/* * QEMU PC System Emulator * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "pc.h" #include "fdc.h" #include "pci.h" #include "block.h" #include "sysemu.h" #include "audio/audio.h" #include "net.h" #include "smbus.h" #include "boards.h" /* output Bochs bios info messages */ //#define DEBUG_BIOS #define BIOS_FILENAME "bios.bin" #define VGABIOS_FILENAME "vgabios.bin" #define VGABIOS_CIRRUS_FILENAME "vgabios-cirrus.bin" /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */ #define ACPI_DATA_SIZE 0x10000 #define MAX_IDE_BUS 2 static fdctrl_t *floppy_controller; static RTCState *rtc_state; static PITState *pit; static IOAPICState *ioapic; static PCIDevice *i440fx_state; static void ioport80_write(void *opaque, uint32_t addr, uint32_t data) { } /* MSDOS compatibility mode FPU exception support */ static qemu_irq ferr_irq; /* XXX: add IGNNE support */ void cpu_set_ferr(CPUX86State *s) { qemu_irq_raise(ferr_irq); } static void ioportF0_write(void *opaque, uint32_t addr, uint32_t data) { qemu_irq_lower(ferr_irq); } /* TSC handling */ uint64_t cpu_get_tsc(CPUX86State *env) { /* Note: when using kqemu, it is more logical to return the host TSC because kqemu does not trap the RDTSC instruction for performance reasons */ #if USE_KQEMU if (env->kqemu_enabled) { return cpu_get_real_ticks(); } else #endif { return cpu_get_ticks(); } } /* SMM support */ void cpu_smm_update(CPUState *env) { if (i440fx_state && env == first_cpu) i440fx_set_smm(i440fx_state, (env->hflags >> HF_SMM_SHIFT) & 1); } /* IRQ handling */ int cpu_get_pic_interrupt(CPUState *env) { int intno; intno = apic_get_interrupt(env); if (intno >= 0) { /* set irq request if a PIC irq is still pending */ /* XXX: improve that */ pic_update_irq(isa_pic); return intno; } /* read the irq from the PIC */ if (!apic_accept_pic_intr(env)) return -1; intno = pic_read_irq(isa_pic); return intno; } static void pic_irq_request(void *opaque, int irq, int level) { CPUState *env = first_cpu; if (!level) return; while (env) { if (apic_accept_pic_intr(env)) apic_local_deliver(env, APIC_LINT0); env = env->next_cpu; } } /* PC cmos mappings */ #define REG_EQUIPMENT_BYTE 0x14 static int cmos_get_fd_drive_type(int fd0) { int val; switch (fd0) { case 0: /* 1.44 Mb 3"5 drive */ val = 4; break; case 1: /* 2.88 Mb 3"5 drive */ val = 5; break; case 2: /* 1.2 Mb 5"5 drive */ val = 2; break; default: val = 0; break; } return val; } static void cmos_init_hd(int type_ofs, int info_ofs, BlockDriverState *hd) { RTCState *s = rtc_state; int cylinders, heads, sectors; bdrv_get_geometry_hint(hd, &cylinders, &heads, §ors); rtc_set_memory(s, type_ofs, 47); rtc_set_memory(s, info_ofs, cylinders); rtc_set_memory(s, info_ofs + 1, cylinders >> 8); rtc_set_memory(s, info_ofs + 2, heads); rtc_set_memory(s, info_ofs + 3, 0xff); rtc_set_memory(s, info_ofs + 4, 0xff); rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); rtc_set_memory(s, info_ofs + 6, cylinders); rtc_set_memory(s, info_ofs + 7, cylinders >> 8); rtc_set_memory(s, info_ofs + 8, sectors); } /* convert boot_device letter to something recognizable by the bios */ static int boot_device2nibble(char boot_device) { switch(boot_device) { case 'a': case 'b': return 0x01; /* floppy boot */ case 'c': return 0x02; /* hard drive boot */ case 'd': return 0x03; /* CD-ROM boot */ case 'n': return 