/* * QEMU PCI bus manager * * Copyright (c) 2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" //#define DEBUG_PCI #define PCI_VENDOR_ID 0x00 /* 16 bits */ #define PCI_DEVICE_ID 0x02 /* 16 bits */ #define PCI_COMMAND 0x04 /* 16 bits */ #define PCI_COMMAND_IO 0x1 /* Enable response in I/O space */ #define PCI_COMMAND_MEMORY 0x2 /* Enable response in Memory space */ #define PCI_CLASS_DEVICE 0x0a /* Device class */ #define PCI_INTERRUPT_LINE 0x3c /* 8 bits */ #define PCI_INTERRUPT_PIN 0x3d /* 8 bits */ #define PCI_MIN_GNT 0x3e /* 8 bits */ #define PCI_MAX_LAT 0x3f /* 8 bits */ /* just used for simpler irq handling. */ #define PCI_DEVICES_MAX 64 #define PCI_IRQ_WORDS ((PCI_DEVICES_MAX + 31) / 32) typedef struct PCIBridge { uint32_t config_reg; PCIDevice **pci_bus[256]; } PCIBridge; static PCIBridge pci_bridge; target_phys_addr_t pci_mem_base; static int pci_irq_index; static uint32_t pci_irq_levels[4][PCI_IRQ_WORDS]; /* -1 for devfn means auto assign */ PCIDevice *pci_register_device(const char *name, int instance_size, int bus_num, int devfn, PCIConfigReadFunc *config_read, PCIConfigWriteFunc *config_write) { PCIBridge *s = &pci_bridge; PCIDevice *pci_dev, **bus; if (pci_irq_index >= PCI_DEVICES_MAX) return NULL; if (!s->pci_bus[bus_num]) { s->pci_bus[bus_num] = qemu_mallocz(256 * sizeof(PCIDevice *)); if (!s->pci_bus[bus_num]) return NULL; } bus = s->pci_bus[bus_num]; if (devfn < 0) { for(devfn = 0 ; devfn < 256; devfn += 8) { if (!bus[devfn]) goto found; } return NULL; found: ; } pci_dev = qemu_mallocz(instance_size); if (!pci_dev) return NULL; pci_dev->bus_num = bus_num; pci_dev->devfn = devfn; pstrcpy(pci_dev->name, sizeof(pci_dev->name), name); if (!config_read) config_read = pci_default_read_config; if (!config_write) config_write = pci_default_write_config; pci_dev->config_read = config_read; pci_dev->config_write = config_write; pci_dev->irq_index = pci_irq_index++; bus[devfn] = pci_dev; return pci_dev; } void pci_register_io_region(PCIDevice *pci_dev, int region_num, uint32_t size, int type, PCIMapIORegionFunc *map_func) { PCIIORegion *r; if ((unsigned int)region_num >= PCI_NUM_REGIONS) return; r = &pci_dev->io_regions[region_num]; r->addr = -1; r->size = size; r->type = type; r->map_func = map_func; } static void pci_addr_writel(void* opaque, uint32_t addr, uint32_t val) { PCIBridge *s = opaque; s->config_reg = val; } static uint32_t pci_addr_readl(void* opaque, uint32_t addr) { PCIBridge *s = opaque; return s->config_reg; } static void pci_update_mappings(PCIDevice *d) { PCIIORegion *r; int cmd, i; uint32_t last_addr, new_addr, config_ofs; cmd = le16_to_cpu(*(uint16_t *)(d->config + PCI_COMMAND)); for(i = 0; i < PCI_NUM_REGIONS; i++) { r = &d->io_regions[i]; if (i == PCI_ROM_SLOT) { config_ofs = 0x30; } else { config_ofs = 0x10 + i * 4; } if (r->size != 0) { if (r->type & PCI_ADDRESS_SPACE_IO) { if (cmd & PCI_COMMAND_IO) { new_addr = le32_to_cpu(*(uint32_t *)(d->config + config_ofs)); new_addr = new_addr & ~(r->size - 1); last_addr = new_addr + r->size - 1; /* NOTE: we have only 64K ioports on PC */ if (last_addr <= new_addr || new_addr == 0 || last_addr >= 0x10000) { new_addr = -1; } } else { new_addr = -1; } } else { if (cmd & PCI_COMMAND_MEMORY) { new_addr = le32_to_cpu(*(uint32_t *)(d->config + config_ofs)); /* the ROM slot has a specific enable bit */ if (i == PCI_ROM_SLOT && !