/* * OpenPIC emulation * * Copyright (c) 2004 Jocelyn Mayer * 2011 Alexander Graf * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* * * Based on OpenPic implementations: * - Intel GW80314 I/O companion chip developer's manual * - Motorola MPC8245 & MPC8540 user manuals. * - Motorola MCP750 (aka Raven) programmer manual. * - Motorola Harrier programmer manuel * * Serial interrupts, as implemented in Raven chipset are not supported yet. * */ #include "hw.h" #include "ppc_mac.h" #include "pci.h" #include "openpic.h" //#define DEBUG_OPENPIC #ifdef DEBUG_OPENPIC #define DPRINTF(fmt, ...) do { printf(fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) do { } while (0) #endif #define USE_MPCxxx /* Intel model is broken, for now */ #if defined (USE_INTEL_GW80314) /* Intel GW80314 I/O Companion chip */ #define MAX_CPU 4 #define MAX_IRQ 32 #define MAX_DBL 4 #define MAX_MBX 4 #define MAX_TMR 4 #define VECTOR_BITS 8 #define MAX_IPI 4 #define VID (0x00000000) #elif defined(USE_MPCxxx) #define MAX_CPU 15 #define MAX_IRQ 128 #define MAX_DBL 0 #define MAX_MBX 0 #define MAX_TMR 4 #define VECTOR_BITS 8 #define MAX_IPI 4 #define VID 0x03 /* MPIC version ID */ #define VENI 0x00000000 /* Vendor ID */ enum { IRQ_IPVP = 0, IRQ_IDE, }; /* OpenPIC */ #define OPENPIC_MAX_CPU 2 #define OPENPIC_MAX_IRQ 64 #define OPENPIC_EXT_IRQ 48 #define OPENPIC_MAX_TMR MAX_TMR #define OPENPIC_MAX_IPI MAX_IPI /* Interrupt definitions */ #define OPENPIC_IRQ_FE (OPENPIC_EXT_IRQ) /* Internal functional IRQ */ #define OPENPIC_IRQ_ERR (OPENPIC_EXT_IRQ + 1) /* Error IRQ */ #define OPENPIC_IRQ_TIM0 (OPENPIC_EXT_IRQ + 2) /* First timer IRQ */ #if OPENPIC_MAX_IPI > 0 #define OPENPIC_IRQ_IPI0 (OPENPIC_IRQ_TIM0 + OPENPIC_MAX_TMR) /* First IPI IRQ */ #define OPENPIC_IRQ_DBL0 (OPENPIC_IRQ_IPI0 + (OPENPIC_MAX_CPU * OPENPIC_MAX_IPI)) /* First doorbell IRQ */ #else #define OPENPIC_IRQ_DBL0 (OPENPIC_IRQ_TIM0 + OPENPIC_MAX_TMR) /* First doorbell IRQ */ #define OPENPIC_IRQ_MBX0 (OPENPIC_IRQ_DBL0 + OPENPIC_MAX_DBL) /* First mailbox IRQ */ #endif /* MPIC */ #define MPIC_MAX_CPU 1 #define MPIC_MAX_EXT 12 #define MPIC_MAX_INT 64 #define MPIC_MAX_MSG 4 #define MPIC_MAX_MSI 8 #define MPIC_MAX_TMR MAX_TMR #define MPIC_MAX_IPI MAX_IPI #define MPIC_MAX_IRQ (MPIC_MAX_EXT + MPIC_MAX_INT + MPIC_MAX_TMR + MPIC_MAX_MSG + MPIC_MAX_MSI + (MPIC_MAX_IPI * MPIC_MAX_CPU)) /* Interrupt definitions */ #define MPIC_EXT_IRQ 0 #define MPIC_INT_IRQ (MPIC_EXT_IRQ + MPIC_MAX_EXT) #define MPIC_TMR_IRQ (MPIC_INT_IRQ + MPIC_MAX_INT) #define MPIC_MSG_IRQ (MPIC_TMR_IRQ + MPIC_MAX_TMR) #define MPIC_MSI_IRQ (MPIC_MSG_IRQ + MPIC_MAX_MSG) #define MPIC_IPI_IRQ (MPIC_MSI_IRQ + MPIC_MAX_MSI) #define MPIC_GLB_REG_START 0x0 #define MPIC_GLB_REG_SIZE 0x10F0 #define MPIC_TMR_REG_START 0x10F0 #define MPIC_TMR_REG_SIZE 0x220 #define MPIC_EXT_REG_START 0x10000 #define MPIC_EXT_REG_SIZE 0x180 #define MPIC_INT_REG_START 0x10200 #define MPIC_INT_REG_SIZE 0x800 #define MPIC_MSG_REG_START 0x11600 #define MPIC_MSG_REG_SIZE 0x100 #define MPIC_MSI_REG_START 0x11C00 #define MPIC_MSI_REG_SIZE 0x100 #define MPIC_CPU_REG_START 0x20000 #define MPIC_CPU_REG_SIZE 0x100 + ((MAX_CPU - 1) * 0x1000) enum mpic_ide_bits { IDR_EP = 31, IDR_CI0 = 30, IDR_CI1 = 29, IDR_P1 = 1, IDR_P0 = 0, }; #else #error "Please select which OpenPic implementation is to be emulated" #endif #define OPENPIC_PAGE_SIZE 4096 #define BF_WIDTH(_bits_) \ (((_bits_) + (sizeof(uint32_t) * 8) - 1) / (sizeof(uint32_t) * 8)) static inline void set_bit (uint32_t *field, int bit) { field[bit >> 5] |= 1 << (bit & 0x1F); } static inline void reset_bit (uint32_t *field, int bit) { field[bit >> 5] &= ~(1 << (bit & 0x1F)); } static inline int test_bit (uint32_t *field, int bit) { return (field[bit >> 5] & 1 << (bit & 0x1F)) != 0; } static int get_current_cpu(void) { return cpu_single_env->cpu_index; } static uint32_t openpic_cpu_read_internal(void *opaque, target_phys_addr_t addr, int idx); static void openpic_cpu_write_internal(void *opaque, target_phys_addr_t addr, uint32_t val, int idx); enum { IRQ_EXTERNAL = 0x01, IRQ_INTERNAL = 0x02, IRQ_TIMER = 0x04, IRQ_SPECIAL = 0x08, }; typedef struct IRQ_queue_t { uint32_t queue[BF_WIDTH(MAX_IRQ)]; int next; int priority; } IRQ_queue_t; typedef struct IRQ_src_t { uint32_t ipvp; /* IRQ vector/priority register */ uint32_t ide; /* IRQ destination register */ int type; int last_cpu; int pending; /* TRUE if IRQ is pending */ } IRQ_src_t; enum IPVP_bits { IPVP_MASK = 31, IPVP_ACTIVITY = 30, IPVP_MODE = 29, IPVP_POLARITY = 23, IPVP_SENSE = 22, }; #define IPVP_PRIORITY_MASK (0x1F << 16) #define