/* * CFI parallel flash with AMD command set emulation * * Copyright (c) 2005 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ /* * For now, this code can emulate flashes of 1, 2 or 4 bytes width. * Supported commands/modes are: * - flash read * - flash write * - flash ID read * - sector erase * - chip erase * - unlock bypass command * - CFI queries * * It does not support flash interleaving. * It does not implement boot blocs with reduced size * It does not implement software data protection as found in many real chips * It does not implement erase suspend/resume commands * It does not implement multiple sectors erase */ #include "hw.h" #include "flash.h" #include "qemu-timer.h" #include "block.h" //#define PFLASH_DEBUG #ifdef PFLASH_DEBUG #define DPRINTF(fmt, ...) \ do { \ printf("PFLASH: " fmt , ## __VA_ARGS__); \ } while (0) #else #define DPRINTF(fmt, ...) do { } while (0) #endif #define PFLASH_LAZY_ROMD_THRESHOLD 42 struct pflash_t { BlockDriverState *bs; target_phys_addr_t base; uint32_t sector_len; uint32_t chip_len; int mappings; int width; int wcycle; /* if 0, the flash is read normally */ int bypass; int ro; uint8_t cmd; uint8_t status; uint16_t ident[4]; uint16_t unlock_addr[2]; uint8_t cfi_len; uint8_t cfi_table[0x52]; QEMUTimer *timer; ram_addr_t off; int fl_mem; int rom_mode; int read_counter; /* used for lazy switch-back to rom mode */ void *storage; }; static void pflash_register_memory(pflash_t *pfl, int rom_mode) { unsigned long phys_offset = pfl->fl_mem; int i; if (rom_mode) phys_offset |= pfl->off | IO_MEM_ROMD; pfl->rom_mode = rom_mode; for (i = 0; i < pfl->mappings; i++) cpu_register_physical_memory(pfl->base + i * pfl->chip_len, pfl->chip_len, phys_offset); } static void pflash_timer (void *opaque) { pflash_t *pfl = opaque; DPRINTF("%s: command %02x done\n", __func__, pfl->cmd); /* Reset flash */ pfl->status ^= 0x80; if (pfl->bypass) { pfl->wcycle = 2; } else { pflash_register_memory(pfl, 1); pfl->wcycle = 0; } pfl->cmd = 0; } static uint32_t pflash_read (pflash_t *pfl, target_phys_addr_t offset, int width, int be) { target_phys_addr_t boff; uint32_t ret; uint8_t *p; DPRINTF("%s: offset " TARGET_FMT_plx "\n", __func__, offset); ret = -1; /* Lazy reset to ROMD mode after a certain amount of read accesses */ if (!pfl->rom_mode && pfl->wcycle == 0 && ++pfl->read_counter > PFLASH_LAZY_ROMD_THRESHOLD) { pflash_register_memory(pfl, 1); } offset &= pfl->chip_len - 1; boff = offset & 0xFF; if (pfl->width == 2) boff = boff >> 1; else if (pfl->width == 4) boff = boff >> 2; switch (pfl->cmd) { default: /* This should never happen : reset state & treat it as a read*/ DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd); pfl->wcycle = 0; pfl->cmd = 0; case 0x80: /* We accept reads during second unlock sequence... */ case 0x00: flash_read: /* Flash area read */ p = pfl->storage; switch (width) { case 1: ret = p[offset]; // DPRINTF("%s: data offset %08x %02x\n", __func__, offset, ret); break; case 2: if (be) { ret = p[offset] << 8; ret |= p[offset + 1]; } else { ret = p[offset]; ret |= p[offset + 1] << 8; } // DPRINTF("%s: data offset %08x %04x\n", __func__, offset, ret); break; case 4: if (be) { ret = p[offset] << 24; ret |= p[offset + 1] << 16; ret |= p[offset + 2] << 8; ret |= p[offset + 3]; } else { ret = p[offset]; ret |= p[offset + 1] << 8; ret |= p[offset + 2] << 16; ret |= p[offset + 3] << 24; } // DPRINTF("%s: data offset %08x %08x\n", __func__, offset, ret); break; } break; case 0x90: /* flash ID read */ switch (boff) { case 0x00: case 0x01: ret = pfl->ident[boff & 0x01]; break; case 0x02: ret = 0x00; /* Pretend all sectors are unprotected */ break; case 0x0E: case 0x0F: if (pfl->ident[2 + (boff & 0x01)] == (uint8_t)-1) goto flash_read; ret = pfl->ident[2 + (boff & 0x01)]; break; default: goto flash_read; } DPRINTF("%s: ID " TARGET_FMT_plx " %x\n", __func__, boff, ret); break; case 0xA0: case 0x10: case 0x30: /* Status register read */ ret = pfl->status; DPRINTF("%s: status %x\n", __func__, ret); /* Toggle bit 6 */ pfl->status ^= 0x40; break; case 0x98: /* CFI query mode */ if (boff > pfl->cfi_len) ret = 0; else ret = pfl->cfi_table[boff]; break; } return ret; } /* update flash content on disk */ static void pflash_update(pflash_t *pfl, int offset, int size) { int offset_end; if (pfl->bs) { offset_end = offset + size; /* round to sectors */ offset = offset >> 9; offset_end = (offset_end + 511) >> 9; bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9), offset_end - offset); } } static void pflash_write (pflash_t *pfl, target_phys_addr_t offset, uint32_t value, int width, int be) { target_phys_addr_t boff; uint8_t *p; uint8_t cmd; cmd = value; if (pfl->cmd != 0xA0 && cmd == 0xF0) { #if 0 DPRINTF("%s: flash reset asked (%02x %02x)\n", __func__, pfl->cmd, cmd); #endif goto reset_flash; } DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d %d\n", __func__, offset, value, width, pfl->wcycle); offset &= pfl->chip_len - 1; DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d\n", __func__, offset, value, width); boff = offset & (pfl->sector_len - 1); if (pfl->width == 2) boff = boff >> 1; else if (pfl->width == 4) boff = boff >> 2; switch (pfl->wcycle) { case 0: /* Set the device in I/O access mode if required */ if (pfl->rom_mode) pflash_register_memory(pfl, 0); pfl->read_counter = 0; /* We're in read mode */ check_unlock0: if (boff == 0x55 && cmd == 0x98) { enter_CFI_mode: /* Enter CFI query mode */ pfl->wcycle = 7; pfl->cmd = 0x98; return; } if (boff != pfl->unlock_addr[0] || cmd != 0xAA) { DPRINTF("%s: unlock0 failed " TARGET_FMT_plx " %02x %04x\n", __func__, boff, cmd, pfl->unlock_addr[0]); goto reset_flash; } DPRINTF("%s: unlock sequence started\n", __func__); break; case 1: /* We started an unlock sequence */ check_unlock1: if (boff != pfl->unlock_addr[1] || cmd != 0x55) { DPRINTF("%s: unlock1 failed " TARGET_FMT_plx " %02x\n", __func__, boff, cmd); goto reset_flash; } DPRINTF("%s: unlock sequence done\n", __func__); break; case 2: /* We finished an unlock sequence */ if (!pfl->bypass && boff != pfl->unlock_addr[0]) { DPRINTF("%s: command failed " TARGET_FMT_plx " %02x\n", __func__, boff, cmd); goto reset_flash; } switch (cmd) { case 0x20: pfl->bypass = 1; goto do_bypass; case 0x80: case 0x90: case 0xA0: pfl->cmd = cmd; DPRINTF("%s: starting command %02x\n", __func__, cmd); break; default: DPRINTF("%s: unknown command %02x\n", __func__, cmd); goto reset_flash; } break; case 3: switch (pfl->cmd) { case 