(new_addr & 1)) goto no_mem_map; new_addr = new_addr & ~(r->size - 1); last_addr = new_addr + r->size - 1; /* NOTE: we do not support wrapping */ /* XXX: as we cannot support really dynamic mappings, we handle specific values as invalid mappings. */ if (last_addr <= new_addr || new_addr == 0 || last_addr == -1) { new_addr = -1; } } else { no_mem_map: new_addr = -1; } } /* now do the real mapping */ if (new_addr != r->addr) { if (r->addr != -1) { if (r->type & PCI_ADDRESS_SPACE_IO) { int class; /* NOTE: specific hack for IDE in PC case: only one byte must be mapped. */ class = d->config[0x0a] | (d->config[0x0b] << 8); if (class == 0x0101 && r->size == 4) { isa_unassign_ioport(r->addr + 2, 1); } else { isa_unassign_ioport(r->addr, r->size); } } else { cpu_register_physical_memory(r->addr + pci_mem_base, r->size, IO_MEM_UNASSIGNED); } } r->addr = new_addr; if (r->addr != -1) { r->map_func(d, i, r->addr, r->size, r->type); } } } } } uint32_t pci_default_read_config(PCIDevice *d, uint32_t address, int len) { uint32_t val; switch(len) { case 1: val = d->config[address]; break; case 2: val = le16_to_cpu(*(uint16_t *)(d->config + address)); break; default: case 4: val = le32_to_cpu(*(uint32_t *)(d->config + address)); break; } return val; } void pci_default_write_config(PCIDevice *d, uint32_t address, uint32_t val, int len) { int can_write, i; uint32_t end, addr; if (len == 4 && ((address >= 0x10 && address < 0x10 + 4 * 6) || (address >= 0x30 && address < 0x34))) { PCIIORegion *r; int reg; if ( address >= 0x30 ) { reg = PCI_ROM_SLOT; }else{ reg = (address - 0x10) >> 2; } r = &d->io_regions[reg]; if (r->size == 0) goto default_config; /* compute the stored value */ if (reg == PCI_ROM_SLOT) { /* keep ROM enable bit */ val &= (~(r->size - 1)) | 1; } else { val &= ~(r->size - 1); val |= r->type; } *(uint32_t *)(d->config + address) = cpu_to_le32(val); pci_update_mappings(d); return; } default_config: /* not efficient, but simple */ addr = address; for(i = 0; i < len; i++) { /* default read/write accesses */ switch(d->config[0x0e]) { case 0x00: case 0x80: switch(addr) { case 0x00: case 0x01: case 0x02: case 0x03: case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0e: case 0x10 ... 0x27: /* base */ case 0x30 ... 0x33: /* rom */ case 0x3d: can_write = 0; break; default: can_write = 1; break; } break; default: case 0x01: switch(addr) { case 0x00: case 0x01: case 0x02: case 0x03: case 0x08: case 0x09: case 0x0a: case 0x0b: case 0x0e: case 0x38 ... 0x3b: /* rom */ case 0x3d: can_write = 0; break; default: can_write = 1; break; } break; } if (can_write) { d->config[addr] = val; } addr++; val >>= 8; } end = address + len; if (end > PCI_COMMAND && address < (PCI_COMMAND + 2)) { /* if the command register is modified, we must modify the mappings */ pci_update_mappings(d); } } static void pci_data_write(void *opaque, uint32_t addr, uint32_t val, int len) { PCIBridge *s = opaque; PCIDevice **bus, *pci_dev; int config_addr; #if defined(DEBUG_PCI) && 0 printf("pci_data_write: addr=%08x val=%08x len=%d\n", s->config_reg, val, len); #endif if (!