/* * ARM PrimeCell PL330 DMA Controller * * Copyright (c) 2009 Samsung Electronics. * Contributed by Kirill Batuzov <batuzovk@ispras.ru> * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com) * Copyright (c) 2012 PetaLogix Pty Ltd. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 or later. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "sysbus.h" #include "qemu/timer.h" #include "sysemu/dma.h" #ifndef PL330_ERR_DEBUG #define PL330_ERR_DEBUG 0 #endif #define DB_PRINT_L(lvl, fmt, args...) do {\ if (PL330_ERR_DEBUG >= lvl) {\ fprintf(stderr, "PL330: %s:" fmt, __func__, ## args);\ } \ } while (0); #define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args) #define PL330_PERIPH_NUM 32 #define PL330_MAX_BURST_LEN 128 #define PL330_INSN_MAXSIZE 6 #define PL330_FIFO_OK 0 #define PL330_FIFO_STALL 1 #define PL330_FIFO_ERR (-1) #define PL330_FAULT_UNDEF_INSTR (1 << 0) #define PL330_FAULT_OPERAND_INVALID (1 << 1) #define PL330_FAULT_DMAGO_ERR (1 << 4) #define PL330_FAULT_EVENT_ERR (1 << 5) #define PL330_FAULT_CH_PERIPH_ERR (1 << 6) #define PL330_FAULT_CH_RDWR_ERR (1 << 7) #define PL330_FAULT_ST_DATA_UNAVAILABLE (1 << 12) #define PL330_FAULT_FIFOEMPTY_ERR (1 << 13) #define PL330_FAULT_INSTR_FETCH_ERR (1 << 16) #define PL330_FAULT_DATA_WRITE_ERR (1 << 17) #define PL330_FAULT_DATA_READ_ERR (1 << 18) #define PL330_FAULT_DBG_INSTR (1 << 30) #define PL330_FAULT_LOCKUP_ERR (1 << 31) #define PL330_UNTAGGED 0xff #define PL330_SINGLE 0x0 #define PL330_BURST 0x1 #define PL330_WATCHDOG_LIMIT 1024 /* IOMEM mapped registers */ #define PL330_REG_DSR 0x000 #define PL330_REG_DPC 0x004 #define PL330_REG_INTEN 0x020 #define PL330_REG_INT_EVENT_RIS 0x024 #define PL330_REG_INTMIS 0x028 #define PL330_REG_INTCLR 0x02C #define PL330_REG_FSRD 0x030 #define PL330_REG_FSRC 0x034 #define PL330_REG_FTRD 0x038 #define PL330_REG_FTR_BASE 0x040 #define PL330_REG_CSR_BASE 0x100 #define PL330_REG_CPC_BASE 0x104 #define PL330_REG_CHANCTRL 0x400 #define PL330_REG_DBGSTATUS 0xD00 #define PL330_REG_DBGCMD 0xD04 #define PL330_REG_DBGINST0 0xD08 #define PL330_REG_DBGINST1 0xD0C #define PL330_REG_CR0_BASE 0xE00 #define PL330_REG_PERIPH_ID 0xFE0 #define PL330_IOMEM_SIZE 0x1000 #define CFG_BOOT_ADDR 2 #define CFG_INS 3 #define CFG_PNS 4 #define CFG_CRD 5 static const uint32_t pl330_id[] = { 0x30, 0x13, 0x24, 0x00, 0x0D, 0xF0, 0x05, 0xB1 }; /* DMA channel states as they are described in PL330 Technical Reference Manual * Most of them will not be used in emulation. */ typedef enum { pl330_chan_stopped = 0, pl330_chan_executing = 1, pl330_chan_cache_miss = 2, pl330_chan_updating_pc = 3, pl330_chan_waiting_event = 4, pl330_chan_at_barrier = 5, pl330_chan_queue_busy = 6, pl330_chan_waiting_periph = 7, pl330_chan_killing = 8, pl330_chan_completing = 9, pl330_chan_fault_completing = 14, pl330_chan_fault = 15, } PL330ChanState; typedef struct PL330State PL330State; typedef struct PL330Chan { uint32_t src; uint32_t dst; uint32_t pc; uint32_t control; uint32_t status; uint32_t lc[2]; uint32_t fault_type; uint32_t watchdog_timer; bool ns; uint8_t request_flag; uint8_t wakeup; uint8_t wfp_sbp; uint8_t state; uint8_t stall; bool is_manager; PL330State *parent; uint8_t tag; } PL330Chan; static const VMStateDescription vmstate_pl330_chan = { .name = "pl330_chan", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(src, PL330Chan), VMSTATE_UINT32(dst, PL330Chan), VMSTATE_UINT32(pc, PL330Chan), VMSTATE_UINT32(control, PL330Chan), VMSTATE_UINT32(status, PL330Chan), VMSTATE_UINT32_ARRAY(lc, PL330Chan, 2), VMSTATE_UINT32(fault_type, PL330Chan), VMSTATE_UINT32(watchdog_timer, PL330Chan), VMSTATE_BOOL(ns, PL330Chan), VMSTATE_UINT8(request_flag, PL330Chan), VMSTATE_UINT8(wakeup, PL330Chan), VMSTATE_UINT8(wfp_sbp, PL330Chan), VMSTATE_UINT8(state, PL330Chan), VMSTATE_UINT8(stall, PL330Chan), VMSTATE_END_OF_LIST() } }; typedef struct PL330Fifo { uint8_t *buf; uint8_t *tag; uint32_t head; uint32_t num; uint32_t buf_size; } PL330Fifo; static const VMStateDescription vmstate_pl330_fifo = { .name = "pl330_chan", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_VBUFFER_UINT32(buf, PL330Fifo, 1, NULL, 0, buf_size), VMSTATE_VBUFFER_UINT32(tag, PL330Fifo, 1, NULL, 0, buf_size), VMSTATE_UINT32(head, PL330Fifo), VMSTATE_UINT32(num, PL330Fifo), VMSTATE_UINT32(buf_size, PL330Fifo), VMSTATE_END_OF_LIST() } }; typedef struct PL330QueueEntry { uint32_t addr; uint32_t len; uint8_t n; bool inc; bool z; uint8_t tag; uint8_t seqn; } PL330QueueEntry; static const VMStateDescription vmstate_pl330_queue_entry = { .name = "pl330_queue_entry", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(addr, PL330QueueEntry), VMSTATE_UINT32(len, PL330QueueEntry), VMSTATE_UINT8(n, PL330QueueEntry), VMSTATE_BOOL(inc, PL330QueueEntry), VMSTATE_BOOL(z, PL330QueueEntry), VMSTATE_UINT8(tag, PL330QueueEntry), VMSTATE_UINT8(seqn, PL330QueueEntry), VMSTATE_END_OF_LIST() } }; typedef struct PL330Queue { PL330State *parent; PL330QueueEntry *queue; uint32_t queue_size; } PL330Queue; static const VMStateDescription