level == 0) { LOG_IRQ("%s: raise machine check state\n", __func__); ppc_set_irq(env, PPC_INTERRUPT_MCK, 1); } break; case PPC6xx_INPUT_CKSTP_IN: /* Level sensitive - active low */ /* XXX: TODO: relay the signal to CKSTP_OUT pin */ /* XXX: Note that the only way to restart the CPU is to reset it */ if (level) { LOG_IRQ("%s: stop the CPU\n", __func__); env->halted = 1; } break; case PPC6xx_INPUT_HRESET: /* Level sensitive - active low */ if (level) { LOG_IRQ("%s: reset the CPU\n", __func__); env->interrupt_request |= CPU_INTERRUPT_EXITTB; /* XXX: TOFIX */ #if 0 cpu_ppc_reset(env); #else qemu_system_reset_request(); #endif } break; case PPC6xx_INPUT_SRESET: LOG_IRQ("%s: set the RESET IRQ state to %d\n", __func__, level); ppc_set_irq(env, PPC_INTERRUPT_RESET, level); break; default: /* Unknown pin - do nothing */ LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); return; } if (level) env->irq_input_state |= 1 << pin; else env->irq_input_state &= ~(1 << pin); } } void ppc6xx_irq_init (CPUState *env) { env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env, PPC6xx_INPUT_NB); } #if defined(TARGET_PPC64) /* PowerPC 970 internal IRQ controller */ static void ppc970_set_irq (void *opaque, int pin, int level) { CPUState *env = opaque; int cur_level; LOG_IRQ("%s: env %p pin %d level %d\n", __func__, env, pin, level); cur_level = (env->irq_input_state >> pin) & 1; /* Don't generate spurious events */ if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { switch (pin) { case PPC970_INPUT_INT: /* Level sensitive - active high */ LOG_IRQ("%s: set the external IRQ state to %d\n", __func__, level); ppc_set_irq(env, PPC_INTERRUPT_EXT, level); break; case PPC970_INPUT_THINT: /* Level sensitive - active high */ LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__, level); ppc_set_irq(env, PPC_INTERRUPT_THERM, level); break; case PPC970_INPUT_MCP: /* Negative edge sensitive */ /* XXX: TODO: actual reaction may depends on HID0 status * 603/604/740/750: check HID0[EMCP] */ if (cur_level == 1 && level == 0) { LOG_IRQ("%s: raise machine check state\n", __func__); ppc_set_irq(env, PPC_INTERRUPT_MCK, 1); } break; case PPC970_INPUT_CKSTP: /* Level sensitive - active low */ /* XXX: TODO: relay the signal to CKSTP_OUT pin */ if (level) { LOG_IRQ("%s: stop the CPU\n", __func__); env->halted = 1; } else { LOG_IRQ("%s: restart the CPU\n", __func__); env->halted = 0; } break; case PPC970_INPUT_HRESET: /* Level sensitive - active low */ if (level) { #if 0 // XXX: TOFIX LOG_IRQ("%s: reset the CPU\n", __func__); cpu_reset(env); #endif } break; case PPC970_INPUT_SRESET: LOG_IRQ("%s: set the RESET IRQ state to %d\n", __func__, level); ppc_set_irq(env, PPC_INTERRUPT_RESET, level); break; case PPC970_INPUT_TBEN: LOG_IRQ("%s: set the TBEN state to %d\n", __func__, level); /* XXX: TODO */ break; default: /* Unknown pin - do nothing */ LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); return; } if (level) env->irq_input_state |= 1 << pin; else env->irq_input_state &= ~(1 << pin); } } void ppc970_irq_init (CPUState *env) { env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env, PPC970_INPUT_NB); } #endif /* defined(TARGET_PPC64) */ /* PowerPC 40x internal IRQ controller */ static void ppc40x_set_irq (void *opaque, int pin, int level) { CPUState *env = opaque; int cur_level; LOG_IRQ("%s: env %p pin %d level %d\n", __func__, env, pin, level); cur_level = (env->irq_input_state >> pin) & 1; /* Don't generate spurious events */ if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) { switch (pin) { case PPC40x_INPUT_RESET_SYS: if (level) { LOG_IRQ("%s: reset the PowerPC system\n", __func__); ppc40x_system_reset(env); } break; case PPC40x_INPUT_RESET_CHIP: if (level) { LOG_IRQ("%s: reset the PowerPC chip\n", __func__); ppc40x_chip_reset(env); } break; case PPC40x_INPUT_RESET_CORE: /* XXX: TODO: update DBSR[MRR] */ if (level) { LOG_IRQ("%s: reset the PowerPC core\n", __func__); ppc40x_core_reset(env); } break; case PPC40x_INPUT_CINT: /* Level sensitive - active high */ LOG_IRQ("%s: set the critical IRQ state to %d\n", __func__, level); ppc_set_irq(env, PPC_INTERRUPT_CEXT, level); break; case PPC40x_INPUT_INT: /* Level sensitive - active high */ LOG_IRQ("%s: set the external IRQ state to %d\n", __func__, level); ppc_set_irq(env, PPC_INTERRUPT_EXT, level); break; case PPC40x_INPUT_HALT: /* Level sensitive - active low */ if (level) { LOG_IRQ("%s: stop the CPU\n", __func__); env->halted = 1; } else { LOG_IRQ("%s: restart the CPU\n", __func__); env->halted = 0; } break; case PPC40x_INPUT_DEBUG: /* Level sensitive - active high */ LOG_IRQ("%s: set the debug pin state to %d\n", __func__, level); ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level); break; default: /* Unknown pin - do nothing */ LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin); return; } if (level) env->irq_input_state |= 1 << pin; else env->irq_input_state &= ~(1 << pin); } } void ppc40x_irq_init (CPUState *env) { env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq, env, PPC40x_INPUT_NB); } /*****************************************************************************/ /* PowerPC time base and decrementer emulation */ struct ppc_tb_t { /* Time base management */ int64_t tb_offset; /* Compensation */ int64_t atb_offset; /* Compensation */ uint32_t tb_freq; /* TB frequency */ /* Decrementer management */ uint64_t decr_next; /* Tick for next decr interrupt */ uint32_t decr_freq; /* decrementer frequency */ struct QEMUTimer *decr_timer; /* Hypervisor decrementer management */ uint64_t hdecr_next; /* Tick for next hdecr interrupt */ struct QEMUTimer *hdecr_timer; uint64_t purr_load; uint64_t purr_start; void *opaque; }; static always_inline uint64_t cpu_ppc_get_tb (ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset) { /* TB time in tb periods */ return muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec) + tb_offset; } uint32_t cpu_ppc_load_tbl (CPUState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb; tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset); LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); return tb & 0xFFFFFFFF; } static always_inline uint32_t _cpu_ppc_load_tbu (CPUState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb; tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset); LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); return tb >> 32; } uint32_t cpu_ppc_load_tbu (CPUState *env) { return _cpu_ppc_load_tbu(env); } static always_inline void cpu_ppc_store_tb (ppc_tb_t *tb_env, uint64_t vmclk, int64_t *tb_offsetp, uint64_t value) { *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec); LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n", __func__, value, *tb_offsetp); } void cpu_ppc_store_tbl (CPUState *env, uint32_t value) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb; tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset); tb &= 0xFFFFFFFF00000000ULL; cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock), &tb_env->tb_offset, tb | (uint64_t)value); } static always_inline void _cpu_ppc_store_tbu (CPUState *env, uint32_t value) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb; tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset); tb &= 0x00000000FFFFFFFFULL; cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock), &tb_env->tb_offset, ((uint64_t)value << 32) | tb); } void cpu_ppc_store_tbu (CPUState *env, uint32_t value) { _cpu_ppc_store_tbu(env, value); } uint32_t cpu_ppc_load_atbl (CPUState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb; tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset); LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); return tb & 0xFFFFFFFF; } uint32_t cpu_ppc_load_atbu (CPUState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb; tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset); LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb); return tb >> 32; } void cpu_ppc_store_atbl (CPUState *env, uint32_t value) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb; tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset); tb &= 0xFFFFFFFF00000000ULL; cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock), &tb_env->atb_offset, tb | (uint64_t)value); } void cpu_ppc_store_atbu (CPUState *env, uint32_t value) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb; tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset); tb &= 0x00000000FFFFFFFFULL; cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock), &tb_env->atb_offset, ((uint64_t)value << 32) | tb); } static void cpu_ppc_tb_stop (CPUState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb, atb, vmclk; /* If the time base is already frozen, do nothing */ if (tb_env->tb_freq != 0) { vmclk = qemu_get_clock(vm_clock); /* Get the time base */ tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset); /* Get the alternate time base */ atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset); /* Store the time base value (ie compute the current offset) */ cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); /* Store the alternate time base value (compute the current offset) */ cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); /* Set the time base frequency to zero */ tb_env->tb_freq = 0; /* Now, the time bases are frozen to tb_offset / atb_offset value */ } } static void cpu_ppc_tb_start (CPUState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t tb, atb, vmclk; /* If the time base is not frozen, do nothing */ if (tb_env->tb_freq == 0) { vmclk = qemu_get_clock(vm_clock); /* Get the time base from tb_offset */ tb = tb_env->tb_offset; /* Get the alternate time base from atb_offset */ atb = tb_env->atb_offset; /* Restore the tb frequency from the decrementer frequency */ tb_env->tb_freq = tb_env->decr_freq; /* Store the time base value */ cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb); /* Store the alternate time base value */ cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb); } } static always_inline uint32_t _cpu_ppc_load_decr (CPUState *env, uint64_t *next) { ppc_tb_t *tb_env = env->tb_env; uint32_t decr; int64_t diff; diff = tb_env->decr_next - qemu_get_clock(vm_clock); if (diff >= 0) decr = muldiv64(diff, tb_env->decr_freq, ticks_per_sec); else decr = -muldiv64(-diff, tb_env->decr_freq, ticks_per_sec); LOG_TB("%s: %08" PRIx32 "\n", __func__, decr); return decr; } uint32_t cpu_ppc_load_decr (CPUState *env) { ppc_tb_t *tb_env = env->tb_env; return _cpu_ppc_load_decr(env, &tb_env->decr_next); } uint32_t cpu_ppc_load_hdecr (CPUState *env) { ppc_tb_t *tb_env = env->tb_env; return _cpu_ppc_load_decr(env, &tb_env->hdecr_next); } uint64_t cpu_ppc_load_purr (CPUState *env) { ppc_tb_t *tb_env = env->tb_env; uint64_t diff; diff = qemu_get_clock(vm_clock) - tb_env->purr_start; return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, ticks_per_sec); } /* When decrementer expires, * all we need to do is generate or queue a CPU exception */ static always_inline void cpu_ppc_decr_excp (CPUState *env) { /* Raise it */ LOG_TB("raise decrementer exception\n"); ppc_set_irq(env, PPC_INTERRUPT_DECR, 1); } static always_inline void cpu_ppc_hdecr_excp (CPUState *env) { /* Raise it */ LOG_TB("raise decrementer exception\n"); ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1); } static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp, struct QEMUTimer *timer, void (*raise_excp)(CPUState *), uint32_t decr, uint32_t value, int is_excp) { ppc_tb_t *tb_env = env->tb_env; uint64_t now, next; LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__, decr, value); now = qemu_get_clock(vm_clock); next = now + muldiv64(value, ticks_per_sec, tb_env->decr_freq); if (is_excp) next += *nextp - now; if (next == now) next++; *nextp = next; /* Adjust timer */ qemu_mod_timer(timer, next); /* If we set a negative value and the decrementer was positive, * raise an exception. */ if ((value & 0x80000000) && !