(s->config_reg & (1 << 31))) { return; } if ((s->config_reg & 0x3) != 0) { return; } bus = s->pci_bus[(s->config_reg >> 16) & 0xff]; if (!bus) return; pci_dev = bus[(s->config_reg >> 8) & 0xff]; if (!pci_dev) return; config_addr = (s->config_reg & 0xfc) | (addr & 3); #if defined(DEBUG_PCI) printf("pci_config_write: %s: addr=%02x val=%08x len=%d\n", pci_dev->name, config_addr, val, len); #endif pci_dev->config_write(pci_dev, config_addr, val, len); } static uint32_t pci_data_read(void *opaque, uint32_t addr, int len) { PCIBridge *s = opaque; PCIDevice **bus, *pci_dev; int config_addr; uint32_t val; if (!(s->config_reg & (1 << 31))) goto fail; if ((s->config_reg & 0x3) != 0) goto fail; bus = s->pci_bus[(s->config_reg >> 16) & 0xff]; if (!bus) goto fail; pci_dev = bus[(s->config_reg >> 8) & 0xff]; if (!pci_dev) { fail: switch(len) { case 1: val = 0xff; break; case 2: val = 0xffff; break; default: case 4: val = 0xffffffff; break; } goto the_end; } config_addr = (s->config_reg & 0xfc) | (addr & 3); val = pci_dev->config_read(pci_dev, config_addr, len); #if defined(DEBUG_PCI) printf("pci_config_read: %s: addr=%02x val=%08x len=%d\n", pci_dev->name, config_addr, val, len); #endif the_end: #if defined(DEBUG_PCI) && 0 printf("pci_data_read: addr=%08x val=%08x len=%d\n", s->config_reg, val, len); #endif return val; } static void pci_data_writeb(void* opaque, uint32_t addr, uint32_t val) { pci_data_write(opaque, addr, val, 1); } static void pci_data_writew(void* opaque, uint32_t addr, uint32_t val) { pci_data_write(opaque, addr, val, 2); } static void pci_data_writel(void* opaque, uint32_t addr, uint32_t val) { pci_data_write(opaque, addr, val, 4); } static uint32_t pci_data_readb(void* opaque, uint32_t addr) { return pci_data_read(opaque, addr, 1); } static uint32_t pci_data_readw(void* opaque, uint32_t addr) { return pci_data_read(opaque, addr, 2); } static uint32_t pci_data_readl(void* opaque, uint32_t addr) { return pci_data_read(opaque, addr, 4); } /* i440FX PCI bridge */ void i440fx_init(void) { PCIBridge *s = &pci_bridge; PCIDevice *d; register_ioport_write(0xcf8, 4, 4, pci_addr_writel, s); register_ioport_read(0xcf8, 4, 4, pci_addr_readl, s); register_ioport_write(0xcfc, 4, 1, pci_data_writeb, s); register_ioport_write(0xcfc, 4, 2, pci_data_writew, s); register_ioport_write(0xcfc, 4, 4, pci_data_writel, s); register_ioport_read(0xcfc, 4, 1, pci_data_readb, s); register_ioport_read(0xcfc, 4, 2, pci_data_readw, s); register_ioport_read(0xcfc, 4, 4, pci_data_readl, s); d = pci_register_device("i440FX", sizeof(PCIDevice), 0, 0, NULL, NULL); d->config[0x00] = 0x86; // vendor_id d->config[0x01] = 0x80; d->config[0x02] = 0x37; // device_id d->config[0x03] = 0x12; d->config[0x08] = 0x02; // revision d->config[0x0a] = 0x00; // class_sub = host2pci d->config[0x0b] = 0x06; // class_base = PCI_bridge d->config[0x0e] = 0x00; // header_type } /* PIIX3 PCI to ISA bridge */ typedef