IPVP_PRIORITY(_ipvpr_) ((int)(((_ipvpr_) & IPVP_PRIORITY_MASK) >> 16)) #define IPVP_VECTOR_MASK ((1 << VECTOR_BITS) - 1) #define IPVP_VECTOR(_ipvpr_) ((_ipvpr_) & IPVP_VECTOR_MASK) typedef struct IRQ_dst_t { uint32_t tfrr; uint32_t pctp; /* CPU current task priority */ uint32_t pcsr; /* CPU sensitivity register */ IRQ_queue_t raised; IRQ_queue_t servicing; qemu_irq *irqs; } IRQ_dst_t; typedef struct openpic_t { PCIDevice pci_dev; MemoryRegion mem; /* Global registers */ uint32_t frep; /* Feature reporting register */ uint32_t glbc; /* Global configuration register */ uint32_t micr; /* MPIC interrupt configuration register */ uint32_t veni; /* Vendor identification register */ uint32_t pint; /* Processor initialization register */ uint32_t spve; /* Spurious vector register */ uint32_t tifr; /* Timer frequency reporting register */ /* Source registers */ IRQ_src_t src[MAX_IRQ]; /* Local registers per output pin */ IRQ_dst_t dst[MAX_CPU]; int nb_cpus; /* Timer registers */ struct { uint32_t ticc; /* Global timer current count register */ uint32_t tibc; /* Global timer base count register */ } timers[MAX_TMR]; #if MAX_DBL > 0 /* Doorbell registers */ uint32_t dar; /* Doorbell activate register */ struct { uint32_t dmr; /* Doorbell messaging register */ } doorbells[MAX_DBL]; #endif #if MAX_MBX > 0 /* Mailbox registers */ struct { uint32_t mbr; /* Mailbox register */ } mailboxes[MAX_MAILBOXES]; #endif /* IRQ out is used when in bypass mode (not implemented) */ qemu_irq irq_out; int max_irq; int irq_ipi0; int irq_tim0; void (*reset) (void *); void (*irq_raise) (struct openpic_t *, int, IRQ_src_t *); } openpic_t; static inline void IRQ_setbit (IRQ_queue_t *q, int n_IRQ) { set_bit(q->queue, n_IRQ); } static inline void IRQ_resetbit (IRQ_queue_t *q, int n_IRQ) { reset_bit(q->queue, n_IRQ); } static inline int IRQ_testbit (IRQ_queue_t *q, int n_IRQ) { return test_bit(q->queue, n_IRQ); } static void IRQ_check (openpic_t *opp, IRQ_queue_t *q) { int next, i; int priority; next = -1; priority = -1; for (i = 0; i < opp->max_irq; i++) { if (IRQ_testbit(q, i)) { DPRINTF("IRQ_check: irq %d set ipvp_pr=%d pr=%d\n", i, IPVP_PRIORITY(opp->src[i].ipvp), priority); if (IPVP_PRIORITY(opp->src[i].ipvp) > priority) { next = i; priority = IPVP_PRIORITY(opp->src[i].ipvp); } } } q->next = next; q->priority = priority; } static int IRQ_get_next (openpic_t *opp, IRQ_queue_t *q) { if (q->next == -1) { /* XXX: optimize */ IRQ_check(opp, q); } return q->next; } static void IRQ_local_pipe (openpic_t *opp, int n_CPU, int n_IRQ) { IRQ_dst_t *dst; IRQ_src_t *src; int priority; dst = &opp->dst[n_CPU]; src = &opp->src[n_IRQ]; priority = IPVP_PRIORITY(src->ipvp); if (priority <= dst->pctp) { /* Too low priority */ DPRINTF("%s: IRQ %d has too low priority on CPU %d\n", __func__, n_IRQ, n_CPU); return; } if (IRQ_testbit(&dst->raised, n_IRQ)) { /* Interrupt miss */ DPRINTF("%s: IRQ %d was missed on CPU %d\n", __func__, n_IRQ, n_CPU); return; } set_bit(&src->ipvp, IPVP_ACTIVITY); IRQ_setbit(&dst->raised, n_IRQ); if (priority < dst->raised.priority) { /* An higher priority IRQ is already raised */ DPRINTF("%s: IRQ %d is hidden by raised IRQ %d on CPU %d\n", __func__, n_IRQ, dst->raised.next, n_CPU); return; } IRQ_get_next(opp, &dst->raised); if (IRQ_get_next(opp, &dst->servicing) != -1 && priority <= dst->servicing.priority) { DPRINTF("%s: IRQ %d is hidden by servicing IRQ %d on CPU %d\n", __func__, n_IRQ, dst->servicing.next, n_CPU); /* Already servicing a higher priority IRQ */ return; } DPRINTF("Raise OpenPIC INT output cpu %d irq %d\n", n_CPU, n_IRQ); opp->irq_raise(opp, n_CPU, src); } /* update pic state because registers for n_IRQ have changed value */ static void openpic_update_irq(openpic_t *opp, int n_IRQ) { IRQ_src_t *src; int i; src = &opp->src[n_IRQ]; if (!src->pending) { /* no irq pending */ DPRINTF("%s: IRQ %d is not pending\n", __func__, n_IRQ); return; } if (test_bit(&src->ipvp, IPVP_MASK)) { /* Interrupt source is disabled */ DPRINTF("%s: IRQ %d is disabled\n", __func__, n_IRQ); return; } if (IPVP_PRIORITY(src->ipvp) == 0) { /* Priority set to zero */ DPRINTF("%s: IRQ %d has 0 priority\n", __func__, n_IRQ); return; } if (test_bit(&src->ipvp, IPVP_ACTIVITY)) { /* IRQ already active */ DPRINTF("%s: IRQ %d is already active\n", __func__, n_IRQ); return; } if (src->ide == 0x00000000) { /* No target */ DPRINTF("%s: IRQ %d has no target\n", __func__, n_IRQ); return; } if (src->ide == (1 << src->last_cpu)) { /* Only one CPU is allowed to receive this IRQ */ IRQ_local_pipe(opp, src->last_cpu, n_IRQ); } else