/* * ARM Versatile/PB PCI host controller * * Copyright (c) 2006-2009 CodeSourcery. * Written by Paul Brook * * This code is licensed under the LGPL. */ #include "hw/sysbus.h" #include "hw/pci/pci.h" #include "hw/pci/pci_bus.h" #include "hw/pci/pci_host.h" #include "exec/address-spaces.h" /* Old and buggy versions of QEMU used the wrong mapping from * PCI IRQs to system interrupt lines. Unfortunately the Linux * kernel also had the corresponding bug in setting up interrupts * (so older kernels work on QEMU and not on real hardware). * We automatically detect these broken kernels and flip back * to the broken irq mapping by spotting guest writes to the * PCI_INTERRUPT_LINE register to see where the guest thinks * interrupts are going to be routed. So we start in state * ASSUME_OK on reset, and transition to either BROKEN or * FORCE_OK at the first write to an INTERRUPT_LINE register for * a slot where broken and correct interrupt mapping would differ. * Once in either BROKEN or FORCE_OK we never transition again; * this allows a newer kernel to use the INTERRUPT_LINE * registers arbitrarily once it has indicated that it isn't * broken in its init code somewhere. */ enum { PCI_VPB_IRQMAP_ASSUME_OK, PCI_VPB_IRQMAP_BROKEN, PCI_VPB_IRQMAP_FORCE_OK, }; typedef struct { PCIHostState parent_obj; qemu_irq irq[4]; MemoryRegion controlregs; MemoryRegion mem_config; MemoryRegion mem_config2; /* Containers representing the PCI address spaces */ MemoryRegion pci_io_space; MemoryRegion pci_mem_space; /* Alias regions into PCI address spaces which we expose as sysbus regions. * The offsets into pci_mem_space are controlled by the imap registers. */ MemoryRegion pci_io_window; MemoryRegion pci_mem_window[3]; PCIBus pci_bus; PCIDevice pci_dev; /* Constant for life of device: */ int realview; uint32_t mem_win_size[3]; /* Variable state: */ uint32_t imap[3]; uint32_t smap[3]; uint32_t selfid; uint32_t flags; uint8_t irq_mapping; } PCIVPBState; static void pci_vpb_update_window(PCIVPBState *s, int i) { /* Adjust the offset of the alias region we use for * the memory window i to account for a change in the * value of the corresponding IMAP register. * Note that the semantics of the IMAP register differ * for realview and versatile variants of the controller. */ hwaddr offset; if (s->realview) { /* Top bits of register (masked according to window size) provide * top bits of PCI address. */ offset = s->imap[i] & ~(s->mem_win_size[i] - 1); } else { /* Bottom 4 bits of register provide top 4 bits of PCI address */ offset = s->imap[i] << 28; } memory_region_set_alias_offset(&s->pci_mem_window[i], offset); } static void pci_vpb_update_all_windows(PCIVPBState *s) { /* Update all alias windows based on the current register state */ int i; for (i = 0; i < 3; i++) { pci_vpb_update_window(s, i); } } static int pci_vpb_post_load(void *opaque, int version_id) { PCIVPBState *s = opaque; pci_vpb_update_all_windows(s); return 0; } static const VMStateDescription pci_vpb_vmstate = { .name = "versatile-pci", .version_id = 1, .minimum_version_id = 1, .post_load = pci_vpb_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(imap, PCIVPBState, 3), VMSTATE_UINT32_ARRAY(smap, PCIVPBState, 3), VMSTATE_UINT32(selfid, PCIVPBState), VMSTATE_UINT32(flags, PCIVPBState), VMSTATE_UINT8(irq_mapping, PCIVPBState), VMSTATE_END_OF_LIST() } }; #define TYPE_VERSATILE_PCI "versatile_pci" #define PCI_VPB(obj) \ OBJECT_CHECK(PCIVPBState, (obj), TYPE_VERSATILE_PCI) #define TYPE_VERSATILE_PCI_HOST "versatile_pci_host" #define PCI_VPB_HOST(obj) \ OBJECT_CHECK(PCIDevice, (obj), TYPE_VERSATILE_PCIHOST) typedef enum { PCI_IMAP0 = 0x0, PCI_IMAP1 = 0x4, PCI_IMAP2 = 0x8, PCI_SELFID = 0xc, PCI_FLAGS = 0x10, PCI_SMAP0 = 0x14, PCI_SMAP1 = 0x18, PCI_SMAP2 = 0x1c, } PCIVPBControlRegs; static void pci_vpb_reg_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PCIVPBState *s = opaque; switch (addr) { case PCI_IMAP0: case PCI_IMAP1: case PCI_IMAP2: { int win = (addr - PCI_IMAP0) >> 2; s->imap[win] = val; pci_vpb_update_window(s, win); break; } case PCI_SELFID: s->selfid = val; break; case PCI_FLAGS: s->flags = val; break; case PCI_SMAP0: case PCI_SMAP1: case PCI_SMAP2: { int win = (addr - PCI_SMAP0) >> 2; s->smap[win] = val; break; } default: qemu_log_mask(LOG_GUEST_ERROR, "pci_vpb_reg_write: Bad offset %x\n", (int)addr); break; } } static uint64_t pci_vpb_reg_read(void *opaque, hwaddr addr, unsigned size) { PCIVPBState *s = opaque; switch (addr) { case PCI_IMAP0: case PCI_IMAP1: case PCI_IMAP2: { int win = (addr - PCI_IMAP0) >> 2; return s->imap[win]; } case PCI_SELFID: return s->selfid; case PCI_FLAGS: return s->flags; case PCI_SMAP0: case PCI_SMAP1: case PCI_SMAP2: { int win = (addr - PCI_SMAP0) >> 2; return s->smap[win]; } default: qemu_log_mask(LOG_GUEST_ERROR, "pci_vpb_reg_read: Bad offset %x\n", (int)addr); return 0; } } static const MemoryRegionOps pci_vpb_reg_ops = { .read = pci_vpb_reg_read, .write = pci_vpb_reg_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4, }, }; static void pci_vpb_config_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PCIVPBState *s = opaque; if (!s->realview && (addr & 0xff) == PCI_INTERRUPT_LINE && s->irq_mapping == PCI_VPB_IRQMAP_ASSUME_OK) { uint8_t devfn = addr >> 8; if ((PCI_SLOT(devfn) % PCI_NUM_PINS) != 2) { if (val == 27) { s->irq_mapping = PCI_VPB_IRQMAP_BROKEN; } else { s->irq_mapping = PCI_VPB_IRQMAP_FORCE_OK; } } } pci_data_write(&s->pci_bus, addr, val, size); } static uint64_t pci_vpb_config_read(void *opaque, hwaddr addr, unsigned size) { PCIVPBState *s = opaque; uint32_t val; val = pci_data_read(&s->pci_bus, addr, size); return val; } static const MemoryRegionOps pci_vpb_config_ops = { .read = pci_vpb_config_read, .write = pci_vpb_config_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static int pci_vpb_map_irq(PCIDevice *d, int irq_num) { PCIVPBState *s = container_of(d->bus, PCIVPBState, pci_bus); if (s->irq_mapping == PCI_VPB_IRQMAP_BROKEN) { /* Legacy broken IRQ mapping for compatibility with old and * buggy Linux guests */ return irq_num; } /* Slot to IRQ mapping for RealView Platform Baseboard 926 backplane * name slot IntA IntB IntC IntD * A 31 IRQ28 IRQ29 IRQ30 IRQ27 * B 30 IRQ27 IRQ28 IRQ29 IRQ30 * C 29 IRQ30 IRQ27 IRQ28 IRQ29 * Slot C is for the host bridge; A and B the peripherals. * Our output irqs 0..3 correspond to the baseboard's 27..30. * * This mapping function takes account of an oddity in the PB926 * board wiring, where the FPGA's P_nINTA input is connected to * the INTB connection on the board PCI edge connector, P_nINTB * is connected to INTC, and so on, so everything is one number * further round from where you might expect. */ return pci_swizzle_map_irq_fn(d, irq_num + 2); } static int pci_vpb_rv_map_irq(PCIDevice *d, int irq_num) { /* Slot to IRQ mapping for RealView EB and PB1176 backplane * name slot IntA IntB IntC IntD * A 31 IRQ50 IRQ51 IRQ48 IRQ49 * B 30 IRQ49 IRQ50 IRQ51 IRQ48 * C 29 IRQ48 IRQ49 IRQ50 IRQ51 * Slot C is for the host bridge; A and B the peripherals. * Our output irqs 0..3 correspond to the baseboard's 48..51. * * The PB1176 and EB boards don't have the PB926 wiring oddity * described above; P_nINTA connects to INTA, P_nINTB to INTB * and so on, which is why this mapping function is different. */ return pci_swizzle_map_irq_fn(d, irq_num + 3); } static void pci_vpb_set_irq(void *opaque, int irq_num, int level) { qemu_irq *pic = opaque; qemu_set_irq(pic[irq_num], level); } static void pci_vpb_reset(DeviceState *d) { PCIVPBState *s = PCI_VPB(d); s->imap[0] = 0; s->imap[1] = 0; s->imap[2] = 0; s->smap[0] = 0; s->smap[1] = 0; s->smap[2] = 0; s->selfid = 0; s->flags = 0; s->irq_mapping = PCI_VPB_IRQMAP_ASSUME_OK; pci_vpb_update_all_windows(s); } static void pci_vpb_init(Object *obj) { PCIHostState *h = PCI_HOST_BRIDGE(obj); PCIVPBState *s = PCI_VPB(obj); memory_region_init(&s->pci_io_space, "pci_io", 1ULL << 32); memory_region_init(&s->pci_mem_space, "pci_mem", 1ULL << 32); pci_bus_new_inplace(&s->pci_bus, DEVICE(obj), "pci", &s->pci_mem_space, &s->pci_io_space, PCI_DEVFN(11, 0), TYPE_PCI_BUS); h->bus = &s->pci_bus; object_initialize(&s->pci_dev, TYPE_VERSATILE_PCI_HOST); qdev_set_parent_bus(DEVICE(&s->pci_dev), BUS(&s->pci_bus)); /* Window sizes for VersatilePB; realview_pci's init will override */ s->mem_win_size[0] = 0x0c000000; s->mem_win_size[1] = 0x10000000; s->mem_win_size[2] = 0x10000000; } static void pci_vpb_realize(DeviceState *dev, Error **errp) { PCIVPBState *s = PCI_VPB(dev); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); pci_map_irq_fn mapfn; int i; for (i = 0; i < 4; i++) { sysbus_init_irq(sbd, &s->irq[i]); } if (s->realview) { mapfn = pci_vpb_rv_map_irq; } else { mapfn = pci_vpb_map_irq; } pci_bus_irqs(&s->pci_bus, pci_vpb_set_irq, mapfn, s->irq, 4); /* Our memory regions are: * 0 : our control registers * 1 : PCI self config window * 2 : PCI config window * 3 : PCI IO window * 4..6 : PCI memory windows */ memory_region_init_io(&s->controlregs, &pci_vpb_reg_ops, s, "pci-vpb-regs", 0x1000); sysbus_init_mmio(sbd, &s->controlregs); memory_region_init_io(&s->mem_config, &pci_vpb_config_ops, s, "pci-vpb-selfconfig", 0x1000000); sysbus_init_mmio(sbd, &s->mem_config); memory_region_init_io(&s->mem_config2, &pci_vpb_config_ops, s, "pci-vpb-config", 0x1000000); sysbus_init_mmio(sbd, &s->mem_config2); /* The window into I/O space is always into a fixed base address; * its size is the same for both realview and versatile. */ memory_region_init_alias(&s->pci_io_window, "pci-vbp-io-window", &s->pci_io_space, 0, 0x100000); sysbus_init_mmio(sbd, &s->pci_io_space); /* Create the alias regions corresponding to our three windows onto * PCI memory space. The sizes vary from board to board; the base * offsets are guest controllable via the IMAP registers. */ for (i = 0; i < 3; i++) { memory_region_init_alias(&s->pci_mem_window[i], "pci-vbp-window", &s->pci_mem_space, 0, s->mem_win_size[i]); sysbus_init_mmio(sbd, &s->pci_mem_window[i]); } /* TODO Remove once realize propagates to child devices. */ object_property_set_bool(OBJECT(&s->pci_dev), true, "realized", errp); } static int versatile_pci_host_init(PCIDevice *d) { pci_set_word(d->config + PCI_STATUS, PCI_STATUS_66MHZ | PCI_STATUS_DEVSEL_MEDIUM); pci_set_byte(d->config + PCI_LATENCY_TIMER, 0x10); return 0; } static void versatile_pci_host_class_init(ObjectClass *klass, void *data) { PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); k->init = versatile_pci_host_init; k->vendor_id = PCI_VENDOR_ID_XILINX; k->device_id = PCI_DEVICE_ID_XILINX_XC2VP30; k->class_id = PCI_CLASS_PROCESSOR_CO; } static const TypeInfo versatile_pci_host_info = { .name = TYPE_VERSATILE_PCI_HOST, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(PCIDevice), .class_init = versatile_pci_host_class_init, }; static void pci_vpb_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = pci_vpb_realize; dc->reset = pci_vpb_reset; dc->vmsd = &pci_vpb_vmstate; } static const TypeInfo pci_vpb_info = { .name = TYPE_VERSATILE_PCI, .parent = TYPE_PCI_HOST_BRIDGE, .instance_size = sizeof(PCIVPBState), .instance_init = pci_vpb_init, .class_init = pci_vpb_class_init, }; static void pci_realview_init(Object *obj) { PCIVPBState *s = PCI_VPB(obj); s->realview = 1; /* The PCI window sizes are different on Realview boards */ s->mem_win_size[0] = 0x01000000; s->mem_win_size[1] = 0x04000000; s->mem_win_size[2] = 0x08000000; } static const TypeInfo pci_realview_info = { .name = "realview_pci", .parent = TYPE_VERSATILE_PCI, .instance_init = pci_realview_init, }; static void versatile_pci_register_types(void) { type_register_static(&pci_vpb_info); type_register_static(&pci_realview_info); type_register_static(&versatile_pci_host_info); } type_init(versatile_pci_register_types)