struct PIIX3State { PCIDevice dev; } PIIX3State; PIIX3State *piix3_state; static void piix3_reset(PIIX3State *d) { uint8_t *pci_conf = d->dev.config; pci_conf[0x04] = 0x07; // master, memory and I/O pci_conf[0x05] = 0x00; pci_conf[0x06] = 0x00; pci_conf[0x07] = 0x02; // PCI_status_devsel_medium pci_conf[0x4c] = 0x4d; pci_conf[0x4e] = 0x03; pci_conf[0x4f] = 0x00; pci_conf[0x60] = 0x80; pci_conf[0x69] = 0x02; pci_conf[0x70] = 0x80; pci_conf[0x76] = 0x0c; pci_conf[0x77] = 0x0c; pci_conf[0x78] = 0x02; pci_conf[0x79] = 0x00; pci_conf[0x80] = 0x00; pci_conf[0x82] = 0x00; pci_conf[0xa0] = 0x08; pci_conf[0xa0] = 0x08; pci_conf[0xa2] = 0x00; pci_conf[0xa3] = 0x00; pci_conf[0xa4] = 0x00; pci_conf[0xa5] = 0x00; pci_conf[0xa6] = 0x00; pci_conf[0xa7] = 0x00; pci_conf[0xa8] = 0x0f; pci_conf[0xaa] = 0x00; pci_conf[0xab] = 0x00; pci_conf[0xac] = 0x00; pci_conf[0xae] = 0x00; } void piix3_init(void) { PIIX3State *d; uint8_t *pci_conf; d = (PIIX3State *)pci_register_device("PIIX3", sizeof(PIIX3State), 0, -1, NULL, NULL); piix3_state = d; pci_conf = d->dev.config; pci_conf[0x00] = 0x86; // Intel pci_conf[0x01] = 0x80; pci_conf[0x02] = 0x00; // 82371SB PIIX3 PCI-to-ISA bridge (Step A1) pci_conf[0x03] = 0x70; pci_conf[0x0a] = 0x01; // class_sub = PCI_ISA pci_conf[0x0b] = 0x06; // class_base = PCI_bridge pci_conf[0x0e] = 0x80; // header_type = PCI_multifunction, generic piix3_reset(d); } /* PREP pci init */ static inline void set_config(PCIBridge *s, target_phys_addr_t addr) { int devfn, i; for(i = 0; i < 11; i++) { if ((addr & (1 << (11 + i))) != 0) break; } devfn = ((addr >> 8) & 7) | (i << 3); s->config_reg = 0x80000000 | (addr & 0xfc) | (devfn << 8); } static void PPC_PCIIO_writeb (void *opaque, target_phys_addr_t addr, uint32_t val) { PCIBridge *s = opaque; set_config(s, addr); pci_data_write(s, addr, val, 1); } static void PPC_PCIIO_writew (void *opaque, target_phys_addr_t addr, uint32_t val) { PCIBridge *s = opaque; set_config(s, addr); #ifdef TARGET_WORDS_BIGENDIAN val = bswap16(val); #endif pci_data_write(s, addr, val, 2); } static void PPC_PCIIO_writel (void *opaque, target_phys_addr_t addr, uint32_t val) { PCIBridge *s = opaque; set_config(s, addr); #ifdef TARGET_WORDS_BIGENDIAN val = bswap32(val); #endif pci_data_write(s, addr, val, 4); } static uint32_t PPC_PCIIO_readb (void *opaque, target_phys_addr_t addr) { PCIBridge *s = opaque; uint32_t val; set_config(s, addr); val = pci_data_read(s, addr, 1); return val; } static uint32_t PPC_PCIIO_readw (void *opaque, target_phys_addr_t addr) { PCIBridge *s = opaque; uint32_t val; set_config(s, addr); val = pci_data_read(s, addr, 2); #ifdef TARGET_WORDS_BIGENDIAN val = bswap16(val); #endif return val; } static uint32_t PPC_PCIIO_readl (void *opaque, target_phys_addr_t addr) { PCIBridge *s = opaque; uint32_t val; set_config(s, addr); val = pci_data_read(s, addr, 4); #ifdef TARGET_WORDS_BIGENDIAN val = bswap32(val); #endif return val; } static CPUWriteMemoryFunc *PPC_PCIIO_write[] = { &PPC_PCIIO_writeb, &PPC_PCIIO_writew, &PPC_PCIIO_writel, }; static CPUReadMemoryFunc *PPC_PCIIO_read[] = { &PPC_PCIIO_readb, &PPC_PCIIO_readw, &PPC_PCIIO_readl, }; void