vmstate_pl330_queue = { .name = "pl330_queue", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_STRUCT_VARRAY_UINT32(queue, PL330Queue, queue_size, 1, vmstate_pl330_queue_entry, PL330QueueEntry), VMSTATE_END_OF_LIST() } }; struct PL330State { SysBusDevice busdev; MemoryRegion iomem; qemu_irq irq_abort; qemu_irq *irq; /* Config registers. cfg[5] = CfgDn. */ uint32_t cfg[6]; #define EVENT_SEC_STATE 3 #define PERIPH_SEC_STATE 4 /* cfg 0 bits and pieces */ uint32_t num_chnls; uint8_t num_periph_req; uint8_t num_events; uint8_t mgr_ns_at_rst; /* cfg 1 bits and pieces */ uint8_t i_cache_len; uint8_t num_i_cache_lines; /* CRD bits and pieces */ uint8_t data_width; uint8_t wr_cap; uint8_t wr_q_dep; uint8_t rd_cap; uint8_t rd_q_dep; uint16_t data_buffer_dep; PL330Chan manager; PL330Chan *chan; PL330Fifo fifo; PL330Queue read_queue; PL330Queue write_queue; uint8_t *lo_seqn; uint8_t *hi_seqn; QEMUTimer *timer; /* is used for restore dma. */ uint32_t inten; uint32_t int_status; uint32_t ev_status; uint32_t dbg[2]; uint8_t debug_status; uint8_t num_faulting; uint8_t periph_busy[PL330_PERIPH_NUM]; }; #define TYPE_PL330 "pl330" #define PL330(obj) OBJECT_CHECK(PL330State, (obj), TYPE_PL330) static const VMStateDescription vmstate_pl330 = { .name = "pl330", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_STRUCT(manager, PL330State, 0, vmstate_pl330_chan, PL330Chan), VMSTATE_STRUCT_VARRAY_UINT32(chan, PL330State, num_chnls, 0, vmstate_pl330_chan, PL330Chan), VMSTATE_VBUFFER_UINT32(lo_seqn, PL330State, 1, NULL, 0, num_chnls), VMSTATE_VBUFFER_UINT32(hi_seqn, PL330State, 1, NULL, 0, num_chnls), VMSTATE_STRUCT(fifo, PL330State, 0, vmstate_pl330_fifo, PL330Fifo), VMSTATE_STRUCT(read_queue, PL330State, 0, vmstate_pl330_queue, PL330Queue), VMSTATE_STRUCT(write_queue, PL330State, 0, vmstate_pl330_queue, PL330Queue), VMSTATE_TIMER(timer, PL330State), VMSTATE_UINT32(inten, PL330State), VMSTATE_UINT32(int_status, PL330State), VMSTATE_UINT32(ev_status, PL330State), VMSTATE_UINT32_ARRAY(dbg, PL330State, 2), VMSTATE_UINT8(debug_status, PL330State), VMSTATE_UINT8(num_faulting, PL330State), VMSTATE_UINT8_ARRAY(periph_busy, PL330State, PL330_PERIPH_NUM), VMSTATE_END_OF_LIST() } }; typedef struct PL330InsnDesc { /* OPCODE of the instruction */ uint8_t opcode; /* Mask so we can select several sibling instructions, such as DMALD, DMALDS and DMALDB */ uint8_t opmask; /* Size of instruction in bytes */ uint8_t size; /* Interpreter */ void (*exec)(PL330Chan *, uint8_t opcode, uint8_t *args, int len); } PL330InsnDesc; /* MFIFO Implementation * * MFIFO is implemented as a cyclic buffer of BUF_SIZE size. Tagged bytes are * stored in this buffer. Data is stored in BUF field, tags - in the * corresponding array elements of TAG field. */ /* Initialize queue. */ static void pl330_fifo_init(PL330Fifo *s, uint32_t size) { s->buf = g_malloc0(size); s->tag = g_malloc0(size); s->buf_size = size; } /* Cyclic increment */ static inline int pl330_fifo_inc(PL330Fifo *s, int x) { return (x + 1) % s->buf_size; } /* Number of empty bytes in MFIFO */ static inline int pl330_fifo_num_free(PL330Fifo *s) { return s->buf_size - s->num; } /* Push LEN bytes of data stored in BUF to MFIFO and tag it with TAG. * Zero returned on success, PL330_FIFO_STALL if there is no enough free * space in MFIFO to store requested amount of data. If push was unsuccessful * no data is stored to MFIFO. */ static int pl330_fifo_push(PL330Fifo *s, uint8_t *buf, int len, uint8_t tag) { int i; if (s->buf_size - s->num < len) { return PL330_FIFO_STALL; } for (i = 0; i < len; i++) { int push_idx = (s->head + s->num + i) % s->buf_size; s->buf[push_idx] = buf[i]; s->tag[push_idx] = tag; } s->num += len; return PL330_FIFO_OK; } /* Get LEN bytes of data from MFIFO and store it to BUF. Tag value of each * byte is verified. Zero returned on success, PL330_FIFO_ERR on tag mismatch * and PL330_FIFO_STALL if there is no enough data in MFIFO. If get was * unsuccessful no data is removed from MFIFO. */ static int pl330_fifo_get(PL330Fifo *s, uint8_t *buf, int len, uint8_t tag) { int i; if (s->num < len) { return PL330_FIFO_STALL; } for (i = 0; i < len; i++) { if (s->tag[s->head] == tag) { int get_idx = (s->head + i) % s->buf_size; buf[i] = s->buf[get_idx]; } else { /* Tag mismatch - Rollback transaction */ return PL330_FIFO_ERR; } } s->head = (s->head + len) % s->buf_size; s->num -= len; return PL330_FIFO_OK; } /* Reset MFIFO. This completely erases all data in it. */ static inline void pl330_fifo_reset(PL330Fifo *s) { s->head = 0; s->num = 0; } /* Return tag of the first byte stored in MFIFO. If MFIFO is empty * PL330_UNTAGGED is returned. */ static inline uint8_t pl330_fifo_tag(PL330Fifo *s) { return (!s->num) ? PL330_UNTAGGED : s->tag[s->head]; } /* Returns non-zero if tag TAG is present in fifo or zero otherwise */ static int pl330_fifo_has_tag(PL330Fifo *s, uint8_t tag) { int i, n; i = s->head; for (n = 0; n < s->num; n++) { if (s->tag[i] == tag) { return 1; } i = pl330_fifo_inc(s, i); } return 0; } /* Remove