(decr & 0x80000000)) (*raise_excp)(env); } static always_inline void _cpu_ppc_store_decr (CPUState *env, uint32_t decr, uint32_t value, int is_excp) { ppc_tb_t *tb_env = env->tb_env; __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer, &cpu_ppc_decr_excp, decr, value, is_excp); } void cpu_ppc_store_decr (CPUState *env, uint32_t value) { _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0); } static void cpu_ppc_decr_cb (void *opaque) { _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1); } static always_inline void _cpu_ppc_store_hdecr (CPUState *env, uint32_t hdecr, uint32_t value, int is_excp) { ppc_tb_t *tb_env = env->tb_env; if (tb_env->hdecr_timer != NULL) { __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer, &cpu_ppc_hdecr_excp, hdecr, value, is_excp); } } void cpu_ppc_store_hdecr (CPUState *env, uint32_t value) { _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0); } static void cpu_ppc_hdecr_cb (void *opaque) { _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1); } void cpu_ppc_store_purr (CPUState *env, uint64_t value) { ppc_tb_t *tb_env = env->tb_env; tb_env->purr_load = value; tb_env->purr_start = qemu_get_clock(vm_clock); } static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq) { CPUState *env = opaque; ppc_tb_t *tb_env = env->tb_env; tb_env->tb_freq = freq; tb_env->decr_freq = freq; /* There is a bug in Linux 2.4 kernels: * if a decrementer exception is pending when it enables msr_ee at startup, * it's not ready to handle it... */ _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0); _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0); cpu_ppc_store_purr(env, 0x0000000000000000ULL); } /* Set up (once) timebase frequency (in Hz) */ clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq) { ppc_tb_t *tb_env; tb_env = qemu_mallocz(sizeof(ppc_tb_t)); if (tb_env == NULL) return NULL; env->tb_env = tb_env; /* Create new timer */ tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env); if (0) { /* XXX: find a suitable condition to enable the hypervisor decrementer */ tb_env->hdecr_timer = qemu_new_timer(vm_clock, &cpu_ppc_hdecr_cb, env); } else { tb_env->hdecr_timer = NULL; } cpu_ppc_set_tb_clk(env, freq); return &cpu_ppc_set_tb_clk; } /* Specific helpers for POWER & PowerPC 601 RTC */ #if 0 static clk_setup_cb cpu_ppc601_rtc_init (CPUState *env) { return cpu_ppc_tb_init(env, 7812500); } #endif void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value) { _cpu_ppc_store_tbu(env, value); } uint32_t cpu_ppc601_load_rtcu (CPUState *env) { return _cpu_ppc_load_tbu(env); } void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value) { cpu_ppc_store_tbl(env, value & 0x3FFFFF80); } uint32_t cpu_ppc601_load_rtcl (CPUState *env) { return cpu_ppc_load_tbl(env) & 0x3FFFFF80; } /*****************************************************************************/ /* Embedded PowerPC timers */ /* PIT, FIT & WDT */ typedef struct ppcemb_timer_t ppcemb_timer_t; struct ppcemb_timer_t { uint64_t pit_reload; /* PIT auto-reload value */ uint64_t fit_next; /* Tick for next FIT interrupt */ struct QEMUTimer *fit_timer; uint64_t wdt_next; /* Tick for next WDT interrupt */ struct QEMUTimer *wdt_timer; }; /* Fixed interval timer */ static void cpu_4xx_fit_cb (void *opaque) { CPUState *env; ppc_tb_t *tb_env; ppcemb_timer_t *ppcemb_timer; uint64_t now, next; env = opaque; tb_env = env->tb_env; ppcemb_timer = tb_env->opaque; now = qemu_get_clock(vm_clock); switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) { case 0: next = 1 << 