pci_prep_init(void) { PCIBridge *s = &pci_bridge; PCIDevice *d; int PPC_io_memory; PPC_io_memory = cpu_register_io_memory(0, PPC_PCIIO_read, PPC_PCIIO_write, s); cpu_register_physical_memory(0x80800000, 0x00400000, PPC_io_memory); d = pci_register_device("PREP PCI Bridge", sizeof(PCIDevice), 0, 0, NULL, NULL); /* XXX: put correct IDs */ d->config[0x00] = 0x11; // vendor_id d->config[0x01] = 0x10; d->config[0x02] = 0x26; // device_id d->config[0x03] = 0x00; d->config[0x08] = 0x02; // revision d->config[0x0a] = 0x04; // class_sub = pci2pci d->config[0x0b] = 0x06; // class_base = PCI_bridge d->config[0x0e] = 0x01; // header_type } /* pmac pci init */ static void pci_pmac_config_writel (void *opaque, target_phys_addr_t addr, uint32_t val) { PCIBridge *s = opaque; #ifdef TARGET_WORDS_BIGENDIAN val = bswap32(val); #endif s->config_reg = val; } static uint32_t pci_pmac_config_readl (void *opaque, target_phys_addr_t addr) { PCIBridge *s = opaque; uint32_t val; val = s->config_reg; #ifdef TARGET_WORDS_BIGENDIAN val = bswap32(val); #endif return val; } static CPUWriteMemoryFunc *pci_pmac_config_write[] = { &pci_pmac_config_writel, &pci_pmac_config_writel, &pci_pmac_config_writel, }; static CPUReadMemoryFunc *pci_pmac_config_read[] = { &pci_pmac_config_readl, &pci_pmac_config_readl, &pci_pmac_config_readl, }; static void pci_pmac_writeb (void *opaque, target_phys_addr_t addr, uint32_t val) { PCIBridge *s = opaque; pci_data_write(s, addr, val, 1); } static void pci_pmac_writew (void *opaque, target_phys_addr_t addr, uint32_t val) { PCIBridge *s = opaque; #ifdef TARGET_WORDS_BIGENDIAN val = bswap16(val); #endif pci_data_write(s, addr, val, 2); } static void pci_pmac_writel (void *opaque, target_phys_addr_t addr, uint32_t val) { PCIBridge *s = opaque; #ifdef TARGET_WORDS_BIGENDIAN val = bswap32(val); #endif pci_data_write(s, addr, val, 4); } static uint32_t pci_pmac_readb (void *opaque, target_phys_addr_t addr) { PCIBridge *s = opaque; uint32_t val; val = pci_data_read(s, addr, 1); return val; } static uint32_t pci_pmac_readw (void *opaque, target_phys_addr_t addr) { PCIBridge *s = opaque; uint32_t val; val = pci_data_read(s, addr, 2); #ifdef TARGET_WORDS_BIGENDIAN val = bswap16(val); #endif return val; } static uint32_t pci_pmac_readl (void *opaque, target_phys_addr_t addr) { PCIBridge *s = opaque; uint32_t val; val = pci_data_read(s, addr, 4); #ifdef TARGET_WORDS_BIGENDIAN val = bswap32(val); #endif return val; } static CPUWriteMemoryFunc *pci_pmac_write[] = { &pci_pmac_writeb, &pci_pmac_writew, &pci_pmac_writel, }; static CPUReadMemoryFunc *pci_pmac_read[] = { &pci_pmac_readb, &pci_pmac_readw, &pci_pmac_readl, }; void pci_pmac_init(void) { PCIBridge *s = &pci_bridge; PCIDevice *d; int pci_mem_config, pci_mem_data; pci_mem_config = cpu_register_io_memory(0, pci_pmac_config_read, pci_pmac_config_write, s); pci_mem_data = cpu_register_io_memory(0, pci_pmac_read, pci_pmac_write, s); cpu_register_physical_memory(0xfec00000, 0x1000, pci_mem_config); cpu_register_physical_memory(0xfee00000, 0x1000, pci_mem_data); d = pci_register_device("MPC106", sizeof(PCIDevice), 