if (!test_bit(&src->ipvp, IPVP_MODE)) { /* Directed delivery mode */ for (i = 0; i < opp->nb_cpus; i++) { if (test_bit(&src->ide, i)) IRQ_local_pipe(opp, i, n_IRQ); } } else { /* Distributed delivery mode */ for (i = src->last_cpu + 1; i != src->last_cpu; i++) { if (i == opp->nb_cpus) i = 0; if (test_bit(&src->ide, i)) { IRQ_local_pipe(opp, i, n_IRQ); src->last_cpu = i; break; } } } } static void openpic_set_irq(void *opaque, int n_IRQ, int level) { openpic_t *opp = opaque; IRQ_src_t *src; src = &opp->src[n_IRQ]; DPRINTF("openpic: set irq %d = %d ipvp=%08x\n", n_IRQ, level, src->ipvp); if (test_bit(&src->ipvp, IPVP_SENSE)) { /* level-sensitive irq */ src->pending = level; if (!level) reset_bit(&src->ipvp, IPVP_ACTIVITY); } else { /* edge-sensitive irq */ if (level) src->pending = 1; } openpic_update_irq(opp, n_IRQ); } static void openpic_reset (void *opaque) { openpic_t *opp = (openpic_t *)opaque; int i; opp->glbc = 0x80000000; /* Initialise controller registers */ opp->frep = ((OPENPIC_EXT_IRQ - 1) << 16) | ((MAX_CPU - 1) << 8) | VID; opp->veni = VENI; opp->pint = 0x00000000; opp->spve = 0x000000FF; opp->tifr = 0x003F7A00; /* ? */ opp->micr = 0x00000000; /* Initialise IRQ sources */ for (i = 0; i < opp->max_irq; i++) { opp->src[i].ipvp = 0xA0000000; opp->src[i].ide = 0x00000000; } /* Initialise IRQ destinations */ for (i = 0; i < MAX_CPU; i++) { opp->dst[i].pctp = 0x0000000F; opp->dst[i].pcsr = 0x00000000; memset(&opp->dst[i].raised, 0, sizeof(IRQ_queue_t)); opp->dst[i].raised.next = -1; memset(&opp->dst[i].servicing, 0, sizeof(IRQ_queue_t)); opp->dst[i].servicing.next = -1; } /* Initialise timers */ for (i = 0; i < MAX_TMR; i++) { opp->timers[i].ticc = 0x00000000; opp->timers[i].tibc = 0x80000000; } /* Initialise doorbells */ #if MAX_DBL > 0 opp->dar = 0x00000000; for (i = 0; i < MAX_DBL; i++) { opp->doorbells[i].dmr = 0x00000000; } #endif /* Initialise mailboxes */ #if MAX_MBX > 0 for (i = 0; i < MAX_MBX; i++) { /* ? */ opp->mailboxes[i].mbr = 0x00000000; } #endif /* Go out of RESET state */ opp->glbc = 0x00000000; } static inline uint32_t read_IRQreg_ide(openpic_t *opp, int n_IRQ) { return opp->src[n_IRQ].ide; } static inline uint32_t read_IRQreg_ipvp(openpic_t *opp, int n_IRQ) { return opp->src[n_IRQ].ipvp; } static inline void write_IRQreg_ide(openpic_t *opp, int n_IRQ, uint32_t val) { uint32_t tmp; tmp = val & 0xC0000000; tmp |= val & ((1ULL << MAX_CPU) - 1); opp->src[n_IRQ].ide = tmp; DPRINTF("Set IDE %d to 0x%08x\n", n_IRQ, opp->src[n_IRQ].ide); } static inline void write_IRQreg_ipvp(openpic_t *opp, int n_IRQ, uint32_t val) { /* NOTE: not fully accurate for special IRQs, but simple and sufficient */ /* ACTIVITY bit is read-only */ opp->src[n_IRQ].ipvp = (opp->src[n_IRQ].ipvp & 0x40000000) | (val & 0x800F00FF); openpic_update_irq(opp, n_IRQ); DPRINTF("Set IPVP %d to 0x%08x -> 0x%08x\n", n_IRQ, val, opp->src[n_IRQ].ipvp); } #if 0 // Code provision for Intel model #if MAX_DBL > 0 static uint32_t read_doorbell_register (openpic_t *opp, int n_dbl, uint32_t offset) { uint32_t retval; switch (offset) { case DBL_IPVP_OFFSET: retval = read_IRQreg_ipvp(opp, IRQ_DBL0 + n_dbl); break; case DBL_IDE_OFFSET: retval = read_IRQreg_ide(opp, IRQ_DBL0 + n_dbl); break; case DBL_DMR_OFFSET: retval = opp->doorbells[n_dbl].dmr; break; } return retval; } static void write_doorbell_register (penpic_t *opp, int n_dbl, uint32_t offset, uint32_t value) { switch (offset) { case DBL_IVPR_OFFSET: write_IRQreg_ipvp(opp, IRQ_DBL0 + n_dbl, value); break; case DBL_IDE_OFFSET: write_IRQreg_ide(opp, IRQ_DBL0 + n_dbl, value); break; case DBL_DMR_OFFSET: opp->doorbells[n_dbl].dmr = value; break; } } #endif #if MAX_MBX > 0 static uint32_t read_mailbox_register (openpic_t *opp, int n_mbx, uint32_t offset) { uint32_t retval; switch (offset) { case MBX_MBR_OFFSET: retval = opp->mailboxes[n_mbx].mbr; break; case MBX_IVPR_OFFSET: retval = read_IRQreg_ipvp(opp, IRQ_MBX0 + n_mbx); break; case MBX_DMR_OFFSET: retval = read_IRQreg_ide(opp, IRQ_MBX0 + n_mbx); break; } return retval; } static void write_mailbox_register (openpic_t *opp, int n_mbx, uint32_t address, uint32_t value) { switch (offset) { case MBX_MBR_OFFSET: opp->mailboxes[n_mbx].mbr = value; break; case MBX_IVPR_OFFSET: write_IRQreg_ipvp(opp, IRQ_MBX0 + n_mbx, value); break; case MBX_DMR_OFFSET: write_IRQreg_ide(opp, IRQ_MBX0 + n_mbx, value); break; } } #endif #endif /* 0 : Code provision for Intel model */ static void openpic_gbl_write (void *opaque, target_phys_addr_t addr, uint32_t val) { openpic_t *opp = opaque; IRQ_dst_t *dst; int idx; DPRINTF("%s: addr " TARGET_FMT_plx " <= %08x\n", __func__, addr, val); if (addr & 0xF) return; switch (addr) { case 0x40: case 0x50: case 0x60: case 0x70: case 0x80: case 0x90: case 0xA0: case 0xB0: openpic_cpu_write_internal(opp, addr, val, get_current_cpu()); break; case 0x1000: /* FREP */ break; case 0x1020: /* GLBC */ if (val & 0x80000000 && opp->reset) opp->reset(opp); opp->glbc = val & ~0x80000000; break; case 0x1080: /* VENI */ break; case 0x1090: /* PINT */ for (idx = 0; idx < opp->nb_cpus; idx++) { if ((val & (1 << idx)) && !