0x04; /* Network boot */ } return 0; } /* hd_table must contain 4 block drivers */ static void cmos_init(int ram_size, const char *boot_device, BlockDriverState **hd_table) { RTCState *s = rtc_state; int nbds, bds[3] = { 0, }; int val; int fd0, fd1, nb; int i; /* various important CMOS locations needed by PC/Bochs bios */ /* memory size */ val = 640; /* base memory in K */ rtc_set_memory(s, 0x15, val); rtc_set_memory(s, 0x16, val >> 8); val = (ram_size / 1024) - 1024; if (val > 65535) val = 65535; rtc_set_memory(s, 0x17, val); rtc_set_memory(s, 0x18, val >> 8); rtc_set_memory(s, 0x30, val); rtc_set_memory(s, 0x31, val >> 8); if (ram_size > (16 * 1024 * 1024)) val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536); else val = 0; if (val > 65535) val = 65535; rtc_set_memory(s, 0x34, val); rtc_set_memory(s, 0x35, val >> 8); /* set the number of CPU */ rtc_set_memory(s, 0x5f, smp_cpus - 1); /* set boot devices, and disable floppy signature check if requested */ #define PC_MAX_BOOT_DEVICES 3 nbds = strlen(boot_device); if (nbds > PC_MAX_BOOT_DEVICES) { fprintf(stderr, "Too many boot devices for PC\n"); exit(1); } for (i = 0; i < nbds; i++) { bds[i] = boot_device2nibble(boot_device[i]); if (bds[i] == 0) { fprintf(stderr, "Invalid boot device for PC: '%c'\n", boot_device[i]); exit(1); } } rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); /* floppy type */ fd0 = fdctrl_get_drive_type(floppy_controller, 0); fd1 = fdctrl_get_drive_type(floppy_controller, 1); val = (cmos_get_fd_drive_type(fd0) << 4) | cmos_get_fd_drive_type(fd1); rtc_set_memory(s, 0x10, val); val = 0; nb = 0; if (fd0 < 3) nb++; if (fd1 < 3) nb++; switch (nb) { case 0: break; case 1: val |= 0x01; /* 1 drive, ready for boot */ break; case 2: val |= 0x41; /* 2 drives, ready for boot */ break; } val |= 0x02; /* FPU is there */ val |= 0x04; /* PS/2 mouse installed */ rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); /* hard drives */ rtc_set_memory(s, 0x12, (hd_table[0] ? 0xf0 : 0) | (hd_table[1] ? 0x0f : 0)); if (hd_table[0]) cmos_init_hd(0x19, 0x1b, hd_table[0]); if (hd_table[1]) cmos_init_hd(0x1a, 0x24, hd_table[1]); val = 0; for (i = 0; i < 4; i++) { if (hd_table[i]) { int cylinders, heads, sectors, translation; /* NOTE: bdrv_get_geometry_hint() returns the physical geometry. It is always such that: 1 <= sects <= 63, 1 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS geometry can be different if a translation is done. */ translation = bdrv_get_translation_hint(hd_table[i]); if (translation == BIOS_ATA_TRANSLATION_AUTO) { bdrv_get_geometry_hint(hd_table[i], &cylinders, &heads, §ors); if (cylinders <= 1024 && heads <= 16 && sectors <= 63) { /* No translation. */ translation = 0; } else { /* LBA translation. */ translation = 1; } } else { translation--; } val |= translation << (i * 2); } } rtc_set_memory(s, 0x39, val); } void ioport_set_a20(int enable) { /* XXX: send to all CPUs ? */ cpu_x86_set_a20(first_cpu, enable); } int ioport_get_a20(void) { return ((first_cpu->a20_mask >> 20) & 1); } static void ioport92_write(void *opaque, uint32_t addr, uint32_t val) { ioport_set_a20((val >> 1) & 1); /* XXX: bit 0 is fast reset */ } static uint32_t ioport92_read(void *opaque, uint32_t addr) { return ioport_get_a20() << 1; } /***********************************************************/ /* Bochs BIOS debug ports */ static void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val) { static const char shutdown_str[8] = "Shutdown"; static int shutdown_index = 0; switch(addr) { /* Bochs BIOS messages */ case 0x400: case 0x401: fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val); exit(1); case 0x402: case 0x403: #ifdef DEBUG_BIOS fprintf(stderr, "%c", val); #endif break; case 0x8900: /* same as Bochs power off */ if (val == shutdown_str[shutdown_index]) { shutdown_index++; if (shutdown_index == 8) { shutdown_index = 0; qemu_system_shutdown_request(); } } else { shutdown_index = 0; } break; /* LGPL'ed VGA BIOS messages */ case 0x501: case 0x502: fprintf(stderr, "VGA BIOS panic, line %d\n", val); exit(1); case 0x500: case 0x503: #ifdef DEBUG_BIOS fprintf(stderr, "%c", val); #endif break; } } static void bochs_bios_init(void) { register_ioport_write(0x400, 1, 2, bochs_bios_write, NULL); register_ioport_write(0x401, 1, 2, bochs_bios_write, NULL); register_ioport_write(0x402, 1, 1, bochs_bios_write, NULL); register_ioport_write(0x403, 1, 1, bochs_bios_write, NULL); register_ioport_write(0x8900, 1, 1, bochs_bios_write, NULL); register_ioport_write(0x501, 1, 2, bochs_bios_write, NULL); register_ioport_write(0x502, 1, 2, bochs_bios_write, NULL); register_ioport_write(0x500, 1, 1, bochs_bios_write, NULL); register_ioport_write(0x503, 1, 1, bochs_bios_write, NULL); } /* Generate an initial boot sector which sets state and jump to a specified vector */ static void generate_bootsect(uint32_t gpr[8], uint16_t segs[6], uint16_t ip) { uint8_t bootsect[512], *p; int i; int hda; hda = drive_get_index(IF_IDE, 0, 0); if (hda == -1) { fprintf(stderr, "A disk image must be given for 'hda' when booting " "a Linux kernel\n"); exit(1); } memset(bootsect, 0, sizeof(bootsect)); /* Copy the MSDOS partition table if possible */ bdrv_read(drives_table[hda].bdrv, 0, bootsect, 1); /* Make sure we have a partition signature */ bootsect[510] = 0x55; bootsect[511] = 0xaa; /* Actual code */ p = bootsect; *p++ = 0xfa; /* CLI */ *p++ = 0xfc; /* CLD */ for (i = 0; i < 6; i++) { if (i == 1) /* Skip CS */ continue; *p++ = 0xb8; /* MOV AX,imm16 */ *p++ = segs[i]; *p++ = segs[i] >> 8; *p++ = 0x8e; /* MOV ,AX */ *p++ = 0xc0 + (i << 3); } for (i = 0; i < 8; i++) { *p++ = 0x66; /* 32-bit operand size */ *p++ = 0xb8 + i; /* MOV ,imm32 */ *p++ = gpr[i]; *p++ = gpr[i] >> 8; *p++ = gpr[i] >> 16; *p++ = gpr[i] >> 24; } *p++ = 0xea; /* JMP FAR */ *p++ = ip; /* IP */ *p++ = ip >> 8; *p++ = segs[1]; /* CS */ *p++ = segs[1] >> 8; bdrv_set_boot_sector(drives_table[hda].bdrv, bootsect, sizeof(bootsect)); } static int load_kernel(const char *filename, uint8_t *addr, uint8_t *real_addr) { int fd, size; int setup_sects; fd = open(filename, O_RDONLY | O_BINARY); if (fd < 0) return -1; /* load 16 bit code */ if (read(fd, real_addr, 512) != 512) goto fail; setup_sects = real_addr[0x1F1]; if (!setup_sects) setup_sects = 4; if (read(fd, real_addr + 512, setup_sects * 512) != setup_sects * 512) goto fail; /* load 32 bit code */ size = read(fd, addr, 16 * 1024 * 1024); if (size < 0) goto fail; close(fd); return size; fail: close(fd); return -1; } static long get_file_size(FILE *f) { long where, size; /* XXX: on Unix systems, using fstat() probably makes more sense */ where = ftell(f); fseek(f, 