0, 0, NULL, NULL); /* same values as PearPC - check this */ d->config[0x00] = 0x11; // vendor_id d->config[0x01] = 0x10; d->config[0x02] = 0x26; // device_id d->config[0x03] = 0x00; d->config[0x08] = 0x02; // revision d->config[0x0a] = 0x04; // class_sub = pci2pci d->config[0x0b] = 0x06; // class_base = PCI_bridge d->config[0x0e] = 0x01; // header_type d->config[0x18] = 0x0; // primary_bus d->config[0x19] = 0x1; // secondary_bus d->config[0x1a] = 0x1; // subordinate_bus d->config[0x1c] = 0x10; // io_base d->config[0x1d] = 0x20; // io_limit d->config[0x20] = 0x80; // memory_base d->config[0x21] = 0x80; d->config[0x22] = 0x90; // memory_limit d->config[0x23] = 0x80; d->config[0x24] = 0x00; // prefetchable_memory_base d->config[0x25] = 0x84; d->config[0x26] = 0x00; // prefetchable_memory_limit d->config[0x27] = 0x85; } /***********************************************************/ /* generic PCI irq support */ /* return the global irq number corresponding to a given device irq pin. We could also use the bus number to have a more precise mapping. */ static inline int pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) { int slot_addend; slot_addend = (pci_dev->devfn >> 3); return (irq_num + slot_addend) & 3; } /* 0 <= irq_num <= 3. level must be 0 or 1 */ #ifdef TARGET_PPC void pci_set_irq(PCIDevice *pci_dev, int irq_num, int level) { } #else void pci_set_irq(PCIDevice *pci_dev, int irq_num, int level) { int irq_index, shift, pic_irq, pic_level; uint32_t *p; irq_num = pci_slot_get_pirq(pci_dev, irq_num); irq_index = pci_dev->irq_index; p = &pci_irq_levels[irq_num][irq_index >> 5]; shift = (irq_index & 0x1f); *p = (*p & ~(1 << shift)) | (level << shift); /* now we change the pic irq level according to the piix irq mappings */ pic_irq = piix3_state->dev.config[0x60 + irq_num]; if (pic_irq < 16) { /* the pic level is the logical OR of all the PCI irqs mapped to it */ pic_level = 0; #if (PCI_IRQ_WORDS == 2) pic_level = ((pci_irq_levels[irq_num][0] | pci_irq_levels[irq_num][1]) != 0); #else { int i; pic_level = 0; for(i = 0; i < PCI_IRQ_WORDS; i++) { if (pci_irq_levels[irq_num][i]) { pic_level = 1; break; } } } #endif pic_set_irq(pic_irq, pic_level); } } #endif /***********************************************************/ /* monitor info on PCI */ static void pci_info_device(PCIDevice *d) { int i, class; PCIIORegion *r; printf(" Bus %2d, device %3d, function %d:\n", d->bus_num, d->devfn >> 3, d->devfn & 7); class = le16_to_cpu(*((uint16_t *)(d->config + PCI_CLASS_DEVICE))); printf(" "); switch(class) { case 0x0101: printf("IDE controller"); break; case 0x0200: printf("Ethernet controller"); break; case 0x0300: printf("VGA controller"); break; default: printf("Class %04x", class); break; } printf(": PCI device %04x:%04x\n", le16_to_cpu(*((uint16_t *)(d->config + PCI_VENDOR_ID))), le16_to_cpu(*((uint16_t *)(d->config + PCI_DEVICE_ID)))); if (d->config[PCI_INTERRUPT_PIN] != 0) { printf(" IRQ %d.\n", d->config[PCI_INTERRUPT_LINE]); } for(i = 0;i < PCI_NUM_REGIONS; i++) { r = &d->io_regions[i]; if (r->size != 0) { printf(" BAR%d: ", i); if (r->type & PCI_ADDRESS_SPACE_IO) { printf("I/O at 0x%04x [0x%04x].