(opp->pint & (1 << idx))) { DPRINTF("Raise OpenPIC RESET output for CPU %d\n", idx); dst = &opp->dst[idx]; qemu_irq_raise(dst->irqs[OPENPIC_OUTPUT_RESET]); } else if (!(val & (1 << idx)) && (opp->pint & (1 << idx))) { DPRINTF("Lower OpenPIC RESET output for CPU %d\n", idx); dst = &opp->dst[idx]; qemu_irq_lower(dst->irqs[OPENPIC_OUTPUT_RESET]); } } opp->pint = val; break; case 0x10A0: /* IPI_IPVP */ case 0x10B0: case 0x10C0: case 0x10D0: { int idx; idx = (addr - 0x10A0) >> 4; write_IRQreg_ipvp(opp, opp->irq_ipi0 + idx, val); } break; case 0x10E0: /* SPVE */ opp->spve = val & 0x000000FF; break; case 0x10F0: /* TIFR */ opp->tifr = val; break; default: break; } } static uint32_t openpic_gbl_read (void *opaque, target_phys_addr_t addr) { openpic_t *opp = opaque; uint32_t retval; DPRINTF("%s: addr " TARGET_FMT_plx "\n", __func__, addr); retval = 0xFFFFFFFF; if (addr & 0xF) return retval; switch (addr) { case 0x1000: /* FREP */ retval = opp->frep; break; case 0x1020: /* GLBC */ retval = opp->glbc; break; case 0x1080: /* VENI */ retval = opp->veni; break; case 0x1090: /* PINT */ retval = 0x00000000; break; case 0x40: case 0x50: case 0x60: case 0x70: case 0x80: case 0x90: case 0xA0: case 0xB0: retval = openpic_cpu_read_internal(opp, addr, get_current_cpu()); break; case 0x10A0: /* IPI_IPVP */ case 0x10B0: case 0x10C0: case 0x10D0: { int idx; idx = (addr - 0x10A0) >> 4; retval = read_IRQreg_ipvp(opp, opp->irq_ipi0 + idx); } break; case 0x10E0: /* SPVE */ retval = opp->spve; break; case 0x10F0: /* TIFR */ retval = opp->tifr; break; default: break; } DPRINTF("%s: => %08x\n", __func__, retval); return retval; } static void openpic_timer_write (void *opaque, uint32_t addr, uint32_t val) { openpic_t *opp = opaque; int idx; DPRINTF("%s: addr %08x <= %08x\n", __func__, addr, val); if (addr & 0xF) return; addr -= 0x1100; addr &= 0xFFFF; idx = (addr & 0xFFF0) >> 6; addr = addr & 0x30; switch (addr) { case 0x00: /* TICC */ break; case 0x10: /* TIBC */ if ((opp->timers[idx].ticc & 0x80000000) != 0 && (val & 0x80000000) == 0 && (opp->timers[idx].tibc & 0x80000000) != 0) opp->timers[idx].ticc &= ~0x80000000; opp->timers[idx].tibc = val; break; case 0x20: /* TIVP */ write_IRQreg_ipvp(opp, opp->irq_tim0 + idx, val); break; case 0x30: /* TIDE */ write_IRQreg_ide(opp, opp->irq_tim0 + idx, val); break; } } static uint32_t openpic_timer_read (void *opaque, uint32_t addr) { openpic_t *opp = opaque; uint32_t retval; int idx; DPRINTF("%s: addr %08x\n", __func__, addr); retval = 0xFFFFFFFF; if (addr & 0xF) return retval; addr -= 0x1100; addr &= 0xFFFF; idx = (addr & 0xFFF0) >> 6; addr = addr & 0x30; switch (addr) { case 0x00: /* TICC */ retval = opp->timers[idx].ticc; break; case 0x10: /* TIBC */ retval = opp->timers[idx].tibc; break; case 0x20: /* TIPV */ retval = read_IRQreg_ipvp(opp, opp->irq_tim0 + idx); break; case 0x30: /* TIDE */ retval = read_IRQreg_ide(opp, opp->irq_tim0 + idx); break; } DPRINTF("%s: => %08x\n", __func__, retval); return retval; } static void openpic_src_write (void *opaque, uint32_t addr, uint32_t val) { openpic_t *opp = opaque; int idx; DPRINTF("%s: addr %08x <= %08x\n", __func__, addr, val); if (addr & 0xF) return; addr = addr & 0xFFF0; idx = addr >> 5; if (addr & 0x10) { /* EXDE / IFEDE / IEEDE */ write_IRQreg_ide(opp, idx, val); } else { /* EXVP / IFEVP / IEEVP */ write_IRQreg_ipvp(opp, idx, val); } } static uint32_t openpic_src_read (void *opaque, uint32_t addr) { openpic_t *opp = opaque; uint32_t retval; int idx; DPRINTF("%s: addr %08x\n", __func__, addr); retval = 0xFFFFFFFF; if (addr & 0xF) return retval; addr = addr & 0xFFF0; idx = addr >> 5; if (addr & 0x10) { /* EXDE / IFEDE / IEEDE */ retval = read_IRQreg_ide(opp, idx); } else { /* EXVP / IFEVP / IEEVP */ retval = read_IRQreg_ipvp(opp, idx); } DPRINTF("%s: => %08x\n", __func__, retval); return retval; } static void openpic_cpu_write_internal(void *opaque, target_phys_addr_t addr, uint32_t val, int idx) { openpic_t *opp = opaque; IRQ_src_t *src; IRQ_dst_t *dst; int s_IRQ, n_IRQ; DPRINTF("%s: cpu %d addr " TARGET_FMT_plx " <= %08x\n", __func__, idx, addr, val); if (addr & 0xF) return; dst = &opp->dst[idx]; addr &= 0xFF0; switch (addr) { #if MAX_IPI > 0 case 0x40: /* IPIDR */ case 0x50: case 0x60: case 0x70: idx = (addr - 0x40) >> 4; /* we use IDE as mask which CPUs to deliver the IPI to still. */ write_IRQreg_ide(opp, opp->irq_ipi0 + idx, opp->src[opp->irq_ipi0 + idx].ide | val); openpic_set_irq(opp, opp->irq_ipi0 + idx, 1); openpic_set_irq(opp, opp->irq_ipi0 + idx, 0); break; #endif case 0x80: /* PCTP */ dst->pctp = val & 0x0000000F; break; case 0x90: /* WHOAMI */ /* Read-only register */ break; case 0xA0: /* PIAC */ /* Read-only register */ break; case 0xB0: /* PEOI */ DPRINTF("PEOI\n"); s_IRQ = IRQ_get_next(opp, &dst->servicing); IRQ_resetbit(&dst->servicing, s_IRQ); dst->servicing.next = -1; /* Set up next servicing IRQ */ s_IRQ = IRQ_get_next(opp, &dst->servicing); /* Check queued interrupts. */ n_IRQ = IRQ_get_next(opp, &dst->raised); src = &opp->src[n_IRQ]; if (n_IRQ != -1 && (s_IRQ == -1 || IPVP_PRIORITY(src->ipvp) > dst->servicing.priority)) { DPRINTF("Raise OpenPIC INT output cpu %d irq %d\n", idx, n_IRQ); opp->irq_raise(opp, idx, src); } break; default: break; } } static void openpic_cpu_write(void *opaque, target_phys_addr_t addr, uint32_t val) { openpic_cpu_write_internal(opaque, addr, val, (addr & 0x1f000) >> 12); } static uint32_t openpic_cpu_read_internal(void *opaque, target_phys_addr_t addr, int idx) { openpic_t *opp = opaque; IRQ_src_t *src; IRQ_dst_t *dst; uint32_t retval; int n_IRQ; DPRINTF("%s: cpu %d addr " TARGET_FMT_plx "\n", __func__, idx, addr); retval = 0xFFFFFFFF; if (addr & 0xF) return retval; dst = &opp->dst[idx]; addr &= 0xFF0; switch (addr) { case 0x80: /* PCTP */ retval = dst->pctp; break; case 0x90: /* WHOAMI */ retval = idx; break; case 0xA0: /* PIAC */ DPRINTF("Lower OpenPIC INT output\n"); qemu_irq_lower(dst->irqs[OPENPIC_OUTPUT_INT]); n_IRQ = IRQ_get_next(opp, &dst->raised); DPRINTF("PIAC: irq=%d\n", n_IRQ); if (n_IRQ == -1) { /* No more interrupt pending */ retval = IPVP_VECTOR(opp->spve); } else { src = &opp->src[n_IRQ]; if (!test_bit(&src->ipvp, IPVP_ACTIVITY) || !(IPVP_PRIORITY(src->ipvp) > dst->pctp)) { /* - Spurious level-sensitive IRQ * - Priorities has been changed * and the pending IRQ isn't allowed anymore */ reset_bit(&src->ipvp, IPVP_ACTIVITY); retval = IPVP_VECTOR(opp->spve); } else { /* IRQ enter servicing state */ IRQ_setbit(&dst->servicing, n_IRQ); retval = IPVP_VECTOR(src->ipvp); } IRQ_resetbit(&dst->raised, n_IRQ); dst->raised.next = -1; if (!test_bit(&src->ipvp, IPVP_SENSE)) { /* edge-sensitive IRQ */ reset_bit(&src->ipvp, IPVP_ACTIVITY); src->pending = 0; } if ((n_IRQ >= opp->irq_ipi0) && (n_IRQ < (opp->irq_ipi0 + MAX_IPI))) { src->ide &= ~(1 << idx); if (src->ide && !test_bit(&src->ipvp, IPVP_SENSE)) { /* trigger on CPUs that didn't know about it yet */ openpic_set_irq(opp, n_IRQ, 1); openpic_set_irq(opp, n_IRQ, 0); /* if all CPUs knew about it, set active bit again */ set_bit(&src->ipvp, IPVP_ACTIVITY); } } } break; case 0xB0: /* PEOI */ retval = 0; break; default: break; } DPRINTF("%s: => %08x\n", __func__, retval); return retval; } static uint32_t openpic_cpu_read(void *opaque, target_phys_addr_t addr) { return openpic_cpu_read_internal(opaque, addr, (addr & 0x1f000) >> 12); } static void openpic_buggy_write (void *opaque, target_phys_addr_t addr, uint32_t val) { printf("Invalid OPENPIC write access !\n"); } static uint32_t openpic_buggy_read (void *opaque, target_phys_addr_t addr) { printf("Invalid OPENPIC read access !\n"); return -1; } static void openpic_writel (void *opaque, target_phys_addr_t addr, uint32_t val) { openpic_t *opp = opaque; addr &= 0x3FFFF; DPRINTF("%s: offset %08x val: %08x\n", __func__, (int)addr, val); if (addr < 0x1100) { /* Global registers */ openpic_gbl_write(opp, addr, val); } else if (addr < 0x10000) { /* Timers registers */ openpic_timer_write(opp, addr, val); } else if (addr < 0x20000) { /* Source registers */ openpic_src_write(opp, addr, val); } else { /* CPU registers */ openpic_cpu_write(opp, addr, val); } } static uint32_t openpic_readl (void *opaque,target_phys_addr_t addr) { openpic_t *opp = opaque; uint32_t retval; addr &= 0x3FFFF; DPRINTF("%s: offset %08x\n", __func__, (int)addr); if (addr < 0x1100) { /* Global registers */ retval = openpic_gbl_read(opp, addr); } else if (addr < 0x10000) { /* Timers registers */ retval = openpic_timer_read(opp, addr); } else if (addr < 0x20000) { /* Source registers */ retval = openpic_src_read(opp, addr); } else { /* CPU