all entry tagged with TAG from MFIFO */ static void pl330_fifo_tagged_remove(PL330Fifo *s, uint8_t tag) { int i, t, n; t = i = s->head; for (n = 0; n < s->num; n++) { if (s->tag[i] != tag) { s->buf[t] = s->buf[i]; s->tag[t] = s->tag[i]; t = pl330_fifo_inc(s, t); } else { s->num = s->num - 1; } i = pl330_fifo_inc(s, i); } } /* Read-Write Queue implementation * * A Read-Write Queue stores up to QUEUE_SIZE instructions (loads or stores). * Each instruction is described by source (for loads) or destination (for * stores) address ADDR, width of data to be loaded/stored LEN, number of * stores/loads to be performed N, INC bit, Z bit and TAG to identify channel * this instruction belongs to. Queue does not store any information about * nature of the instruction: is it load or store. PL330 has different queues * for loads and stores so this is already known at the top level where it * matters. * * Queue works as FIFO for instructions with equivalent tags, but can issue * instructions with different tags in arbitrary order. SEQN field attached to * each instruction helps to achieve this. For each TAG queue contains * instructions with consecutive SEQN values ranging from LO_SEQN[TAG] to * HI_SEQN[TAG]-1 inclusive. SEQN is 8-bit unsigned integer, so SEQN=255 is * followed by SEQN=0. * * Z bit indicates that zeroes should be stored. No MFIFO fetches are performed * in this case. */ static void pl330_queue_reset(PL330Queue *s) { int i; for (i = 0; i < s->queue_size; i++) { s->queue[i].tag = PL330_UNTAGGED; } } /* Initialize queue */ static void pl330_queue_init(PL330Queue *s, int size, PL330State *parent) { s->parent = parent; s->queue = g_new0(PL330QueueEntry, size); s->queue_size = size; } /* Returns pointer to an empty slot or NULL if queue is full */ static PL330QueueEntry *pl330_queue_find_empty(PL330Queue *s) { int i; for (i = 0; i < s->queue_size; i++) { if (s->queue[i].tag == PL330_UNTAGGED) { return &s->queue[i]; } } return NULL; } /* Put instruction in queue. * Return value: * - zero - OK * - non-zero - queue is full */ static int pl330_queue_put_insn(PL330Queue *s, uint32_t addr, int len, int n, bool inc, bool z, uint8_t tag) { PL330QueueEntry *entry = pl330_queue_find_empty(s); if (!entry) { return 1; } entry->tag = tag; entry->addr = addr; entry->len = len; entry->n = n; entry->z = z; entry->inc = inc; entry->seqn = s->parent->hi_seqn[tag]; s->parent->hi_seqn[tag]++; return 0; } /* Returns a pointer to queue slot containing instruction which satisfies * following conditions: * - it has valid tag value (not PL330_UNTAGGED) * - if enforce_seq is set it has to be issuable without violating queue * logic (see above) * - if TAG argument is not PL330_UNTAGGED this instruction has tag value * equivalent to the argument TAG value. * If such instruction cannot be found NULL is returned. */ static PL330QueueEntry *pl330_queue_find_insn(PL330Queue *s, uint8_t tag, bool enforce_seq) { int i; for (i = 0; i < s->queue_size; i++) { if (s->queue[i].tag != PL330_UNTAGGED) { if ((!enforce_seq || s->queue[i].seqn == s->parent->lo_seqn[s->queue[i].tag]) && (s->queue[i].tag == tag || tag == PL330_UNTAGGED || s->queue[i].z)) { return &s->queue[i]; } } } return NULL; } /* Removes instruction from queue. */ static inline void pl330_queue_remove_insn(PL330Queue *s, PL330QueueEntry *e) { s->parent->lo_seqn[e->tag]++; e->tag = PL330_UNTAGGED; } /* Removes all instructions tagged with TAG from queue. */ static inline void pl330_queue_remove_tagged(PL330Queue *s, uint8_t tag) { int i; for (i = 0; i < s->queue_size; i++) { if (s->queue[i].tag == tag) { s->queue[i].tag = PL330_UNTAGGED; } } } /* DMA instruction execution engine */ /* Moves DMA channel to the FAULT state and updates it's status. */ static inline void pl330_fault(PL330Chan *ch, uint32_t flags) { DB_PRINT("ch: %p, flags: %x\n", ch, flags); ch->fault_type |= flags; if (ch->state == pl330_chan_fault) { return; } ch->state = pl330_chan_fault; ch->parent->num_faulting++; if (ch->parent->num_faulting == 1) { DB_PRINT("abort interrupt raised\n"); qemu_irq_raise(ch->parent->irq_abort); } } /* * For information about instructions see PL330 Technical Reference Manual. * * Arguments: * CH - channel executing the instruction * OPCODE - opcode * ARGS - array of 8-bit arguments * LEN - number of elements in ARGS array */ static void pl330_dmaaddh(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { uint16_t im = (((uint16_t)args[1]) << 8) | ((uint16_t)args[0]); uint8_t ra = (opcode >> 1) & 1; if (ch->is_manager) { pl330_fault(ch, PL330_FAULT_UNDEF_INSTR); return; } if (ra) { ch->dst += im; } else { ch->src += im; } } static void pl330_dmaend(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { PL330State *s = ch->parent; if (ch->state == pl330_chan_executing && !ch->is_manager) { /* Wait for all transfers to complete */ if (pl330_fifo_has_tag(&s->fifo, ch->tag) || pl330_queue_find_insn(&s->read_queue, ch->tag, false) != NULL || pl330_queue_find_insn(&s->write_queue, ch->tag, false) != NULL) { ch->stall = 1; return; } } DB_PRINT("DMA ending!