0, SEEK_END); size = ftell(f); fseek(f, where, SEEK_SET); return size; } static void load_linux(const char *kernel_filename, const char *initrd_filename, const char *kernel_cmdline) { uint16_t protocol; uint32_t gpr[8]; uint16_t seg[6]; uint16_t real_seg; int setup_size, kernel_size, initrd_size, cmdline_size; uint32_t initrd_max; uint8_t header[1024]; uint8_t *real_addr, *prot_addr, *cmdline_addr, *initrd_addr; FILE *f, *fi; /* Align to 16 bytes as a paranoia measure */ cmdline_size = (strlen(kernel_cmdline)+16) & ~15; /* load the kernel header */ f = fopen(kernel_filename, "rb"); if (!f || !(kernel_size = get_file_size(f)) || fread(header, 1, 1024, f) != 1024) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* kernel protocol version */ #if 0 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); #endif if (ldl_p(header+0x202) == 0x53726448) protocol = lduw_p(header+0x206); else protocol = 0; if (protocol < 0x200 || !(header[0x211] & 0x01)) { /* Low kernel */ real_addr = phys_ram_base + 0x90000; cmdline_addr = phys_ram_base + 0x9a000 - cmdline_size; prot_addr = phys_ram_base + 0x10000; } else if (protocol < 0x202) { /* High but ancient kernel */ real_addr = phys_ram_base + 0x90000; cmdline_addr = phys_ram_base + 0x9a000 - cmdline_size; prot_addr = phys_ram_base + 0x100000; } else { /* High and recent kernel */ real_addr = phys_ram_base + 0x10000; cmdline_addr = phys_ram_base + 0x20000; prot_addr = phys_ram_base + 0x100000; } #if 0 fprintf(stderr, "qemu: real_addr = %#zx\n" "qemu: cmdline_addr = %#zx\n" "qemu: prot_addr = %#zx\n", real_addr-phys_ram_base, cmdline_addr-phys_ram_base, prot_addr-phys_ram_base); #endif /* highest address for loading the initrd */ if (protocol >= 0x203) initrd_max = ldl_p(header+0x22c); else initrd_max = 0x37ffffff; if (initrd_max >= ram_size-ACPI_DATA_SIZE) initrd_max = ram_size-ACPI_DATA_SIZE-1; /* kernel command line */ pstrcpy((char*)cmdline_addr, 4096, kernel_cmdline); if (protocol >= 0x202) { stl_p(header+0x228, cmdline_addr-phys_ram_base); } else { stw_p(header+0x20, 0xA33F); stw_p(header+0x22, cmdline_addr-real_addr); } /* loader type */ /* High nybble = B reserved for Qemu; low nybble is revision number. If this code is substantially changed, you may want to consider incrementing the revision. */ if (protocol >= 0x200) header[0x210] = 0xB0; /* heap */ if (protocol >= 0x201) { header[0x211] |= 0x80; /* CAN_USE_HEAP */ stw_p(header+0x224, cmdline_addr-real_addr-0x200); } /* load initrd */ if (initrd_filename) { if (protocol < 0x200) { fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); exit(1); } fi = fopen(initrd_filename, "rb"); if (!fi) { fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", initrd_filename); exit(1); } initrd_size = get_file_size(fi); initrd_addr = phys_ram_base + ((initrd_max-initrd_size) & ~4095); fprintf(stderr, "qemu: loading initrd (%#x bytes) at %#zx\n", initrd_size, initrd_addr-phys_ram_base); if (fread(initrd_addr, 1, initrd_size, fi) != initrd_size) { fprintf(stderr, "qemu: read error on initial ram disk '%s'\n", initrd_filename); exit(1); } fclose(fi); stl_p(header+0x218, initrd_addr-phys_ram_base); stl_p(header+0x21c, initrd_size); } /* store the finalized header and load the rest of the kernel */ memcpy(real_addr, header, 1024); setup_size = header[0x1f1]; if (setup_size == 