\n", r->addr, r->addr + r->size - 1); } else { printf("32 bit memory at 0x%08x [0x%08x].\n", r->addr, r->addr + r->size - 1); } } } } void pci_info(void) { PCIBridge *s = &pci_bridge; PCIDevice **bus; int bus_num, devfn; for(bus_num = 0; bus_num < 256; bus_num++) { bus = s->pci_bus[bus_num]; if (bus) { for(devfn = 0; devfn < 256; devfn++) { if (bus[devfn]) pci_info_device(bus[devfn]); } } } } /***********************************************************/ /* XXX: the following should be moved to the PC BIOS */ static uint32_t isa_inb(uint32_t addr) { return cpu_inb(cpu_single_env, addr); } static void isa_outb(uint32_t val, uint32_t addr) { cpu_outb(cpu_single_env, addr, val); } static uint32_t isa_inw(uint32_t addr) { return cpu_inw(cpu_single_env, addr); } static void isa_outw(uint32_t val, uint32_t addr) { cpu_outw(cpu_single_env, addr, val); } static uint32_t isa_inl(uint32_t addr) { return cpu_inl(cpu_single_env, addr); } static void isa_outl(uint32_t val, uint32_t addr) { cpu_outl(cpu_single_env, addr, val); } static void pci_config_writel(PCIDevice *d, uint32_t addr, uint32_t val) { PCIBridge *s = &pci_bridge; s->config_reg = 0x80000000 | (d->bus_num << 16) | (d->devfn << 8) | addr; pci_data_write(s, 0, val, 4); } static void pci_config_writew(PCIDevice *d, uint32_t addr, uint32_t val) { PCIBridge *s = &pci_bridge; s->config_reg = 0x80000000 | (d->bus_num << 16) | (d->devfn << 8) | (addr & ~3); pci_data_write(s, addr & 3, val, 2); } static void pci_config_writeb(PCIDevice *d, uint32_t addr, uint32_t val) { PCIBridge *s = &pci_bridge; s->config_reg = 0x80000000 | (d->bus_num << 16) | (d->devfn << 8) | (addr & ~3); pci_data_write(s, addr & 3, val, 1); } static uint32_t pci_config_readl(PCIDevice *d, uint32_t addr) { PCIBridge *s = &pci_bridge; s->config_reg = 0x80000000 | (d->bus_num << 16) | (d->devfn << 8) | addr; return pci_data_read(s, 0, 4); } static uint32_t pci_config_readw(PCIDevice *d, uint32_t addr) { PCIBridge *s = &pci_bridge; s->config_reg = 0x80000000 | (d->bus_num << 16) | (d->devfn << 8) | (addr & ~3); return pci_data_read(s, addr & 3, 2); } static uint32_t pci_config_readb(PCIDevice *d, uint32_t addr) { PCIBridge *s = &pci_bridge; s->config_reg = 0x80000000 | (d->bus_num << 16) | (d->devfn << 8) | (addr & ~3); return pci_data_read(s, addr & 3, 1); } static uint32_t pci_bios_io_addr; static uint32_t pci_bios_mem_addr; /* host irqs corresponding to PCI irqs A-D */ static uint8_t pci_irqs[4] = { 11, 9, 11, 9 }; static void pci_set_io_region_addr(PCIDevice *d, int region_num, uint32_t addr) { PCIIORegion *r; uint16_t cmd; uint32_t ofs; if ( region_num == PCI_ROM_SLOT ) { ofs = 0x30; }else{ ofs = 0x10 + region_num * 4; } pci_config_writel(d, ofs, addr); r = &d->io_regions[region_num]; /* enable memory mappings */ cmd = pci_config_readw(d, PCI_COMMAND); if ( region_num == PCI_ROM_SLOT ) cmd |= 2; else if (r->type & PCI_ADDRESS_SPACE_IO) cmd |= 1; else cmd |= 2; pci_config_writew(d, PCI_COMMAND, cmd); } static void pci_bios_init_device(PCIDevice *d) { int class; PCIIORegion *r; uint32_t *paddr; int