\n"); pl330_fifo_tagged_remove(&s->fifo, ch->tag); pl330_queue_remove_tagged(&s->read_queue, ch->tag); pl330_queue_remove_tagged(&s->write_queue, ch->tag); ch->state = pl330_chan_stopped; } static void pl330_dmaflushp(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { uint8_t periph_id; if (args[0] & 7) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } periph_id = (args[0] >> 3) & 0x1f; if (periph_id >= ch->parent->num_periph_req) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } if (ch->ns && !(ch->parent->cfg[CFG_PNS] & (1 << periph_id))) { pl330_fault(ch, PL330_FAULT_CH_PERIPH_ERR); return; } /* Do nothing */ } static void pl330_dmago(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { uint8_t chan_id; uint8_t ns; uint32_t pc; PL330Chan *s; DB_PRINT("\n"); if (!ch->is_manager) { pl330_fault(ch, PL330_FAULT_UNDEF_INSTR); return; } ns = !!(opcode & 2); chan_id = args[0] & 7; if ((args[0] >> 3)) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } if (chan_id >= ch->parent->num_chnls) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } pc = (((uint32_t)args[4]) << 24) | (((uint32_t)args[3]) << 16) | (((uint32_t)args[2]) << 8) | (((uint32_t)args[1])); if (ch->parent->chan[chan_id].state != pl330_chan_stopped) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } if (ch->ns && !ns) { pl330_fault(ch, PL330_FAULT_DMAGO_ERR); return; } s = &ch->parent->chan[chan_id]; s->ns = ns; s->pc = pc; s->state = pl330_chan_executing; } static void pl330_dmald(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { uint8_t bs = opcode & 3; uint32_t size, num; bool inc; if (bs == 2) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } if ((bs == 1 && ch->request_flag == PL330_BURST) || (bs == 3 && ch->request_flag == PL330_SINGLE)) { /* Perform NOP */ return; } if (bs == 1 && ch->request_flag == PL330_SINGLE) { num = 1; } else { num = ((ch->control >> 4) & 0xf) + 1; } size = (uint32_t)1 << ((ch->control >> 1) & 0x7); inc = !!(ch->control & 1); ch->stall = pl330_queue_put_insn(&ch->parent->read_queue, ch->src, size, num, inc, 0, ch->tag); if (!ch->stall) { DB_PRINT("channel:%d address:%08x size:%d num:%d %c\n", ch->tag, ch->src, size, num, inc ? 'Y' : 'N'); ch->src += inc ? size * num - (ch->src & (size - 1)) : 0; } } static void pl330_dmaldp(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { uint8_t periph_id; if (args[0] & 7) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } periph_id = (args[0] >> 3) & 0x1f; if (periph_id >= ch->parent->num_periph_req) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } if (ch->ns && !(ch->parent->cfg[CFG_PNS] & (1 << periph_id))) { pl330_fault(ch, PL330_FAULT_CH_PERIPH_ERR); return; } pl330_dmald(ch, opcode, args, len); } static void pl330_dmalp(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { uint8_t lc = (opcode & 2) >> 1; ch->lc[lc] = args[0]; } static void pl330_dmakill(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { if (ch->state == pl330_chan_fault || ch->state == pl330_chan_fault_completing) { /* This is the only way for a channel to leave the faulting state */ ch->fault_type = 0; ch->parent->num_faulting--; if (ch->parent->num_faulting == 0) { DB_PRINT("abort interrupt lowered\n"); qemu_irq_lower(ch->parent->irq_abort); } } ch->state = pl330_chan_killing; pl330_fifo_tagged_remove(&ch->parent->fifo, ch->tag); pl330_queue_remove_tagged(&ch->parent->read_queue, ch->tag); pl330_queue_remove_tagged(&ch->parent->write_queue, ch->tag); ch->state = pl330_chan_stopped; } static void pl330_dmalpend(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { uint8_t nf = (opcode & 0x10) >> 4; uint8_t bs = opcode & 3; uint8_t lc = (opcode & 4) >> 2; if (bs == 2) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } if ((bs == 1 && ch->request_flag == PL330_BURST) || (bs == 3 && ch->request_flag == PL330_SINGLE)) { /* Perform NOP */ return; } if (!nf || ch->lc[lc]) { if (nf) { ch->lc[lc]--; } DB_PRINT("loop reiteration\n"); ch->pc -= args[0]; ch->pc -= len + 1; /* "ch->pc -= args[0] + len + 1" is incorrect when args[0] == 256 */ } else { DB_PRINT("loop fallthrough\n"); } } static void pl330_dmamov(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { uint8_t rd = args[0] & 7; uint32_t im; if ((args[0] >> 3)) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } im = (((uint32_t)args[4]) << 24) | (((uint32_t)args[3]) << 16) | (((uint32_t)args[2]) << 8) | (((uint32_t)args[1])); switch (rd) { case 0: ch->src = im; break; case 1: ch->control = im; break; case 2: ch->dst = im; break; default: pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } } static void pl330_dmanop(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { /* NOP is NOP. */ } static void pl330_dmarmb(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { if (pl330_queue_find_insn(&ch->parent->read_queue, ch->tag, false)) { ch->state = pl330_chan_at_barrier; ch->stall = 1; return; } else { ch->state = pl330_chan_executing; } } static void pl330_dmasev(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { uint8_t ev_id; if (args[0] & 7) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } ev_id = (args[0] >> 3) & 0x1f; if (ev_id >= ch->parent->num_events) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } if (ch->ns && !