registers */ retval = openpic_cpu_read(opp, addr); } return retval; } static uint64_t openpic_read(void *opaque, target_phys_addr_t addr, unsigned size) { openpic_t *opp = opaque; switch (size) { case 4: return openpic_readl(opp, addr); default: return openpic_buggy_read(opp, addr); } } static void openpic_write(void *opaque, target_phys_addr_t addr, uint64_t data, unsigned size) { openpic_t *opp = opaque; switch (size) { case 4: return openpic_writel(opp, addr, data); default: return openpic_buggy_write(opp, addr, data); } } static const MemoryRegionOps openpic_ops = { .read = openpic_read, .write = openpic_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void openpic_save_IRQ_queue(QEMUFile* f, IRQ_queue_t *q) { unsigned int i; for (i = 0; i < BF_WIDTH(MAX_IRQ); i++) qemu_put_be32s(f, &q->queue[i]); qemu_put_sbe32s(f, &q->next); qemu_put_sbe32s(f, &q->priority); } static void openpic_save(QEMUFile* f, void *opaque) { openpic_t *opp = (openpic_t *)opaque; unsigned int i; qemu_put_be32s(f, &opp->frep); qemu_put_be32s(f, &opp->glbc); qemu_put_be32s(f, &opp->micr); qemu_put_be32s(f, &opp->veni); qemu_put_be32s(f, &opp->pint); qemu_put_be32s(f, &opp->spve); qemu_put_be32s(f, &opp->tifr); for (i = 0; i < opp->max_irq; i++) { qemu_put_be32s(f, &opp->src[i].ipvp); qemu_put_be32s(f, &opp->src[i].ide); qemu_put_sbe32s(f, &opp->src[i].type); qemu_put_sbe32s(f, &opp->src[i].last_cpu); qemu_put_sbe32s(f, &opp->src[i].pending); } qemu_put_sbe32s(f, &opp->nb_cpus); for (i = 0; i < opp->nb_cpus; i++) { qemu_put_be32s(f, &opp->dst[i].tfrr); qemu_put_be32s(f, &opp->dst[i].pctp); qemu_put_be32s(f, &opp->dst[i].pcsr); openpic_save_IRQ_queue(f, &opp->dst[i].raised); openpic_save_IRQ_queue(f, &opp->dst[i].servicing); } for (i = 0; i < MAX_TMR; i++) { qemu_put_be32s(f, &opp->timers[i].ticc); qemu_put_be32s(f, &opp->timers[i].tibc); } #if MAX_DBL > 0 qemu_put_be32s(f, &opp->dar); for (i = 0; i < MAX_DBL; i++) { qemu_put_be32s(f, &opp->doorbells[i].dmr); } #endif #if MAX_MBX > 0 for (i = 0; i < MAX_MAILBOXES; i++) { qemu_put_be32s(f, &opp->mailboxes[i].mbr); } #endif pci_device_save(&opp->pci_dev, f); } static void openpic_load_IRQ_queue(QEMUFile* f, IRQ_queue_t *q) { unsigned int i; for (i = 0; i < BF_WIDTH(MAX_IRQ); i++) qemu_get_be32s(f, &q->queue[i]); qemu_get_sbe32s(f, &q->next); qemu_get_sbe32s(f, &q->priority); } static int openpic_load(QEMUFile* f, void *opaque, int version_id) { openpic_t *opp = (openpic_t *)opaque; unsigned int i; if (version_id != 1) return -EINVAL; qemu_get_be32s(f, &opp->frep); qemu_get_be32s(f, &opp->glbc); qemu_get_be32s(f, &opp->micr); qemu_get_be32s(f, &opp->veni); qemu_get_be32s(f, &opp->pint); qemu_get_be32s(f, &opp->spve); qemu_get_be32s(f, &opp->tifr); for (i = 0; i < opp->max_irq; i++) { qemu_get_be32s(f, &opp->src[i].ipvp); qemu_get_be32s(f, &opp->src[i].ide); qemu_get_sbe32s(f, &opp->src[i].type); qemu_get_sbe32s(f, &opp->src[i].last_cpu); qemu_get_sbe32s(f, &opp->src[i].pending); } qemu_get_sbe32s(f, &opp->nb_cpus); for (i = 0; i < opp->nb_cpus; i++) { qemu_get_be32s(f, &opp->dst[i].tfrr); qemu_get_be32s(f, &opp->dst[i].pctp); qemu_get_be32s(f, &opp->dst[i].pcsr); openpic_load_IRQ_queue(f, &opp->dst[i].raised); openpic_load_IRQ_queue(f, &opp->dst[i].servicing); } for (i = 0; i < MAX_TMR; i++) { qemu_get_be32s(f, &opp->timers[i].ticc); qemu_get_be32s(f, &opp->timers[i].tibc); } #if MAX_DBL > 0 qemu_get_be32s(f, &opp->dar); for (i = 0; i < MAX_DBL; i++) { qemu_get_be32s(f, &opp->doorbells[i].dmr); } #endif #if MAX_MBX > 0 for (i = 0; i < MAX_MAILBOXES; i++) { qemu_get_be32s(f, &opp->mailboxes[i].mbr); } #endif return pci_device_load(&opp->pci_dev, f); } static void openpic_irq_raise(openpic_t *opp, int n_CPU, IRQ_src_t *src) { qemu_irq_raise(opp->dst[n_CPU].irqs[OPENPIC_OUTPUT_INT]); } qemu_irq *openpic_init (PCIBus *bus, MemoryRegion **pmem, int nb_cpus, qemu_irq **irqs, qemu_irq irq_out) { openpic_t *opp; uint8_t *pci_conf; int i, m; /* XXX: for now, only one CPU is supported */ if (nb_cpus != 1) return NULL; if (bus) { opp = (openpic_t *)pci_register_device(bus, "OpenPIC", sizeof(openpic_t), -1, NULL, NULL); pci_conf = opp->pci_dev.config; pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_IBM); pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_IBM_OPENPIC2); pci_config_set_class(pci_conf, PCI_CLASS_SYSTEM_OTHER); // FIXME? pci_conf[0x3d] = 0x00; // no interrupt pin memory_region_init_io(&opp->mem, &openpic_ops, opp, "openpic", 0x40000); #if 0 // Don't implement ISU for now opp_io_memory = cpu_register_io_memory(openpic_src_read, openpic_src_write, NULL