0) setup_size = 4; setup_size = (setup_size+1)*512; kernel_size -= setup_size; /* Size of protected-mode code */ if (fread(real_addr+1024, 1, setup_size-1024, f) != setup_size-1024 || fread(prot_addr, 1, kernel_size, f) != kernel_size) { fprintf(stderr, "qemu: read error on kernel '%s'\n", kernel_filename); exit(1); } fclose(f); /* generate bootsector to set up the initial register state */ real_seg = (real_addr-phys_ram_base) >> 4; seg[0] = seg[2] = seg[3] = seg[4] = seg[4] = real_seg; seg[1] = real_seg+0x20; /* CS */ memset(gpr, 0, sizeof gpr); gpr[4] = cmdline_addr-real_addr-16; /* SP (-16 is paranoia) */ generate_bootsect(gpr, seg, 0); } static void main_cpu_reset(void *opaque) { CPUState *env = opaque; cpu_reset(env); } static const int ide_iobase[2] = { 0x1f0, 0x170 }; static const int ide_iobase2[2] = { 0x3f6, 0x376 }; static const int ide_irq[2] = { 14, 15 }; #define NE2000_NB_MAX 6 static int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 0x280, 0x380 }; static int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; static int serial_io[MAX_SERIAL_PORTS] = { 0x3f8, 0x2f8, 0x3e8, 0x2e8 }; static int serial_irq[MAX_SERIAL_PORTS] = { 4, 3, 4, 3 }; static int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc }; static int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 }; #ifdef HAS_AUDIO static void audio_init (PCIBus *pci_bus, qemu_irq *pic) { struct soundhw *c; int audio_enabled = 0; for (c = soundhw; !audio_enabled && c->name; ++c) { audio_enabled = c->enabled; } if (audio_enabled) { AudioState *s; s = AUD_init (); if (s) { for (c = soundhw; c->name; ++c) { if (c->enabled) { if (c->isa) { c->init.init_isa (s, pic); } else { if (pci_bus) { c->init.init_pci (pci_bus, s); } } } } } } } #endif static void pc_init_ne2k_isa(NICInfo *nd, qemu_irq *pic) { static int nb_ne2k = 0; if (nb_ne2k == NE2000_NB_MAX) return; isa_ne2000_init(ne2000_io[nb_ne2k], pic[ne2000_irq[nb_ne2k]], nd); nb_ne2k++; } /* PC hardware initialisation */ static void pc_init1(int ram_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, int pci_enabled, const char *cpu_model) { char buf[1024]; int ret, linux_boot, i; ram_addr_t ram_addr, vga_ram_addr, bios_offset, vga_bios_offset; int bios_size, isa_bios_size, vga_bios_size; PCIBus *pci_bus; int piix3_devfn = -1; CPUState *env; NICInfo *nd; qemu_irq *cpu_irq; qemu_irq *i8259; int index; BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; BlockDriverState *fd[MAX_FD]; linux_boot = (kernel_filename != NULL); /* init CPUs */ if (cpu_model == NULL) { #ifdef TARGET_X86_64 cpu_model = "qemu64"; #else cpu_model = "qemu32"; #endif } for(i = 0; i < smp_cpus; i++) { env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find x86 CPU definition\n"); exit(1); } if (i != 0) env->hflags |= HF_HALTED_MASK; if (smp_cpus > 1) { /* XXX: enable it in all cases */ env->cpuid_features |= CPUID_APIC; } register_savevm("cpu", i, 4, cpu_save, cpu_load, env); qemu_register_reset(main_cpu_reset, env); if (pci_enabled) { apic_init(env); } } vmport_init(); /* allocate RAM */ ram_addr = qemu_ram_alloc(ram_size); cpu_register_physical_memory(0, ram_size, ram_addr); /* allocate VGA RAM */ vga_ram_addr = qemu_ram_alloc(vga_ram_size); /* BIOS load */ if (bios_name == NULL) bios_name = BIOS_FILENAME; snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name); bios_size = get_image_size(buf); if (bios_size <= 0 || (bios_size % 65536) != 0) { goto bios_error; } bios_offset = qemu_ram_alloc(bios_size); ret = load_image(buf, phys_ram_base + bios_offset); if (ret != bios_size) { bios_error: fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", buf); exit(1); } /* VGA BIOS load */ if (cirrus_vga_enabled) { snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_CIRRUS_FILENAME); } else { snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_FILENAME); } vga_bios_size = get_image_size(buf); if (vga_bios_size <= 0 || vga_bios_size > 65536) goto vga_bios_error; vga_bios_offset = qemu_ram_alloc(65536); ret = load_image(buf, phys_ram_base + vga_bios_offset); if (ret != vga_bios_size) { vga_bios_error: fprintf(stderr, "qemu: could not load VGA BIOS '%s'\n", buf); exit(1); } /* setup basic memory access */ cpu_register_physical_memory(0xc0000, 0x10000, vga_bios_offset | IO_MEM_ROM); /* map the last 128KB of the BIOS in ISA space */ isa_bios_size = bios_size; if (isa_bios_size > (128 * 1024)) isa_bios_size = 128 * 1024; cpu_register_physical_memory(0xd0000, (192 * 1024) - isa_bios_size, IO_MEM_UNASSIGNED); cpu_register_physical_memory(0x100000 - isa_bios_size, isa_bios_size, (bios_offset + bios_size - isa_bios_size) | IO_MEM_ROM); { ram_addr_t option_rom_offset; int size, offset; offset = 0; for (i = 0; i < nb_option_roms; i++) { size = get_image_size(option_rom[i]); if (size < 0) { fprintf(stderr, "Could not load option rom '%s'\n", option_rom[i]); exit(1); } if (size > (0x10000 - offset)) goto option_rom_error; option_rom_offset = qemu_ram_alloc(size); ret = load_image(option_rom[i], phys_ram_base + option_rom_offset); if (ret != size) { option_rom_error: fprintf(stderr, "Too many option ROMS\n"); exit(1); } size = (size + 4095) & ~4095; cpu_register_physical_memory(0xd0000 + offset, size, option_rom_offset | IO_MEM_ROM); offset += size; } } /* map all the bios at the top of memory */ cpu_register_physical_memory((uint32_t)(-bios_size), bios_size, bios_offset | IO_MEM_ROM); bochs_bios_init(); if (linux_boot) load_linux(kernel_filename, initrd_filename, kernel_cmdline); cpu_irq = qemu_allocate_irqs(pic_irq_request, NULL, 1); i8259 = i8259_init(cpu_irq[0]); ferr_irq = i8259[13]; if (pci_enabled) { pci_bus = i440fx_init(&i440fx_state, i8259); piix3_devfn = piix3_init(pci_bus, -1); } else { pci_bus = NULL; } /* init basic PC hardware */ register_ioport_write(0x80, 1, 1, ioport80_write, NULL); register_ioport_write(0xf0, 1, 1, ioportF0_write, NULL); if (cirrus_vga_enabled) { if (pci_enabled) { pci_cirrus_vga_init(pci_bus, ds, phys_ram_base + vga_ram_addr, vga_ram_addr, vga_ram_size); } else { isa_cirrus_vga_init(ds, phys_ram_base + vga_ram_addr, vga_ram_addr, vga_ram_size); } } else if (vmsvga_enabled) { if (pci_enabled) pci_vmsvga_init(pci_bus, ds, phys_ram_base + vga_ram_addr, vga_ram_addr, vga_ram_size); else fprintf(stderr, "%s: vmware_vga: no PCI bus\n", __FUNCTION__); } else { if (pci_enabled) { pci_vga_init(pci_bus, ds, phys_ram_base + vga_ram_addr, vga_ram_addr, vga_ram_size, 0, 0); } else { isa_vga_init(ds, phys_ram_base + vga_ram_addr, vga_ram_addr, vga_ram_size); } } rtc_state = rtc_init(0x70, i8259[8]); register_ioport_read(0x92, 1, 1, ioport92_read, NULL); register_ioport_write(0x92, 1, 