(ch->parent->cfg[CFG_INS] & (1 << ev_id))) { pl330_fault(ch, PL330_FAULT_EVENT_ERR); return; } if (ch->parent->inten & (1 << ev_id)) { ch->parent->int_status |= (1 << ev_id); DB_PRINT("event interrupt raised %d\n", ev_id); qemu_irq_raise(ch->parent->irq[ev_id]); } else { ch->parent->ev_status |= (1 << ev_id); } } static void pl330_dmast(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { uint8_t bs = opcode & 3; uint32_t size, num; bool inc; if (bs == 2) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } if ((bs == 1 && ch->request_flag == PL330_BURST) || (bs == 3 && ch->request_flag == PL330_SINGLE)) { /* Perform NOP */ return; } num = ((ch->control >> 18) & 0xf) + 1; size = (uint32_t)1 << ((ch->control >> 15) & 0x7); inc = !!((ch->control >> 14) & 1); ch->stall = pl330_queue_put_insn(&ch->parent->write_queue, ch->dst, size, num, inc, 0, ch->tag); if (!ch->stall) { DB_PRINT("channel:%d address:%08x size:%d num:%d %c\n", ch->tag, ch->dst, size, num, inc ? 'Y' : 'N'); ch->dst += inc ? size * num - (ch->dst & (size - 1)) : 0; } } static void pl330_dmastp(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { uint8_t periph_id; if (args[0] & 7) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } periph_id = (args[0] >> 3) & 0x1f; if (periph_id >= ch->parent->num_periph_req) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } if (ch->ns && !(ch->parent->cfg[CFG_PNS] & (1 << periph_id))) { pl330_fault(ch, PL330_FAULT_CH_PERIPH_ERR); return; } pl330_dmast(ch, opcode, args, len); } static void pl330_dmastz(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { uint32_t size, num; bool inc; num = ((ch->control >> 18) & 0xf) + 1; size = (uint32_t)1 << ((ch->control >> 15) & 0x7); inc = !!((ch->control >> 14) & 1); ch->stall = pl330_queue_put_insn(&ch->parent->write_queue, ch->dst, size, num, inc, 1, ch->tag); if (inc) { ch->dst += size * num; } } static void pl330_dmawfe(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { uint8_t ev_id; int i; if (args[0] & 5) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } ev_id = (args[0] >> 3) & 0x1f; if (ev_id >= ch->parent->num_events) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } if (ch->ns && !(ch->parent->cfg[CFG_INS] & (1 << ev_id))) { pl330_fault(ch, PL330_FAULT_EVENT_ERR); return; } ch->wakeup = ev_id; ch->state = pl330_chan_waiting_event; if (~ch->parent->inten & ch->parent->ev_status & 1 << ev_id) { ch->state = pl330_chan_executing; /* If anyone else is currently waiting on the same event, let them * clear the ev_status so they pick up event as well */ for (i = 0; i < ch->parent->num_chnls; ++i) { PL330Chan *peer = &ch->parent->chan[i]; if (peer->state == pl330_chan_waiting_event && peer->wakeup == ev_id) { return; } } ch->parent->ev_status &= ~(1 << ev_id); } else { ch->stall = 1; } } static void pl330_dmawfp(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { uint8_t bs = opcode & 3; uint8_t periph_id; if (args[0] & 7) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } periph_id = (args[0] >> 3) & 0x1f; if (periph_id >= ch->parent->num_periph_req) { pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } if (ch->ns && !(ch->parent->cfg[CFG_PNS] & (1 << periph_id))) { pl330_fault(ch, PL330_FAULT_CH_PERIPH_ERR); return; } switch (bs) { case 0: /* S */ ch->request_flag = PL330_SINGLE; ch->wfp_sbp = 0; break; case 1: /* P */ ch->request_flag = PL330_BURST; ch->wfp_sbp = 2; break; case 2: /* B */ ch->request_flag = PL330_BURST; ch->wfp_sbp = 1; break; default: pl330_fault(ch, PL330_FAULT_OPERAND_INVALID); return; } if (ch->parent->periph_busy[periph_id]) { ch->state = pl330_chan_waiting_periph; ch->stall = 1; } else if (ch->state == pl330_chan_waiting_periph) { ch->state = pl330_chan_executing; } } static void pl330_dmawmb(PL330Chan *ch, uint8_t opcode, uint8_t *args, int len) { if (pl330_queue_find_insn(&ch->parent->write_queue, ch->tag, false)) { ch->state = pl330_chan_at_barrier; ch->stall = 1; return; } else { ch->state = pl330_chan_executing; } } /* NULL terminated array of the instruction descriptions. */ static const PL330InsnDesc insn_desc[] = { { .opcode = 0x54, .opmask = 0xFD, .size = 3, .exec = pl330_dmaaddh, }, { .opcode = 0x00, .opmask = 0xFF, .size = 1, .exec = pl330_dmaend, }, { .opcode = 0x35, .opmask = 0xFF, .size = 2, .exec = pl330_dmaflushp, }, { .opcode = 0xA0, .opmask = 0xFD, .size = 6, .exec = pl330_dmago, }, { .opcode = 0x04, .opmask = 0xFC, .size = 1, .exec = pl330_dmald, }, { .opcode = 0x25, .opmask = 0xFD, .size = 2, .exec = pl330_dmaldp, }, { .opcode = 0x20, .opmask = 0xFD, .size = 2, .exec = pl330_dmalp, }, /* dmastp must be before dmalpend in this list, because their maps * are overlapping */ { .opcode = 0x29, .opmask = 0xFD, .size = 2, .exec = pl330_dmastp, }, { .opcode = 0x28, .opmask = 0xE8, .size = 2, .exec = pl330_dmalpend, }, { .opcode = 0x01, .opmask = 0xFF, .size = 1, .exec = pl330_dmakill, }, { .opcode = 0xBC, .opmask = 0xFF, .size = 6, .exec = pl330_dmamov, }, { .opcode = 0x18, .opmask = 0xFF, .size = 1, .exec = pl330_dmanop, }, { .opcode = 0x12, .opmask = 0xFF, .size = 1, .exec = pl330_dmarmb, }, { .opcode = 0x34, .opmask = 0xFF, .size = 2, .exec = pl330_dmasev, }, { .opcode = 0x08, .opmask = 0xFC, .size = 1, .exec = pl330_dmast, }, { .opcode = 0x0C, .opmask = 0xFF, .size = 1, .exec = pl330_dmastz, }, { .opcode = 0x36, .opmask = 0xFF, .size = 2, .exec = pl330_dmawfe, }, { .opcode = 0x30, .opmask = 0xFC, .size = 2, .exec = pl330_dmawfp, }, { .opcode = 0x13, .opmask = 0xFF, .size = 1, .exec = pl330_dmawmb, }, { .opcode = 0x00, .opmask = 0x00, .size = 0, .exec = NULL, } }; /* Instructions which can be issued via debug registers. */ static const PL330InsnDesc debug_insn_desc[] = { { .opcode = 0xA0, .opmask = 0xFD, .size = 6, .exec = pl330_dmago, }, { .opcode = 0x01, .opmask = 0xFF, .size = 1, .exec = pl330_dmakill, }, { .opcode = 0x34, .opmask = 0xFF, .size = 2, .exec = pl330_dmasev, }, { .opcode = 0x00, .opmask = 0x00, .size = 0, .exec = NULL, } }; static inline const PL330InsnDesc *pl330_fetch_insn(PL330Chan *ch) { uint8_t opcode; int i; dma_memory_read(&dma_context_memory, ch->pc, &opcode, 1); for (i = 0; insn_desc[i].size; i++) { if ((opcode & insn_desc[i].opmask) == insn_desc[i].opcode) { return &insn_desc[i]; } } return NULL; } static inline void pl330_exec_insn(PL330Chan *ch, const PL330InsnDesc *insn) { uint8_t buf[PL330_INSN_MAXSIZE]; assert(insn->size <= PL330_INSN_MAXSIZE); dma_memory_read(&dma_context_memory, ch->pc, buf, insn->size); insn->exec(ch, buf[0], &buf[1], insn->size - 1); } static inline void pl330_update_pc(PL330Chan *ch, const PL330InsnDesc *insn) { ch->pc += insn->size; } /* Try to execute current instruction in channel CH. Number of executed instructions is returned (0 or 1). */ static int pl330_chan_exec(PL330Chan *ch) { const PL330InsnDesc *insn; if (ch->state != pl330_chan_executing && ch->state != pl330_chan_waiting_periph && ch->state != pl330_chan_at_barrier && ch->state != pl330_chan_waiting_event) { DB_PRINT("%d\n", ch->state); return 0; } ch->stall = 0; insn = pl330_fetch_insn(ch); if (!insn) { DB_PRINT("pl330 undefined instruction\n"); pl330_fault(ch, PL330_FAULT_UNDEF_INSTR); return 0; } pl330_exec_insn(ch, insn); if (!ch->stall) { pl330_update_pc(ch, insn); ch->watchdog_timer = 0; return 1; /* WDT only active in exec state */ } else if (ch->state == pl330_chan_executing) { ch->watchdog_timer++; if (ch->watchdog_timer >= PL330_WATCHDOG_LIMIT) { pl330_fault(ch, PL330_FAULT_LOCKUP_ERR); } } return 0; } /* Try to execute 1 instruction in each channel, one instruction from read queue and one instruction from write queue. Number of successfully executed instructions is returned. */ static int pl330_exec_cycle(PL330Chan *channel) { PL330State *s = channel->parent; PL330QueueEntry *q; int i; int num_exec = 0; int fifo_res = 0; uint8_t buf[PL330_MAX_BURST_LEN]; /* Execute one instruction in each channel */ num_exec += pl330_chan_exec(channel); /* Execute one instruction from read queue */ q = pl330_queue_find_insn(&s->read_queue, PL330_UNTAGGED, true); if (q != NULL && q->len <= pl330_fifo_num_free(&s->fifo)) { int len = q->len - (q->addr & (q->len - 1)); dma_memory_read(&dma_context_memory, q->addr, buf, len); if (PL330_ERR_DEBUG > 1) { DB_PRINT("PL330 read from memory @%08x (size = %08x):\n", q->addr, len); hexdump((char *)buf, stderr, "", len); } fifo_res = pl330_fifo_push(&s->fifo, buf, len, q->tag); if (fifo_res == PL330_FIFO_OK) { if (q->inc) { q->addr += len; } q->n--; if (!q->n) { pl330_queue_remove_insn(&s->read_queue, q); } num_exec++; } } /* Execute one instruction from write queue. */ q = pl330_queue_find_insn(&s->write_queue, pl330_fifo_tag(&s->fifo), true); if (q != NULL) { int len = q->len - (q->addr & (q->len - 1)); if (q->z) { for (i = 0; i < len; i++) { buf[i] = 0; } } else { fifo_res = pl330_fifo_get(&s->fifo, buf, len, q->tag); } if (fifo_res == PL330_FIFO_OK || q->z) { dma_memory_write(&dma_context_memory, q->addr, buf, len); if (PL330_ERR_DEBUG > 1) { DB_PRINT("PL330 read from memory @%08x (size = %08x):\n", q->addr, len); hexdump((char *)buf, stderr, "", len); } if (q->inc) { q->addr += len; } num_exec++; } else if (fifo_res == PL330_FIFO_STALL) { pl330_fault(&channel->parent->chan[q->tag], PL330_FAULT_FIFOEMPTY_ERR); } q->n--; if (!q->n) { pl330_queue_remove_insn(&s->write_queue, q); } } return num_exec; } static int pl330_exec_channel(PL330Chan *channel) { int insr_exec = 0; /* TODO: Is it all right to execute everything or should we do per-cycle simulation? */ while (pl330_exec_cycle(channel)) { insr_exec++; } /* Detect deadlock */ if (channel->state == pl330_chan_executing) { pl330_fault(channel, PL330_FAULT_LOCKUP_ERR); } /* Situation when one of the queues has deadlocked but all channels * have finished