DEVICE_NATIVE_ENDIAN); cpu_register_physical_memory(isu_base, 0x20 * (EXT_IRQ + 2), opp_io_memory); #endif /* Register I/O spaces */ pci_register_bar(&opp->pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &opp->mem); } else { opp = g_malloc0(sizeof(openpic_t)); memory_region_init_io(&opp->mem, &openpic_ops, opp, "openpic", 0x40000); } // isu_base &= 0xFFFC0000; opp->nb_cpus = nb_cpus; opp->max_irq = OPENPIC_MAX_IRQ; opp->irq_ipi0 = OPENPIC_IRQ_IPI0; opp->irq_tim0 = OPENPIC_IRQ_TIM0; /* Set IRQ types */ for (i = 0; i < OPENPIC_EXT_IRQ; i++) { opp->src[i].type = IRQ_EXTERNAL; } for (; i < OPENPIC_IRQ_TIM0; i++) { opp->src[i].type = IRQ_SPECIAL; } #if MAX_IPI > 0 m = OPENPIC_IRQ_IPI0; #else m = OPENPIC_IRQ_DBL0; #endif for (; i < m; i++) { opp->src[i].type = IRQ_TIMER; } for (; i < OPENPIC_MAX_IRQ; i++) { opp->src[i].type = IRQ_INTERNAL; } for (i = 0; i < nb_cpus; i++) opp->dst[i].irqs = irqs[i]; opp->irq_out = irq_out; register_savevm(&opp->pci_dev.qdev, "openpic", 0, 2, openpic_save, openpic_load, opp); qemu_register_reset(openpic_reset, opp); opp->irq_raise = openpic_irq_raise; opp->reset = openpic_reset; if (pmem) *pmem = &opp->mem; return qemu_allocate_irqs(openpic_set_irq, opp, opp->max_irq); } static void mpic_irq_raise(openpic_t *mpp, int n_CPU, IRQ_src_t *src) { int n_ci = IDR_CI0 - n_CPU; if(test_bit(&src->ide, n_ci)) { qemu_irq_raise(mpp->dst[n_CPU].irqs[OPENPIC_OUTPUT_CINT]); } else { qemu_irq_raise(mpp->dst[n_CPU].irqs[OPENPIC_OUTPUT_INT]); } } static void mpic_reset (void *opaque) { openpic_t *mpp = (openpic_t *)opaque; int i; mpp->glbc = 0x80000000; /* Initialise controller registers */ mpp->frep = 0x004f0002 | ((mpp->nb_cpus - 1) << 8); mpp->veni = VENI; mpp->pint = 0x00000000; mpp->spve = 0x0000FFFF; /* Initialise IRQ sources */ for (i = 0; i < mpp->max_irq; i++) { mpp->src[i].ipvp = 0x80800000; mpp->src[i].ide = 0x00000001; } /* Set IDE for IPIs to 0 so we don't get spurious interrupts */ for (i = mpp->irq_ipi0; i < (mpp->irq_ipi0 + MAX_IPI); i++) { mpp->src[i].ide = 0; } /* Initialise IRQ destinations */ for (i = 0; i < MAX_CPU; i++) { mpp->dst[i].pctp = 0x0000000F; mpp->dst[i].tfrr = 0x00000000; memset(&mpp->dst[i].raised, 0, sizeof(IRQ_queue_t)); mpp->dst[i].raised.next = -1; memset(&mpp->dst[i].servicing, 0, sizeof(IRQ_queue_t)); mpp->dst[i].servicing.next = -1; } /* Initialise timers */ for (i = 0; i < MAX_TMR; i++) { mpp->timers[i].ticc = 0x00000000; mpp->timers[i].tibc = 0x80000000; } /* Go out of RESET state */ mpp->glbc = 0x00000000; } static void mpic_timer_write (void *opaque, target_phys_addr_t addr, uint32_t val) { openpic_t *mpp = opaque; int idx, cpu; DPRINTF("%s: addr " TARGET_FMT_plx " <= %08x\n", __func__, addr, val); if (addr & 0xF) return; addr &= 0xFFFF; cpu = addr >> 12; idx = (addr >> 6) & 0x3; switch (addr & 0x30) { case 0x00: /* gtccr */ break; case 0x10: /* gtbcr */ if ((mpp->timers[idx].ticc & 0x80000000) != 0 && (val & 0x80000000) == 0 && (mpp->timers[idx].tibc & 0x80000000) != 0) mpp->timers[idx].ticc &= ~0x80000000; mpp->timers[idx].tibc = val; break; case 0x20: /* GTIVPR */ write_IRQreg_ipvp(mpp, MPIC_TMR_IRQ + idx, val); break; case 0x30: /* GTIDR & TFRR */ if ((addr & 0xF0) == 0xF0) mpp->dst[cpu].tfrr = val; else write_IRQreg_ide(mpp, MPIC_TMR_IRQ + idx, val); break; } } static uint32_t mpic_timer_read (void *opaque, target_phys_addr_t addr) { openpic_t *mpp = opaque; uint32_t retval; int idx, cpu; DPRINTF("%s: addr " TARGET_FMT_plx "\n", __func__, addr); retval = 0xFFFFFFFF; if (addr & 0xF) return retval; addr &= 0xFFFF; cpu = addr >> 12; idx = (addr >> 6) & 0x3; switch (addr & 0x30) { case 0x00: /* gtccr */ retval = mpp->timers[idx].ticc; break; case 0x10: /* gtbcr */ retval = mpp->timers[idx].tibc; break; case 0x20: /* TIPV */ retval = read_IRQreg_ipvp(mpp, MPIC_TMR_IRQ + idx); break; case 0x30: /* TIDR */ if ((addr &0xF0) == 0XF0) retval = mpp->dst[cpu].tfrr; else retval = read_IRQreg_ide(mpp, MPIC_TMR_IRQ + idx); break; } DPRINTF("%s: => %08x\n", __func__, retval); return retval; } static void mpic_src_ext_write (void *opaque, target_phys_addr_t addr, uint32_t val) { openpic_t *mpp = opaque; int idx = MPIC_EXT_IRQ; DPRINTF("%s: addr " TARGET_FMT_plx " <= %08x\n", __func__, addr, val); if (addr & 0xF) return; addr -= MPIC_EXT_REG_START & (OPENPIC_PAGE_SIZE - 1); if (addr < MPIC_EXT_REG_SIZE) { idx += (addr & 0xFFF0) >> 5; if (addr & 0x10) { /* EXDE / IFEDE / IEEDE */ write_IRQreg_ide(mpp, idx, val); } else { /* EXVP / IFEVP / IEEVP */ write_IRQreg_ipvp(mpp, idx, val); } } } static uint32_t