9; break; case 1: next = 1 << 13; break; case 2: next = 1 << 17; break; case 3: next = 1 << 21; break; default: /* Cannot occur, but makes gcc happy */ return; } next = now + muldiv64(next, ticks_per_sec, tb_env->tb_freq); if (next == now) next++; qemu_mod_timer(ppcemb_timer->fit_timer, next); env->spr[SPR_40x_TSR] |= 1 << 26; if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) ppc_set_irq(env, PPC_INTERRUPT_FIT, 1); LOG_TB("%s: ir %d TCR " ADDRX " TSR " ADDRX "\n", __func__, (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1), env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); } /* Programmable interval timer */ static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp) { ppcemb_timer_t *ppcemb_timer; uint64_t now, next; ppcemb_timer = tb_env->opaque; if (ppcemb_timer->pit_reload <= 1 || !((env->spr[SPR_40x_TCR] >> 26) & 0x1) || (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) { /* Stop PIT */ LOG_TB("%s: stop PIT\n", __func__); qemu_del_timer(tb_env->decr_timer); } else { LOG_TB("%s: start PIT %016" PRIx64 "\n", __func__, ppcemb_timer->pit_reload); now = qemu_get_clock(vm_clock); next = now + muldiv64(ppcemb_timer->pit_reload, ticks_per_sec, tb_env->decr_freq); if (is_excp) next += tb_env->decr_next - now; if (next == now) next++; qemu_mod_timer(tb_env->decr_timer, next); tb_env->decr_next = next; } } static void cpu_4xx_pit_cb (void *opaque) { CPUState *env; ppc_tb_t *tb_env; ppcemb_timer_t *ppcemb_timer; env = opaque; tb_env = env->tb_env; ppcemb_timer = tb_env->opaque; env->spr[SPR_40x_TSR] |= 1 << 27; if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) ppc_set_irq(env, PPC_INTERRUPT_PIT, 1); start_stop_pit(env, tb_env, 1); LOG_TB("%s: ar %d ir %d TCR " ADDRX " TSR " ADDRX " " "%016" PRIx64 "\n", __func__, (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1), (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1), env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR], ppcemb_timer->pit_reload); } /* Watchdog timer */ static void cpu_4xx_wdt_cb (void *opaque) { CPUState *env; ppc_tb_t *tb_env; ppcemb_timer_t *ppcemb_timer; uint64_t now, next; env = opaque; tb_env = env->tb_env; ppcemb_timer = tb_env->opaque; now = qemu_get_clock(vm_clock); switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) { case 0: next = 1 << 17; break; case 1: next = 1 << 21; break; case 2: next = 1 << 25; break; case 3: next = 1 << 29; break; default: /* Cannot occur, but makes gcc happy */ return; } next = now + muldiv64(next, ticks_per_sec, tb_env->decr_freq); if (next == now) next++; LOG_TB("%s: TCR " ADDRX " TSR " ADDRX "\n", __func__, env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]); switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) { case 0x0: case 0x1: qemu_mod_timer(ppcemb_timer->wdt_timer, next); ppcemb_timer->wdt_next = next; env->spr[SPR_40x_TSR] |= 1 << 31; break; case 0x2: qemu_mod_timer(ppcemb_timer->wdt_timer, next); ppcemb_timer->wdt_next = next; env->spr[SPR_40x_TSR] |= 1 << 30; if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) ppc_set_irq(env, PPC_INTERRUPT_WDT, 1); break; case 0x3: env->spr[SPR_40x_TSR] &= ~0x30000000; env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000; switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) { case 0x0: /* No reset */ break; case 0x1: /* Core reset */ ppc40x_core_reset(env); break; case 0x2: /* Chip reset */ ppc40x_chip_reset(env); break; case 0x3: /* System reset */ ppc40x_system_reset(env); break; } } } void store_40x_pit (CPUState *env, target_ulong val) { ppc_tb_t *tb_env; ppcemb_timer_t *ppcemb_timer; tb_env = env->tb_env; ppcemb_timer = tb_env->opaque; LOG_TB("%s val" ADDRX "\n", __func__, val); ppcemb_timer->pit_reload = val; start_stop_pit(env, tb_env, 0); } target_ulong load_40x_pit (CPUState *env) { return cpu_ppc_load_decr(env); } void store_booke_tsr (CPUState *env, target_ulong