1, ioport92_write, NULL); if (pci_enabled) { ioapic = ioapic_init(); } pit = pit_init(0x40, i8259[0]); pcspk_init(pit); if (pci_enabled) { pic_set_alt_irq_func(isa_pic, ioapic_set_irq, ioapic); } for(i = 0; i < MAX_SERIAL_PORTS; i++) { if (serial_hds[i]) { serial_init(serial_io[i], i8259[serial_irq[i]], serial_hds[i]); } } for(i = 0; i < MAX_PARALLEL_PORTS; i++) { if (parallel_hds[i]) { parallel_init(parallel_io[i], i8259[parallel_irq[i]], parallel_hds[i]); } } for(i = 0; i < nb_nics; i++) { nd = &nd_table[i]; if (!nd->model) { if (pci_enabled) { nd->model = "ne2k_pci"; } else { nd->model = "ne2k_isa"; } } if (strcmp(nd->model, "ne2k_isa") == 0) { pc_init_ne2k_isa(nd, i8259); } else if (pci_enabled) { if (strcmp(nd->model, "?") == 0) fprintf(stderr, "qemu: Supported ISA NICs: ne2k_isa\n"); pci_nic_init(pci_bus, nd, -1); } else if (strcmp(nd->model, "?") == 0) { fprintf(stderr, "qemu: Supported ISA NICs: ne2k_isa\n"); exit(1); } else { fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd->model); exit(1); } } if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) { fprintf(stderr, "qemu: too many IDE bus\n"); exit(1); } for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) { index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS); if (index != -1) hd[i] = drives_table[index].bdrv; else hd[i] = NULL; } if (pci_enabled) { pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1, i8259); } else { for(i = 0; i < MAX_IDE_BUS; i++) { isa_ide_init(ide_iobase[i], ide_iobase2[i], i8259[ide_irq[i]], hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]); } } i8042_init(i8259[1], i8259[12], 0x60); DMA_init(0); #ifdef HAS_AUDIO audio_init(pci_enabled ? pci_bus : NULL, i8259); #endif for(i = 0; i < MAX_FD; i++) { index = drive_get_index(IF_FLOPPY, 0, i); if (index != -1) fd[i] = drives_table[index].bdrv; else fd[i] = NULL; } floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd); cmos_init(ram_size, boot_device, hd); if (pci_enabled && usb_enabled) { usb_uhci_piix3_init(pci_bus, piix3_devfn + 2); } if (pci_enabled && acpi_enabled) { uint8_t *eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */ i2c_bus *smbus; /* TODO: Populate SPD eeprom data. */ smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100, i8259[9]); for (i = 0; i < 8; i++) { smbus_eeprom_device_init(smbus, 0x50 + i, eeprom_buf + (i * 256)); } } if (i440fx_state) { i440fx_init_memory_mappings(i440fx_state); } if (pci_enabled) { int max_bus; int bus, unit; void *scsi; max_bus = drive_get_max_bus(IF_SCSI); for (bus = 0; bus <= max_bus; bus++) { scsi = lsi_scsi_init(pci_bus, -1); for (unit = 0; unit < LSI_MAX_DEVS; unit++) { index = drive_get_index(IF_SCSI, bus, unit); if (index == -1) continue; lsi_scsi_attach(scsi, drives_table[index].bdrv, unit); } } } } static void pc_init_pci(int ram_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { pc_init1(ram_size, vga_ram_size, boot_device, ds, kernel_filename, kernel_cmdline, initrd_filename, 1, cpu_model); } static void pc_init_isa(int ram_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { pc_init1(ram_size, vga_ram_size, boot_device, ds, kernel_filename, kernel_cmdline, initrd_filename, 0, cpu_model); } QEMUMachine pc_machine = { "pc", "Standard PC", pc_init_pci, }; QEMUMachine isapc_machine = { "isapc", "ISA-only PC", pc_init_isa, };