their programs should be impossible. */ return insr_exec; } static inline void pl330_exec(PL330State *s) { DB_PRINT("\n"); int i, insr_exec; do { insr_exec = pl330_exec_channel(&s->manager); for (i = 0; i < s->num_chnls; i++) { insr_exec += pl330_exec_channel(&s->chan[i]); } } while (insr_exec); } static void pl330_exec_cycle_timer(void *opaque) { PL330State *s = (PL330State *)opaque; pl330_exec(s); } /* Stop or restore dma operations */ static void pl330_dma_stop_irq(void *opaque, int irq, int level) { PL330State *s = (PL330State *)opaque; if (s->periph_busy[irq] != level) { s->periph_busy[irq] = level; qemu_mod_timer(s->timer, qemu_get_clock_ns(vm_clock)); } } static void pl330_debug_exec(PL330State *s) { uint8_t args[5]; uint8_t opcode; uint8_t chan_id; int i; PL330Chan *ch; const PL330InsnDesc *insn; s->debug_status = 1; chan_id = (s->dbg[0] >> 8) & 0x07; opcode = (s->dbg[0] >> 16) & 0xff; args[0] = (s->dbg[0] >> 24) & 0xff; args[1] = (s->dbg[1] >> 0) & 0xff; args[2] = (s->dbg[1] >> 8) & 0xff; args[3] = (s->dbg[1] >> 16) & 0xff; args[4] = (s->dbg[1] >> 24) & 0xff; DB_PRINT("chan id: %d\n", chan_id); if (s->dbg[0] & 1) { ch = &s->chan[chan_id]; } else { ch = &s->manager; } insn = NULL; for (i = 0; debug_insn_desc[i].size; i++) { if ((opcode & debug_insn_desc[i].opmask) == debug_insn_desc[i].opcode) { insn = &debug_insn_desc[i]; } } if (!insn) { pl330_fault(ch, PL330_FAULT_UNDEF_INSTR | PL330_FAULT_DBG_INSTR); return ; } ch->stall = 0; insn->exec(ch, opcode, args, insn->size - 1); if (ch->fault_type) { ch->fault_type |= PL330_FAULT_DBG_INSTR; } if (ch->stall) { qemu_log_mask(LOG_UNIMP, "pl330: stall of debug instruction not " "implemented\n"); } s->debug_status = 0; } /* IOMEM mapped registers */ static void pl330_iomem_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { PL330State *s = (PL330State *) opaque; uint32_t i; DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, (unsigned)value); switch (offset) { case PL330_REG_INTEN: s->inten = value; break; case PL330_REG_INTCLR: for (i = 0; i < s->num_events; i++) { if (s->int_status & s->inten & value & (1 << i)) { DB_PRINT("event interrupt lowered %d\n", i); qemu_irq_lower(s->irq[i]); } } s->ev_status &= ~(value & s->inten); s->int_status &= ~(value & s->inten); break; case PL330_REG_DBGCMD: if ((value & 3) == 0) { pl330_debug_exec(s); pl330_exec(s); } else { qemu_log_mask(LOG_GUEST_ERROR, "pl330: write of illegal value %u " "for offset " TARGET_FMT_plx "\n", (unsigned)value, offset); } break; case PL330_REG_DBGINST0: DB_PRINT("s->dbg[0] = %08x\n", (unsigned)value); s->dbg[0] = value; break; case PL330_REG_DBGINST1: DB_PRINT("s->dbg[1] = %08x\n", (unsigned)value); s->dbg[1] = value; break; default: qemu_log_mask(LOG_GUEST_ERROR, "pl330: bad write offset " TARGET_FMT_plx "\n", offset); break; } } static inline uint32_t pl330_iomem_read_imp(void *opaque, hwaddr offset) { PL330State *s = (PL330State *)opaque; int chan_id; int i; uint32_t res; if (offset >= PL330_REG_PERIPH_ID && offset < PL330_REG_PERIPH_ID + 32) { return pl330_id[(offset - PL330_REG_PERIPH_ID) >> 2]; } if (offset >= PL330_REG_CR0_BASE && offset < PL330_REG_CR0_BASE + 24) { return s->cfg[(offset - PL330_REG_CR0_BASE) >> 2]; } if (offset >= PL330_REG_CHANCTRL && offset < PL330_REG_DBGSTATUS) { offset -= PL330_REG_CHANCTRL; chan_id = offset >> 5; if (chan_id >= s->num_chnls) { qemu_log_mask(LOG_GUEST_ERROR, "pl330: bad read offset " TARGET_FMT_plx "\n", offset); return 0; } switch (offset & 0x1f) { case 0x00: return s->chan[chan_id].src; case 0x04: return s->chan[chan_id].dst; case 0x08: return s->chan[chan_id].control; case 0x0C: return s->chan[chan_id].lc[0]; case 0x10: return s->chan[chan_id].lc[1]; default: qemu_log_mask(LOG_GUEST_ERROR, "pl330: bad read offset " TARGET_FMT_plx "\n", offset); return 0; } } if (offset >= PL330_REG_CSR_BASE && offset < 0x400) { offset -= PL330_REG_CSR_BASE; chan_id = offset >> 3; if (chan_id >= s->num_chnls) { qemu_log_mask(LOG_GUEST_ERROR, "pl330: bad read offset " TARGET_FMT_plx "\n", offset); return 0; } switch ((offset >> 2) & 1) { case 0x0: res = (s->chan[chan_id].ns << 21) | (s->chan[chan_id].wakeup << 4) | (s->chan[chan_id].state) | (s->chan[chan_id].wfp_sbp << 14); return res; case 0x1: return s->chan[chan_id].pc; default: qemu_log_mask(LOG_GUEST_ERROR, "pl330: read error\n"); return 0; } } if (offset >= PL330_REG_FTR_BASE && offset < 0x100) { offset -= PL330_REG_FTR_BASE; chan_id = offset >> 2; if (chan_id >= s->num_chnls) { qemu_log_mask(LOG_GUEST_ERROR, "pl330: bad read offset " TARGET_FMT_plx "\n", offset); return 0; } return s->chan[chan_id].fault_type; } switch (offset) { case PL330_REG_DSR: return (s->manager.ns << 9) | (s->manager.wakeup << 4) | (s->manager.state & 0xf); case PL330_REG_DPC: return s->manager.pc; case PL330_REG_INTEN: return s->inten; case PL330_REG_INT_EVENT_RIS: return s->ev_status; case PL330_REG_INTMIS: return s->int_status; case PL330_REG_INTCLR: /* Documentation says that we can't read this register * but linux kernel does it */ return 0; case PL330_REG_FSRD: return s->manager.state ? 