i, pin, pic_irq, vendor_id, device_id; class = pci_config_readw(d, PCI_CLASS_DEVICE); vendor_id = pci_config_readw(d, PCI_VENDOR_ID); device_id = pci_config_readw(d, PCI_DEVICE_ID); switch(class) { case 0x0101: if (vendor_id == 0x8086 && device_id == 0x7010) { /* PIIX3 IDE */ pci_config_writew(d, PCI_COMMAND, PCI_COMMAND_IO); pci_config_writew(d, 0x40, 0x8000); // enable IDE0 pci_config_writew(d, 0x42, 0x8000); // enable IDE1 } else { /* IDE: we map it as in ISA mode */ pci_set_io_region_addr(d, 0, 0x1f0); pci_set_io_region_addr(d, 1, 0x3f4); pci_set_io_region_addr(d, 2, 0x170); pci_set_io_region_addr(d, 3, 0x374); } break; case 0x0300: if (vendor_id != 0x1234) goto default_map; /* VGA: map frame buffer to default Bochs VBE address */ pci_set_io_region_addr(d, 0, 0xE0000000); break; case 0xff00: if (vendor_id == 0x0106b && device_id == 0x0017) { /* macio bridge */ pci_set_io_region_addr(d, 0, 0x80800000); } break; default: default_map: /* default memory mappings */ for(i = 0; i < PCI_NUM_REGIONS; i++) { r = &d->io_regions[i]; if (r->size) { if (r->type & PCI_ADDRESS_SPACE_IO) paddr = &pci_bios_io_addr; else paddr = &pci_bios_mem_addr; *paddr = (*paddr + r->size - 1) & ~(r->size - 1); pci_set_io_region_addr(d, i, *paddr); *paddr += r->size; } } break; } /* map the interrupt */ pin = pci_config_readb(d, PCI_INTERRUPT_PIN); if (pin != 0) { pin = pci_slot_get_pirq(d, pin - 1); pic_irq = pci_irqs[pin]; pci_config_writeb(d, PCI_INTERRUPT_LINE, pic_irq); } } /* * This function initializes the PCI devices as a normal PCI BIOS * would do. It is provided just in case the BIOS has no support for * PCI. */ void pci_bios_init(void) { PCIBridge *s = &pci_bridge; PCIDevice **bus; int bus_num, devfn, i, irq; uint8_t elcr[2]; pci_bios_io_addr = 0xc000; pci_bios_mem_addr = 0xf0000000; /* activate IRQ mappings */ elcr[0] = 0x00; elcr[1] = 0x00; for(i = 0; i < 4; i++) { irq = pci_irqs[i]; /* set to trigger level */ elcr[irq >> 3] |= (1 << (irq & 7)); /* activate irq remapping in PIIX */ pci_config_writeb((PCIDevice *)piix3_state, 0x60 + i, irq); } isa_outb(elcr[0], 0x4d0); isa_outb(elcr[1], 0x4d1); for(bus_num = 0; bus_num < 256; bus_num++) { bus = s->pci_bus[bus_num]; if (bus) { for(devfn = 0; devfn < 256; devfn++) { if (bus[devfn]) pci_bios_init_device(bus[devfn]); } } } } /* * This function initializes the PCI devices as a normal PCI BIOS * would do. It is provided just in case the BIOS has no support for * PCI. */ void pci_ppc_bios_init(void) { PCIBridge *s = &pci_bridge; PCIDevice **bus; int bus_num, devfn, i, irq; uint8_t elcr[2]; pci_bios_io_addr = 0xc000; pci_bios_mem_addr = 0xc0000000; #if 0 /* activate IRQ mappings */ elcr[0] = 0x00; elcr[1] = 0x00; for(i = 0; i < 4; i++) { irq = pci_irqs[i]; /* set to trigger level */ elcr[irq >> 3] |= (1 << (irq & 7)); /* activate irq remapping in PIIX */ pci_config_writeb((PCIDevice *)piix3_state, 0x60 + i, irq); } isa_outb(elcr[0], 0x4d0); isa_outb(elcr[1], 0x4d1); #endif for(bus_num = 0; bus_num < 256; bus_num++) { bus = s->pci_bus[bus_num]; if (bus) { for(devfn = 0; devfn < 256; devfn++) { if (bus[devfn]) pci_bios_init_device(bus[devfn]); } } } }