/* * CFI parallel flash with Intel command set emulation * * Copyright (c) 2006 Thorsten Zitterell * Copyright (c) 2005 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* * For now, this code can emulate flashes of 1, 2 or 4 bytes width. * Supported commands/modes are: * - flash read * - flash write * - flash ID read * - sector erase * - CFI queries * * It does not support timings * It does not support flash interleaving * It does not implement software data protection as found in many real chips * It does not implement erase suspend/resume commands * It does not implement multiple sectors erase * * It does not implement much more ... */ #include "hw.h" #include "flash.h" #include "block.h" #include "qemu-timer.h" #define PFLASH_BUG(fmt, ...) \ do { \ printf("PFLASH: Possible BUG - " fmt, ## __VA_ARGS__); \ exit(1); \ } while(0) /* #define PFLASH_DEBUG */ #ifdef PFLASH_DEBUG #define DPRINTF(fmt, ...) \ do { \ printf("PFLASH: " fmt , ## __VA_ARGS__); \ } while (0) #else #define DPRINTF(fmt, ...) do { } while (0) #endif struct pflash_t { BlockDriverState *bs; target_phys_addr_t base; target_phys_addr_t sector_len; target_phys_addr_t total_len; int width; int wcycle; /* if 0, the flash is read normally */ int bypass; int ro; uint8_t cmd; uint8_t status; uint16_t ident[4]; uint8_t cfi_len; uint8_t cfi_table[0x52]; target_phys_addr_t counter; unsigned int writeblock_size; QEMUTimer *timer; ram_addr_t off; int fl_mem; void *storage; }; static void pflash_timer (void *opaque) { pflash_t *pfl = opaque; DPRINTF("%s: command %02x done\n", __func__, pfl->cmd); /* Reset flash */ pfl->status ^= 0x80; if (pfl->bypass) { pfl->wcycle = 2; } else { cpu_register_physical_memory(pfl->base, pfl->total_len, pfl->off | IO_MEM_ROMD | pfl->fl_mem); pfl->wcycle = 0; } pfl->cmd = 0; } static uint32_t pflash_read (pflash_t *pfl, target_phys_addr_t offset, int width, int be) { target_phys_addr_t boff; uint32_t ret; uint8_t *p; ret = -1; boff = offset & 0xFF; /* why this here ?? */ if (pfl->width == 2) boff = boff >> 1; else if (pfl->width == 4) boff = boff >> 2; #if 0 DPRINTF("%s: reading offset " TARGET_FMT_plx " under cmd %02x width %d\n", __func__, offset, pfl->cmd, width); #endif switch (pfl->cmd) { case 0x00: /* Flash area read */ p = pfl->storage; switch (width) { case 1: ret = p[offset]; DPRINTF("%s: data offset " TARGET_FMT_plx " %02x\n", __func__, offset, ret); break; case 2: if (be) { ret = p[offset] << 8; ret |= p[offset + 1]; } else { ret = p[offset]; ret |= p[offset + 1] << 8; } DPRINTF("%s: data offset " TARGET_FMT_plx " %04x\n", __func__, offset, ret); break; case 4: if (be) { ret = p[offset] << 24; ret |= p[offset + 1] << 16; ret |= p[offset + 2] << 8; ret |= p[offset + 3]; } else { ret = p[offset]; ret |= p[offset + 1] << 8; ret |= p[offset + 1] << 8; ret |= p[offset + 2] << 16; ret |= p[offset + 3] << 24; } DPRINTF("%s: data offset " TARGET_FMT_plx " %08x\n", __func__, offset, ret); break; default: DPRINTF("BUG in %s\n", __func__); } break; case 0x20: /* Block erase */ case 0x50: /* Clear status register */ case 0x60: /* Block /un)lock */ case 0x70: /* Status Register */ case 0xe8: /* Write block */ /* Status register read */ ret = pfl->status; DPRINTF("%s: status %x\n", __func__, ret); break; case 0x90: switch (boff) { case 0: ret = pfl->ident[0] << 8 | pfl->ident[1]; DPRINTF("%s: Manufacturer Code %04x\n", __func__, ret); break; case 1: ret = pfl->ident[2] << 8 | pfl->ident[3]; DPRINTF("%s: Device ID Code %04x\n", __func__, ret); break; default: DPRINTF("%s: Read Device Information boff=%x\n", __func__, boff); ret = 0; break; } break; case 0x98: /* Query mode */ if (boff > pfl->cfi_len) ret = 0; else ret = pfl->cfi_table[boff]; break; default: /* This should never happen : reset state & treat it as a read */ DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd); pfl->wcycle = 0; pfl->cmd = 0; } return ret; } /* update flash content on disk */ static void pflash_update(pflash_t *pfl, int offset, int size) { int offset_end; if (pfl->bs) { offset_end = offset + size; /* round to sectors */ offset = offset >> 9; offset_end = (offset_end + 511) >> 9; bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9), offset_end - offset); } } static inline void pflash_data_write(pflash_t *pfl, target_phys_addr_t offset, uint32_t value, int width, int be) { uint8_t *p = pfl->storage; DPRINTF("%s: block write offset " TARGET_FMT_plx " value %x counter " TARGET_FMT_plx "\n", __func__, offset, value, pfl->counter); switch (width) { case 1: p[offset] = value; break; case 2: if (be) { p[offset] = value >> 8; p[offset + 1] = value; } else { p[offset] = value; p[offset + 1] = value >> 8; } break; case 4: if (be) { p[offset] = value >> 24; p[offset + 1] = value >> 16; p[offset + 2] = value >> 8; p[offset + 3] = value; } else { p[offset] = value; p[offset + 1] = value >> 8; p[offset + 2] = value >> 16; p[offset + 3] = value >> 24; } break; } } static void pflash_write(pflash_t *pfl, target_phys_addr_t offset, uint32_t value, int width, int be) { uint8_t *p; uint8_t cmd; cmd = value; DPRINTF("%s: writing offset " TARGET_FMT_plx " value %08x width %d wcycle 0x%x\n", __func__, offset, value, width, pfl->wcycle); if (!pfl->wcycle) { /* Set the device in I/O access mode */ cpu_register_physical_memory(pfl->base, pfl->total_len, pfl->fl_mem); } switch (pfl->wcycle) { case 0: /* read mode */ switch (cmd) { case 0x00: /* ??? */ goto reset_flash; case 0x10: /* Single Byte Program */ case 0x40: /* Single Byte Program */ DPRINTF("%s: Single Byte Program\n", __func__); break; case 0x20: /* Block erase */ p = pfl->storage; offset &= ~(pfl->sector_len - 1); DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes " TARGET_FMT_plx "\n", __func__, offset, pfl->sector_len); memset(p + offset, 0xff, pfl->sector_len); pflash_update(pfl, offset, pfl->sector_len); pfl->status |= 0x80; /* Ready! */ break; case 0x50: /* Clear status bits */ DPRINTF("%s: Clear status bits\n", __func__); pfl->status = 0x0; goto reset_flash; case 0x60: /* Block (un)lock */ DPRINTF("%s: Block unlock\n", __func__); break; case 0x70: /* Status Register */ DPRINTF("%s: Read status register\n", __func__); pfl->cmd = cmd; return; case 0x90: /* Read Device ID */ DPRINTF("%s: Read Device information\n", __func__); pfl->cmd = cmd; return; case 0x98: /* CFI query */ DPRINTF("%s: CFI query\n", __func__); break; case 0xe8: /* Write to buffer */ DPRINTF("%s: Write to buffer\n", __func__); pfl->status |= 0x80; /* Ready! */ break; case 0xff: /* Read array mode */ DPRINTF("%s: Read array mode\n", __func__); goto reset_flash; default: goto error_flash; } pfl->wcycle++; pfl->cmd = cmd; return; case 1: switch (pfl->cmd) { case 0x10: /* Single Byte Program */ case 0x40: /* Single Byte Program */ DPRINTF("%s: Single Byte Program\n", __func__); pflash_data_write(pfl, offset, value, width, be); pflash_update(pfl, offset, width); pfl->status |= 0x80; /* Ready! */ pfl->wcycle = 0; break; case 0x20: /* Block erase */ case 0x28: if (cmd == 0xd0) { /* confirm */ pfl->wcycle = 0; pfl->status |= 0x80; } else if (cmd == 0xff) { /* read array mode */ goto reset_flash; } else goto error_flash; break; case 0xe8: DPRINTF("%s: block write of %x bytes\n", __func__, value); pfl->counter = value; pfl->wcycle++; break; case 0x60: if (cmd == 0xd0) { pfl->wcycle = 0; pfl->status |= 0x80; } else if (cmd == 0x01) { pfl->wcycle = 0; pfl->status |= 0x80; } else if (cmd == 0xff) { goto reset_flash; } else { DPRINTF("%s: Unknown (un)locking command\n", __func__); goto reset_flash; } break; case 0x98: if (cmd == 0xff) { goto reset_flash; } else { DPRINTF("%s: leaving query mode\n", __func__); } break; default: goto error_flash; } return; case 2: switch (pfl->cmd) { case 0xe8: /* Block write */ pflash_data_write(pfl, offset, value, width, be); pfl->status |= 0x80; if (!pfl->counter) { target_phys_addr_t mask = pfl->writeblock_size - 1; mask = ~mask; DPRINTF("%s: block write finished\n", __func__); pfl->wcycle++; /* Flush the entire write buffer onto backing storage. */ pflash_update(pfl, offset & mask, pfl->writeblock_size); } pfl->counter--; break; default: goto error_flash; } return; case 3: /* Confirm mode */ switch (pfl->cmd) { case 0xe8: /* Block write */ if (cmd == 0xd0) { pfl->wcycle = 0; pfl->status |= 0x80; } else { DPRINTF("%s: unknown command for \"write block\"\n", __func__); PFLASH_BUG("Write block confirm"); goto reset_flash; } break; default: goto error_flash; } return; default: /* Should never happen */ DPRINTF("%s: invalid write state\n", __func__); goto reset_flash; } return; error_flash: printf("%s: Unimplemented flash cmd sequence " "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)\n", __func__, offset, pfl->wcycle, pfl->cmd, value); reset_flash: cpu_register_physical_memory(pfl->base, pfl->total_len, pfl->off | IO_MEM_ROMD | pfl->fl_mem); pfl->bypass = 0; pfl->wcycle = 0; pfl->cmd = 0; return; } static uint32_t pflash_readb_be(void *opaque, target_phys_addr_t addr) { return pflash_read(opaque, addr, 1, 1); } static uint32_t pflash_readb_le(void *opaque, target_phys_addr_t addr) { return pflash_read(opaque, addr, 1, 0); } static uint32_t pflash_readw_be(void *opaque, target_phys_addr_t addr) { pflash_t *pfl = opaque; return pflash_read(pfl, addr, 2, 1); } static uint32_t pflash_readw_le(void *opaque, target_phys_addr_t addr) { pflash_t *pfl = opaque; return pflash_read(pfl, addr, 2, 0); } static uint32_t pflash_readl_be(void *opaque, target_phys_addr_t addr) { pflash_t *pfl = opaque; return pflash_read(pfl, addr, 4, 1); } static uint32_t pflash_readl_le(void *opaque, target_phys_addr_t addr) { pflash_t *pfl = opaque; return pflash_read(pfl, addr, 4, 0); } static void pflash_writeb_be(void *opaque, target_phys_addr_t addr, uint32_t value) { pflash_write(opaque, addr, value, 1, 1); } static void pflash_writeb_le(void *opaque, target_phys_addr_t addr, uint32_t value) { pflash_write(opaque, addr, value, 1, 0); } static void pflash_writew_be(void *opaque, target_phys_addr_t addr, uint32_t value) { pflash_t *pfl = opaque; pflash_write(pfl, addr, value, 2, 1); } static void pflash_writew_le(void *opaque, target_phys_addr_t addr, uint32_t value) { pflash_t *pfl = opaque; pflash_write(pfl, addr, value, 2, 0); } static void pflash_writel_be(void *opaque, target_phys_addr_t addr, uint32_t value) { pflash_t *pfl = opaque; pflash_write(pfl, addr, value, 4, 1); } static void pflash_writel_le(void *opaque, target_phys_addr_t addr, uint32_t value) { pflash_t *pfl = opaque; pflash_write(pfl, addr, value, 4, 0); } static CPUWriteMemoryFunc * const pflash_write_ops_be[] = { &pflash_writeb_be, &pflash_writew_be, &pflash_writel_be, }; static CPUReadMemoryFunc * const pflash_read_ops_be[] = { &pflash_readb_be, &pflash_readw_be, &pflash_readl_be, }; static CPUWriteMemoryFunc * const pflash_write_ops_le[] = { &pflash_writeb_le, &pflash_writew_le, &pflash_writel_le, }; static CPUReadMemoryFunc * const pflash_read_ops_le[] = { &pflash_readb_le, &pflash_readw_le, &pflash_readl_le, }; /* Count trailing zeroes of a 32 bits quantity */ static int ctz32 (uint32_t n) { int ret; ret = 0; if (!(n & 0xFFFF)) { ret += 16; n = n >> 16; } if (!(n & 0xFF)) { ret += 8; n = n >> 8; } if (!(n & 0xF)) { ret += 4; n = n >> 4; } if (!(n & 0x3)) { ret += 2; n = n >> 2; } if (!