val) { LOG_TB("%s: val " ADDRX "\n", __func__, val); env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000); if (val & 0x80000000) ppc_set_irq(env, PPC_INTERRUPT_PIT, 0); } void store_booke_tcr (CPUState *env, target_ulong val) { ppc_tb_t *tb_env; tb_env = env->tb_env; LOG_TB("%s: val " ADDRX "\n", __func__, val); env->spr[SPR_40x_TCR] = val & 0xFFC00000; start_stop_pit(env, tb_env, 1); cpu_4xx_wdt_cb(env); } static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq) { CPUState *env = opaque; ppc_tb_t *tb_env = env->tb_env; LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__, freq); tb_env->tb_freq = freq; tb_env->decr_freq = freq; /* XXX: we should also update all timers */ } clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq) { ppc_tb_t *tb_env; ppcemb_timer_t *ppcemb_timer; tb_env = qemu_mallocz(sizeof(ppc_tb_t)); if (tb_env == NULL) { return NULL; } env->tb_env = tb_env; ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t)); tb_env->tb_freq = freq; tb_env->decr_freq = freq; tb_env->opaque = ppcemb_timer; LOG_TB("%s freq %" PRIu32 "\n", __func__, freq); if (ppcemb_timer != NULL) { /* We use decr timer for PIT */ tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env); ppcemb_timer->fit_timer = qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env); ppcemb_timer->wdt_timer = qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env); } return &ppc_emb_set_tb_clk; } /*****************************************************************************/ /* Embedded PowerPC Device Control Registers */ typedef struct ppc_dcrn_t ppc_dcrn_t; struct ppc_dcrn_t { dcr_read_cb dcr_read; dcr_write_cb dcr_write; void *opaque; }; /* XXX: on 460, DCR addresses are 32 bits wide, * using DCRIPR to get the 22 upper bits of the DCR address */ #define DCRN_NB 1024 struct ppc_dcr_t { ppc_dcrn_t dcrn[DCRN_NB]; int (*read_error)(int dcrn); int (*write_error)(int dcrn); }; int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, target_ulong *valp) { ppc_dcrn_t *dcr; if (dcrn < 0 || dcrn >= DCRN_NB) goto error; dcr = &dcr_env->dcrn[dcrn]; if (dcr->dcr_read == NULL) goto error; *valp = (*dcr->dcr_read)(dcr->opaque, dcrn); return 0; error: if (dcr_env->read_error != NULL) return (*dcr_env->read_error)(dcrn); return -1; } int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, target_ulong val) { ppc_dcrn_t *dcr; if (dcrn < 0 || dcrn >= DCRN_NB) goto error; dcr = &dcr_env->dcrn[dcrn]; if (dcr->dcr_write == NULL) goto error; (*dcr->dcr_write)(dcr->opaque, dcrn, val); return 0; error: if (dcr_env->write_error != NULL) return (*dcr_env->write_error)(dcrn); return -1; } int ppc_dcr_register (CPUState *env, int dcrn, void *opaque, dcr_read_cb dcr_read, dcr_write_cb dcr_write) { ppc_dcr_t *dcr_env; ppc_dcrn_t *dcr; dcr_env = env->dcr_env; if (dcr_env == NULL) return -1; if (dcrn < 0 || dcrn >= DCRN_NB) return -1; dcr = &dcr_env->dcrn[dcrn]; if (dcr->opaque != NULL || dcr->dcr_read != NULL || dcr->dcr_write != NULL) return -1; dcr->opaque = opaque; dcr->dcr_read = dcr_read; dcr->dcr_write = dcr_write; return 0; } int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn), int (*write_error)(int dcrn)) { ppc_dcr_t *dcr_env; dcr_env = qemu_mallocz(sizeof(ppc_dcr_t)); if (dcr_env == NULL) return -1; dcr_env->read_error = read_error; dcr_env->write_error = write_error; env->dcr_env = dcr_env; return 0; } #if 0 /*****************************************************************************/ /* Handle system reset (for now, just stop emulation) */ void cpu_ppc_reset (CPUState *env) { printf("Reset asked... Stop emulation\n"); abort(); } #endif /*****************************************************************************/ /* Debug port */ void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val) { addr &= 0xF; switch (addr) { case 0: printf("%c", val); break; case 1: printf("\n"); fflush(stdout); break; case 