0x80: /* We need another unlock sequence */ goto check_unlock0; case 0xA0: DPRINTF("%s: write data offset " TARGET_FMT_plx " %08x %d\n", __func__, offset, value, width); p = pfl->storage; switch (width) { case 1: p[offset] &= value; pflash_update(pfl, offset, 1); break; case 2: if (be) { p[offset] &= value >> 8; p[offset + 1] &= value; } else { p[offset] &= value; p[offset + 1] &= value >> 8; } pflash_update(pfl, offset, 2); break; case 4: if (be) { p[offset] &= value >> 24; p[offset + 1] &= value >> 16; p[offset + 2] &= value >> 8; p[offset + 3] &= value; } else { p[offset] &= value; p[offset + 1] &= value >> 8; p[offset + 2] &= value >> 16; p[offset + 3] &= value >> 24; } pflash_update(pfl, offset, 4); break; } pfl->status = 0x00 | ~(value & 0x80); /* Let's pretend write is immediate */ if (pfl->bypass) goto do_bypass; goto reset_flash; case 0x90: if (pfl->bypass && cmd == 0x00) { /* Unlock bypass reset */ goto reset_flash; } /* We can enter CFI query mode from autoselect mode */ if (boff == 0x55 && cmd == 0x98) goto enter_CFI_mode; /* No break here */ default: DPRINTF("%s: invalid write for command %02x\n", __func__, pfl->cmd); goto reset_flash; } case 4: switch (pfl->cmd) { case 0xA0: /* Ignore writes while flash data write is occurring */ /* As we suppose write is immediate, this should never happen */ return; case 0x80: goto check_unlock1; default: /* Should never happen */ DPRINTF("%s: invalid command state %02x (wc 4)\n", __func__, pfl->cmd); goto reset_flash; } break; case 5: switch (cmd) { case 0x10: if (boff != pfl->unlock_addr[0]) { DPRINTF("%s: chip erase: invalid address " TARGET_FMT_plx "\n", __func__, offset); goto reset_flash; } /* Chip erase */ DPRINTF("%s: start chip erase\n", __func__); memset(pfl->storage, 0xFF, pfl->chip_len); pfl->status = 0x00; pflash_update(pfl, 0, pfl->chip_len); /* Let's wait 5 seconds before chip erase is done */ qemu_mod_timer(pfl->timer, qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() * 5)); break; case 0x30: /* Sector erase */ p = pfl->storage; offset &= ~(pfl->sector_len - 1); DPRINTF("%s: start sector erase at " TARGET_FMT_plx "\n", __func__, offset); memset(p + offset, 0xFF, pfl->sector_len); pflash_update(pfl, offset, pfl->sector_len); pfl->status = 0x00; /* Let's wait 1/2 second before sector erase is done */ qemu_mod_timer(pfl->timer, qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() / 2)); break; default: DPRINTF("%s: invalid command %02x (wc 5)\n", __func__, cmd); goto reset_flash; } pfl->cmd = cmd; break; case 6: switch (pfl->cmd) { case 0x10: /* Ignore writes during chip erase */ return; case 0x30: /* Ignore writes during sector erase */ return; default: /* Should never happen */ DPRINTF("%s: invalid command state %02x (wc 6)\n", __func__, pfl->cmd); goto reset_flash; } break; case 7: /* Special value for CFI queries */ DPRINTF("%s: invalid write in CFI query mode\n", __func__); goto reset_flash; default: /* Should never happen */ DPRINTF("%s: invalid write state (wc 7)\n", __func__); goto reset_flash; } pfl->wcycle++; return; /* Reset flash */ reset_flash: pfl->bypass = 0; pfl->wcycle = 0; pfl->cmd = 0; return; do_bypass: pfl->wcycle = 2; pfl->cmd = 0; return; } static uint32_t pflash_readb_be(void *opaque, target_phys_addr_t addr) { return pflash_read(opaque, addr, 1, 1); } static uint32_t pflash_readb_le(void *opaque, target_phys_addr_t addr) { return pflash_read(opaque, addr, 1, 0); } static uint32_t pflash_readw_be(void *opaque, target_phys_addr_t addr) { pflash_t *pfl = opaque; return pflash_read(pfl, addr, 2, 1); } static uint32_t pflash_readw_le(void *opaque, target_phys_addr_t addr) { pflash_t *pfl = opaque; return pflash_read(pfl, addr, 2, 0); } static uint32_t pflash_readl_be(void *opaque, target_phys_addr_t addr) { pflash_t *pfl = opaque; return pflash_read(pfl, addr, 4, 1); } static uint32_t pflash_readl_le(void *opaque, target_phys_addr_t addr) { pflash_t *pfl = opaque; return pflash_read(pfl, addr, 4, 0); } static void pflash_writeb_be(void *opaque, target_phys_addr_t addr, uint32_t value) { pflash_write(opaque, addr, value, 1, 1); } static void pflash_writeb_le(void *opaque, target_phys_addr_t addr, uint32_t value) { pflash_write(opaque, addr, value, 1, 0); } static void pflash_writew_be(void *opaque, target_phys_addr_t addr, uint32_t value) { pflash_t *pfl = opaque; pflash_write(pfl, addr, value, 2, 1); } static void pflash_writew_le(void *opaque, target_phys_addr_t addr, uint32_t value) { pflash_t *pfl = opaque; pflash_write(pfl, addr, value, 2, 0); } static void pflash_writel_be(void *opaque, target_phys_addr_t addr, uint32_t value) { pflash_t *pfl = opaque; pflash_write(pfl, addr, value, 4, 1); } static void pflash_writel_le(void *opaque, target_phys_addr_t addr, uint32_t value) { pflash_t *pfl = opaque; pflash_write(pfl, addr, value, 4, 0); } static CPUWriteMemoryFunc * const pflash_write_ops_be[] = { &pflash_writeb_be, &pflash_writew_be, &pflash_writel_be, }; static CPUReadMemoryFunc * const pflash_read_ops_be[] = { &pflash_readb_be, &pflash_readw_be, &pflash_readl_be, }; static CPUWriteMemoryFunc * const pflash_write_ops_le[] = { &pflash_writeb_le, &pflash_writew_le, &pflash_writel_le, }; static CPUReadMemoryFunc * const pflash_read_ops_le[] = { &pflash_readb_le, &pflash_readw_le, &pflash_readl_le, }; /* Count trailing zeroes of a 32 bits quantity */ static int ctz32 (uint32_t n) { int ret; ret = 0; if (!(n & 0xFFFF)) { ret += 16; n = n >> 16; } if (!(n & 0xFF)) { ret += 8; n = n >> 8; } if (!(n & 0xF)) { ret += 4; n = n >> 4; } if (!(n & 0x3)) { ret += 2; n = n >> 2; } if (!(n & 0x1)) { ret++; #if 0 /* This is not necessary as n is never 0 */ n = n >> 1; #endif } #if 0 /* This is not necessary as n is never 0 */ if (!n) ret++; #endif return ret; } pflash_t *pflash_cfi02_register(target_phys_addr_t base, ram_addr_t off, BlockDriverState *bs, uint32_t sector_len, int nb_blocs, int nb_mappings, int width, uint16_t id0, uint16_t id1, uint16_t id2, uint16_t id3, uint16_t unlock_addr0, uint16_t unlock_addr1, int be) { pflash_t *pfl; int32_t chip_len; int ret; chip_len = sector_len * nb_blocs; /* XXX: to be fixed */ #if 0 if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) && total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024)) return NULL; #endif pfl = qemu_mallocz(sizeof(pflash_t)); /* FIXME: Allocate ram ourselves. */ pfl->storage = qemu_get_ram_ptr(off); if (be) { pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_be, pflash_write_ops_be, pfl, DEVICE_NATIVE_ENDIAN); } else { pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_le, pflash_write_ops_le, pfl, DEVICE_NATIVE_ENDIAN); } pfl->off = off; pfl->base = base; pfl->chip_len = chip_len; pfl->mappings = nb_mappings; pflash_register_memory(pfl, 1); pfl->bs = bs; if (pfl->bs) { /* read the initial flash content */ ret = bdrv_read(pfl->bs, 0, pfl->storage, chip_len >> 9); if (ret < 0) { cpu_unregister_io_memory(pfl->fl_mem); qemu_free(pfl); return NULL; } } #if 0 /* XXX: there should be a bit to set up read-only, * the same way the hardware does (with WP pin). */ pfl->ro = 1; #else pfl->ro = 0; #endif pfl->timer = qemu_new_timer_ns(vm_clock, pflash_timer, pfl); pfl->sector_len = sector_len; pfl->width = width; pfl->wcycle = 0; pfl->cmd = 0; pfl->status = 0; pfl->ident[0] = id0; pfl->ident[1] = id1; pfl->ident[2] = id2; pfl->ident[3] = id3; pfl->unlock_addr[0] = unlock_addr0; pfl->unlock_addr[1] = unlock_addr1; /* Hardcoded CFI table (mostly from SG29 Spansion flash) */ pfl->cfi_len = 0x52; /* Standard "QRY" string */ pfl->cfi_table[0x10] = 'Q'; pfl->cfi_table[0x11] = 'R'; pfl->cfi_table[0x12] = 'Y'; /* Command set (AMD/Fujitsu) */ pfl->cfi_table[0x13] = 0x02; pfl->cfi_table[0x14] = 0x00; /* Primary extended table address */ pfl->cfi_table[0x15] = 0x31; pfl->cfi_table[0x16] = 0x00; /* Alternate command set (none) */ pfl->cfi_table[0x17] = 0x00; pfl->cfi_table[0x18] = 0x00; /* Alternate extended table (none) */ pfl->cfi_table[0x19] = 0x00; pfl->cfi_table[0x1A] = 0x00; /* Vcc min */ pfl->cfi_table[0x1B] = 0x27; /* Vcc max */ pfl->cfi_table[0x1C] = 0x36; /* Vpp min (no Vpp pin) */ pfl->cfi_table[0x1D] = 0x00; /* Vpp max (no Vpp pin) */ pfl->cfi_table[0x1E] = 0x00; /* Reserved */ pfl->cfi_table[0x1F] = 0x07; /* Timeout for min size buffer write (NA) */ pfl->cfi_table[0x20] = 0x00; /* Typical timeout for block erase (512 ms) */ pfl->cfi_table[0x21] = 0x09; /* Typical timeout for full chip erase (4096 ms) */ pfl->cfi_table[0x22] = 0x0C; /* Reserved */ pfl->cfi_table[0x23] = 0x01; /* Max timeout for buffer write (NA) */ pfl->cfi_table[0x24] = 0x00; /* Max timeout for block erase */ pfl->cfi_table[0x25] = 0x0A; /* Max timeout for chip erase */ pfl->cfi_table[0x26] = 0x0D; /* Device size */ pfl->cfi_table[0x27] = ctz32(chip_len); /* Flash device interface (8 & 16 bits) */ pfl->cfi_table[0x28] = 0x02; pfl->cfi_table[0x29] = 0x00; /* Max number of bytes in multi-bytes write */ /* XXX: disable buffered write as it's not supported */ // pfl->cfi_table[0x2A] = 0x05; pfl->cfi_table[0x2A] = 0x00; pfl->cfi_table[0x2B] = 0x00; /* Number of erase block regions (uniform) */ pfl->cfi_table[0x2C] = 0x01; /* Erase block region 1 */ pfl->cfi_table[0x2D] = nb_blocs - 1; pfl->cfi_table[0x2E] = (nb_blocs - 1) >> 8; pfl->cfi_table[0x2F] = sector_len >> 8; pfl->cfi_table[0x30] = sector_len >> 16; /* Extended */ pfl->cfi_table[0x31] = 'P'; pfl->cfi_table[0x32] = 'R'; pfl->cfi_table[0x33] = 'I'; pfl->cfi_table[0x34] = '1'; pfl->cfi_table[0x35] = '0'; pfl->cfi_table[0x36] = 0x00; pfl->cfi_table[0x37] = 0x00; pfl->cfi_table[0x38] = 0x00; pfl->cfi_table[0x39] = 0x00; pfl->cfi_table[0x3a] = 0x00; pfl->cfi_table[0x3b] = 0x00; pfl->cfi_table[0x3c] = 0x00; return pfl; }