1 : 0; case PL330_REG_FSRC: res = 0; for (i = 0; i < s->num_chnls; i++) { if (s->chan[i].state == pl330_chan_fault || s->chan[i].state == pl330_chan_fault_completing) { res |= 1 << i; } } return res; case PL330_REG_FTRD: return s->manager.fault_type; case PL330_REG_DBGSTATUS: return s->debug_status; default: qemu_log_mask(LOG_GUEST_ERROR, "pl330: bad read offset " TARGET_FMT_plx "\n", offset); } return 0; } static uint64_t pl330_iomem_read(void *opaque, hwaddr offset, unsigned size) { int ret = pl330_iomem_read_imp(opaque, offset); DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset, ret); return ret; } static const MemoryRegionOps pl330_ops = { .read = pl330_iomem_read, .write = pl330_iomem_write, .endianness = DEVICE_NATIVE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, } }; /* Controller logic and initialization */ static void pl330_chan_reset(PL330Chan *ch) { ch->src = 0; ch->dst = 0; ch->pc = 0; ch->state = pl330_chan_stopped; ch->watchdog_timer = 0; ch->stall = 0; ch->control = 0; ch->status = 0; ch->fault_type = 0; } static void pl330_reset(DeviceState *d) { int i; PL330State *s = PL330(d); s->inten = 0; s->int_status = 0; s->ev_status = 0; s->debug_status = 0; s->num_faulting = 0; s->manager.ns = s->mgr_ns_at_rst; pl330_fifo_reset(&s->fifo); pl330_queue_reset(&s->read_queue); pl330_queue_reset(&s->write_queue); for (i = 0; i < s->num_chnls; i++) { pl330_chan_reset(&s->chan[i]); } for (i = 0; i < s->num_periph_req; i++) { s->periph_busy[i] = 0; } qemu_del_timer(s->timer); } static void pl330_realize(DeviceState *dev, Error **errp) { int i; PL330State *s = PL330(dev); sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq_abort); memory_region_init_io(&s->iomem, &pl330_ops, s, "dma", PL330_IOMEM_SIZE); sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem); s->timer = qemu_new_timer_ns(vm_clock, pl330_exec_cycle_timer, s); s->cfg[0] = (s->mgr_ns_at_rst ? 0x4 : 0) | (s->num_periph_req > 0 ? 1 : 0) | ((s->num_chnls - 1) & 0x7) << 4 | ((s->num_periph_req - 1) & 0x1f) << 12 | ((s->num_events - 1) & 0x1f) << 17; switch (s->i_cache_len) { case (4): s->cfg[1] |= 2; break; case (8): s->cfg[1] |= 3; break; case (16): s->cfg[1] |= 4; break; case (32): s->cfg[1] |= 5; break; default: error_setg(errp, "Bad value for i-cache_len property: %d\n", s->i_cache_len); return; } s->cfg[1] |= ((s->num_i_cache_lines - 1) & 0xf) << 4; s->chan = g_new0(PL330Chan, s->num_chnls); s->hi_seqn = g_new0(uint8_t, s->num_chnls); s->lo_seqn = g_new0(uint8_t, s->num_chnls); for (i = 0; i < s->num_chnls; i++) { s->chan[i].parent = s; s->chan[i].tag = (uint8_t)i; } s->manager.parent = s; s->manager.tag = s->num_chnls; s->manager.is_manager = true; s->irq = g_new0(qemu_irq, s->num_events); for (i = 0; i < s->num_events; i++) { sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]); } qdev_init_gpio_in(dev, pl330_dma_stop_irq, PL330_PERIPH_NUM); switch (s->data_width) { case (32): s->cfg[CFG_CRD] |= 0x2; break; case (64): s->cfg[CFG_CRD] |= 0x3; break; case (128): s->cfg[CFG_CRD] |= 0x4; break; default: error_setg(errp, "Bad value for data_width property: %d\n", s->data_width); return; } s->cfg[CFG_CRD] |= ((s->wr_cap - 1) & 0x7) << 4 | ((s->wr_q_dep - 1) & 0xf) << 8 | ((s->rd_cap - 1) & 0x7) << 12 | ((s->rd_q_dep - 1) & 0xf) << 16 | ((s->data_buffer_dep - 1) & 0x1ff) << 20; pl330_queue_init(&s->read_queue, s->rd_q_dep, s); pl330_queue_init(&s->write_queue, s->wr_q_dep, s); pl330_fifo_init(&s->fifo, s->data_buffer_dep); } static Property pl330_properties[] = { /* CR0 */ DEFINE_PROP_UINT32("num_chnls", PL330State, num_chnls, 8), DEFINE_PROP_UINT8("num_periph_req", PL330State, num_periph_req, 4), DEFINE_PROP_UINT8("num_events", PL330State, num_events, 16), DEFINE_PROP_UINT8("mgr_ns_at_rst", PL330State, mgr_ns_at_rst, 0), /* CR1 */ DEFINE_PROP_UINT8("i-cache_len", PL330State, i_cache_len, 4), DEFINE_PROP_UINT8("num_i-cache_lines", PL330State, num_i_cache_lines, 8), /* CR2-4 */ DEFINE_PROP_UINT32("boot_addr", PL330State, cfg[CFG_BOOT_ADDR], 0), DEFINE_PROP_UINT32("INS", PL330State, cfg[CFG_INS], 0), DEFINE_PROP_UINT32("PNS", PL330State, cfg[CFG_PNS], 0), /* CRD */ DEFINE_PROP_UINT8("data_width", PL330State, data_width, 64), DEFINE_PROP_UINT8("wr_cap", PL330State, wr_cap, 8), DEFINE_PROP_UINT8("wr_q_dep", PL330State, wr_q_dep, 16), DEFINE_PROP_UINT8("rd_cap", PL330State, rd_cap, 8), DEFINE_PROP_UINT8("rd_q_dep", PL330State, rd_q_dep, 16), DEFINE_PROP_UINT16("data_buffer_dep", PL330State, data_buffer_dep, 256), DEFINE_PROP_END_OF_LIST(), }; static void pl330_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = pl330_realize; dc->reset = pl330_reset; dc->props = pl330_properties; dc->vmsd = &vmstate_pl330; } static const TypeInfo pl330_type_info = { .name = TYPE_PL330, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(PL330State), .class_init = pl330_class_init, }; static void pl330_register_types(void) { type_register_static(&pl330_type_info); } type_init(pl330_register_types)