(n & 0x1)) { ret++; #if 0 /* This is not necessary as n is never 0 */ n = n >> 1; #endif } #if 0 /* This is not necessary as n is never 0 */ if (!n) ret++; #endif return ret; } pflash_t *pflash_cfi01_register(target_phys_addr_t base, ram_addr_t off, BlockDriverState *bs, uint32_t sector_len, int nb_blocs, int width, uint16_t id0, uint16_t id1, uint16_t id2, uint16_t id3, int be) { pflash_t *pfl; target_phys_addr_t total_len; int ret; total_len = sector_len * nb_blocs; /* XXX: to be fixed */ #if 0 if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) && total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024)) return NULL; #endif pfl = g_malloc0(sizeof(pflash_t)); /* FIXME: Allocate ram ourselves. */ pfl->storage = qemu_get_ram_ptr(off); if (be) { pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_be, pflash_write_ops_be, pfl, DEVICE_NATIVE_ENDIAN); } else { pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_le, pflash_write_ops_le, pfl, DEVICE_NATIVE_ENDIAN); } pfl->off = off; cpu_register_physical_memory(base, total_len, off | pfl->fl_mem | IO_MEM_ROMD); pfl->bs = bs; if (pfl->bs) { /* read the initial flash content */ ret = bdrv_read(pfl->bs, 0, pfl->storage, total_len >> 9); if (ret < 0) { cpu_unregister_io_memory(pfl->fl_mem); g_free(pfl); return NULL; } bdrv_attach_dev_nofail(pfl->bs, pfl); } #if 0 /* XXX: there should be a bit to set up read-only, * the same way the hardware does (with WP pin). */ pfl->ro = 1; #else pfl->ro = 0; #endif pfl->timer = qemu_new_timer_ns(vm_clock, pflash_timer, pfl); pfl->base = base; pfl->sector_len = sector_len; pfl->total_len = total_len; pfl->width = width; pfl->wcycle = 0; pfl->cmd = 0; pfl->status = 0; pfl->ident[0] = id0; pfl->ident[1] = id1; pfl->ident[2] = id2; pfl->ident[3] = id3; /* Hardcoded CFI table */ pfl->cfi_len = 0x52; /* Standard "QRY" string */ pfl->cfi_table[0x10] = 'Q'; pfl->cfi_table[0x11] = 'R'; pfl->cfi_table[0x12] = 'Y'; /* Command set (Intel) */ pfl->cfi_table[0x13] = 0x01; pfl->cfi_table[0x14] = 0x00; /* Primary extended table address (none) */ pfl->cfi_table[0x15] = 0x31; pfl->cfi_table[0x16] = 0x00; /* Alternate command set (none) */ pfl->cfi_table[0x17] = 0x00; pfl->cfi_table[0x18] = 0x00; /* Alternate extended table (none) */ pfl->cfi_table[0x19] = 0x00; pfl->cfi_table[0x1A] = 0x00; /* Vcc min */ pfl->cfi_table[0x1B] = 0x45; /* Vcc max */ pfl->cfi_table[0x1C] = 0x55; /* Vpp min (no Vpp pin) */ pfl->cfi_table[0x1D] = 0x00; /* Vpp max (no Vpp pin) */ pfl->cfi_table[0x1E] = 0x00; /* Reserved */ pfl->cfi_table[0x1F] = 0x07; /* Timeout for min size buffer write */ pfl->cfi_table[0x20] = 0x07; /* Typical timeout for block erase */ pfl->cfi_table[0x21] = 0x0a; /* Typical timeout for full chip erase (4096 ms) */ pfl->cfi_table[0x22] = 0x00; /* Reserved */ pfl->cfi_table[0x23] = 0x04; /* Max timeout for buffer write */ pfl->cfi_table[0x24] = 0x04; /* Max timeout for block erase */ pfl->cfi_table[0x25] = 0x04; /* Max timeout for chip erase */ pfl->cfi_table[0x26] = 0x00; /* Device size */ pfl->cfi_table[0x27] = ctz32(total_len); // + 1; /* Flash device interface (8 & 16 bits) */ pfl->cfi_table[0x28] = 0x02; pfl->cfi_table[0x29] = 0x00; /* Max number of bytes in multi-bytes write */ if (width == 1) { pfl->cfi_table[0x2A] = 0x08; } else { pfl->cfi_table[0x2A] = 0x0B; } pfl->writeblock_size = 1 << pfl->cfi_table[0x2A]; pfl->cfi_table[0x2B] = 0x00; /* Number of erase block regions (uniform) */ pfl->cfi_table[0x2C] = 0x01; /* Erase block region 1 */ pfl->cfi_table[0x2D] = nb_blocs - 1; pfl->cfi_table[0x2E] = (nb_blocs - 1) >> 8; pfl->cfi_table[0x2F] = sector_len >> 8; pfl->cfi_table[0x30] = sector_len >> 16; /* Extended */ pfl->cfi_table[0x31] = 'P'; pfl->cfi_table[0x32] = 'R'; pfl->cfi_table[0x33] = 'I'; pfl->cfi_table[0x34] = '1'; pfl->cfi_table[0x35] = '1'; pfl->cfi_table[0x36] = 0x00; pfl->cfi_table[0x37] = 0x00; pfl->cfi_table[0x38] = 0x00; pfl->cfi_table[0x39] = 0x00; pfl->cfi_table[0x3a] = 0x00; pfl->cfi_table[0x3b] = 0x00; pfl->cfi_table[0x3c] = 0x00; return pfl; }