2: printf("Set loglevel to %04" PRIx32 "\n", val); cpu_set_log(val | 0x100); break; } } /*****************************************************************************/ /* NVRAM helpers */ static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr) { return (*nvram->read_fn)(nvram->opaque, addr);; } static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val) { (*nvram->write_fn)(nvram->opaque, addr, val); } void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value) { nvram_write(nvram, addr, value); } uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr) { return nvram_read(nvram, addr); } void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value) { nvram_write(nvram, addr, value >> 8); nvram_write(nvram, addr + 1, value & 0xFF); } uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr) { uint16_t tmp; tmp = nvram_read(nvram, addr) << 8; tmp |= nvram_read(nvram, addr + 1); return tmp; } void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value) { nvram_write(nvram, addr, value >> 24); nvram_write(nvram, addr + 1, (value >> 16) & 0xFF); nvram_write(nvram, addr + 2, (value >> 8) & 0xFF); nvram_write(nvram, addr + 3, value & 0xFF); } uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr) { uint32_t tmp; tmp = nvram_read(nvram, addr) << 24; tmp |= nvram_read(nvram, addr + 1) << 16; tmp |= nvram_read(nvram, addr + 2) << 8; tmp |= nvram_read(nvram, addr + 3); return tmp; } void NVRAM_set_string (nvram_t *nvram, uint32_t addr, const char *str, uint32_t max) { int i; for (i = 0; i < max && str[i] != '\0'; i++) { nvram_write(nvram, addr + i, str[i]); } nvram_write(nvram, addr + i, str[i]); nvram_write(nvram, addr + max - 1, '\0'); } int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max) { int i; memset(dst, 0, max); for (i = 0; i < max; i++) { dst[i] = NVRAM_get_byte(nvram, addr + i); if (dst[i] == '\0') break; } return i; } static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value) { uint16_t tmp; uint16_t pd, pd1, pd2; tmp = prev >> 8; pd = prev ^ value; pd1 = pd & 0x000F; pd2 = ((pd >> 4) & 0x000F) ^ pd1; tmp ^= (pd1 << 3) | (pd1 << 8); tmp ^= pd2 | (pd2 << 7) | (pd2 << 12); return tmp; } static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count) { uint32_t i; uint16_t crc = 0xFFFF; int odd; odd = count & 1; count &= ~1; for (i = 0; i != count; i++) { crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i)); } if (odd) { crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8); } return crc; } #define CMDLINE_ADDR 0x017ff000 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size, const char *arch, uint32_t RAM_size, int boot_device, uint32_t kernel_image, uint32_t kernel_size, const char *cmdline, uint32_t initrd_image, uint32_t initrd_size, uint32_t NVRAM_image, int width, int height, int depth) { uint16_t crc; /* Set parameters for Open Hack'Ware BIOS */ NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16); NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */ NVRAM_set_word(nvram, 0x14, NVRAM_size); NVRAM_set_string(nvram, 0x20, arch, 16); NVRAM_set_lword(nvram, 0x30, RAM_size); NVRAM_set_byte(nvram, 0x34, boot_device); NVRAM_set_lword(nvram, 0x38, kernel_image); NVRAM_set_lword(nvram, 0x3C, kernel_size); if (cmdline) { /* XXX: put the cmdline in NVRAM too ? */ strcpy((char *)(phys_ram_base + CMDLINE_ADDR), cmdline); NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR); NVRAM_set_lword(nvram, 0x44, strlen(cmdline)); } else { NVRAM_set_lword(nvram, 0x40, 0); NVRAM_set_lword(nvram, 0x44, 0); } NVRAM_set_lword(nvram, 0x48, initrd_image); NVRAM_set_lword(nvram, 0x4C, initrd_size); NVRAM_set_lword(nvram, 0x50, NVRAM_image); NVRAM_set_word(nvram, 0x54, width); NVRAM_set_word(nvram, 0x56, height); NVRAM_set_word(nvram, 0x58, depth); crc = NVRAM_compute_crc(nvram, 0x00, 0xF8); NVRAM_set_word(nvram, 0xFC, crc); return 0; }