mpic_src_ext_read (void *opaque, target_phys_addr_t addr) { openpic_t *mpp = opaque; uint32_t retval; int idx = MPIC_EXT_IRQ; DPRINTF("%s: addr " TARGET_FMT_plx "\n", __func__, addr); retval = 0xFFFFFFFF; if (addr & 0xF) return retval; addr -= MPIC_EXT_REG_START & (OPENPIC_PAGE_SIZE - 1); if (addr < MPIC_EXT_REG_SIZE) { idx += (addr & 0xFFF0) >> 5; if (addr & 0x10) { /* EXDE / IFEDE / IEEDE */ retval = read_IRQreg_ide(mpp, idx); } else { /* EXVP / IFEVP / IEEVP */ retval = read_IRQreg_ipvp(mpp, idx); } DPRINTF("%s: => %08x\n", __func__, retval); } return retval; } static void mpic_src_int_write (void *opaque, target_phys_addr_t addr, uint32_t val) { openpic_t *mpp = opaque; int idx = MPIC_INT_IRQ; DPRINTF("%s: addr " TARGET_FMT_plx " <= %08x\n", __func__, addr, val); if (addr & 0xF) return; addr -= MPIC_INT_REG_START & (OPENPIC_PAGE_SIZE - 1); if (addr < MPIC_INT_REG_SIZE) { idx += (addr & 0xFFF0) >> 5; if (addr & 0x10) { /* EXDE / IFEDE / IEEDE */ write_IRQreg_ide(mpp, idx, val); } else { /* EXVP / IFEVP / IEEVP */ write_IRQreg_ipvp(mpp, idx, val); } } } static uint32_t mpic_src_int_read (void *opaque, target_phys_addr_t addr) { openpic_t *mpp = opaque; uint32_t retval; int idx = MPIC_INT_IRQ; DPRINTF("%s: addr " TARGET_FMT_plx "\n", __func__, addr); retval = 0xFFFFFFFF; if (addr & 0xF) return retval; addr -= MPIC_INT_REG_START & (OPENPIC_PAGE_SIZE - 1); if (addr < MPIC_INT_REG_SIZE) { idx += (addr & 0xFFF0) >> 5; if (addr & 0x10) { /* EXDE / IFEDE / IEEDE */ retval = read_IRQreg_ide(mpp, idx); } else { /* EXVP / IFEVP / IEEVP */ retval = read_IRQreg_ipvp(mpp, idx); } DPRINTF("%s: => %08x\n", __func__, retval); } return retval; } static void mpic_src_msg_write (void *opaque, target_phys_addr_t addr, uint32_t val) { openpic_t *mpp = opaque; int idx = MPIC_MSG_IRQ; DPRINTF("%s: addr " TARGET_FMT_plx " <= %08x\n", __func__, addr, val); if (addr & 0xF) return; addr -= MPIC_MSG_REG_START & (OPENPIC_PAGE_SIZE - 1); if (addr < MPIC_MSG_REG_SIZE) { idx += (addr & 0xFFF0) >> 5; if (addr & 0x10) { /* EXDE / IFEDE / IEEDE */ write_IRQreg_ide(mpp, idx, val); } else { /* EXVP / IFEVP / IEEVP */ write_IRQreg_ipvp(mpp, idx, val); } } } static uint32_t mpic_src_msg_read (void *opaque, target_phys_addr_t addr) { openpic_t *mpp = opaque; uint32_t retval; int idx = MPIC_MSG_IRQ; DPRINTF("%s: addr " TARGET_FMT_plx "\n", __func__, addr); retval = 0xFFFFFFFF; if (addr & 0xF) return retval; addr -= MPIC_MSG_REG_START & (OPENPIC_PAGE_SIZE - 1); if (addr < MPIC_MSG_REG_SIZE) { idx += (addr & 0xFFF0) >> 5; if (addr & 0x10) { /* EXDE / IFEDE / IEEDE */ retval = read_IRQreg_ide(mpp, idx); } else { /* EXVP / IFEVP / IEEVP */ retval = read_IRQreg_ipvp(mpp, idx); } DPRINTF("%s: => %08x\n", __func__, retval); } return retval; } static void mpic_src_msi_write (void *opaque, target_phys_addr_t addr, uint32_t val) { openpic_t *mpp = opaque; int idx = MPIC_MSI_IRQ; DPRINTF("%s: addr " TARGET_FMT_plx " <= %08x\n", __func__, addr, val); if (addr & 0xF) return; addr -= MPIC_MSI_REG_START & (OPENPIC_PAGE_SIZE - 1); if (addr < MPIC_MSI_REG_SIZE) { idx += (addr & 0xFFF0) >> 5; if (addr & 0x10) { /* EXDE / IFEDE / IEEDE */ write_IRQreg_ide(mpp, idx, val); } else { /* EXVP / IFEVP / IEEVP */ write_IRQreg_ipvp(mpp, idx, val); } } } static uint32_t mpic_src_msi_read (void *opaque, target_phys_addr_t addr) { openpic_t *mpp = opaque; uint32_t retval; int idx = MPIC_MSI_IRQ; DPRINTF("%s: addr " TARGET_FMT_plx "\n", __func__, addr); retval = 0xFFFFFFFF; if (addr & 0xF) return retval; addr -= MPIC_MSI_REG_START & (OPENPIC_PAGE_SIZE - 1); if (addr < MPIC_MSI_REG_SIZE) { idx += (addr & 0xFFF0) >> 5; if (addr & 0x10) { /* EXDE / IFEDE / IEEDE */ retval = read_IRQreg_ide(mpp, idx); } else { /* EXVP / IFEVP / IEEVP */ retval = read_IRQreg_ipvp(mpp, idx); } DPRINTF("%s: => %08x\n", __func__, retval); } return retval; } static CPUWriteMemoryFunc * const mpic_glb_write[] = { &openpic_buggy_write, &openpic_buggy_write, &openpic_gbl_write, }; static CPUReadMemoryFunc * const mpic_glb_read[] = { &openpic_buggy_read, &openpic_buggy_read, &openpic_gbl_read, }; static CPUWriteMemoryFunc * const mpic_tmr_write[] = { &openpic_buggy_write, &openpic_buggy_write, &mpic_timer_write, }; static CPUReadMemoryFunc * const mpic_tmr_read[] = { &openpic_buggy_read, &openpic_buggy_read, &mpic_timer_read, }; static CPUWriteMemoryFunc * const mpic_cpu_write[] = { &openpic_buggy_write, &openpic_buggy_write, &openpic_cpu_write, }; static CPUReadMemoryFunc * const mpic_cpu_read[] = { &openpic_buggy_read, &openpic_buggy_read, &openpic_cpu_read, }; static CPUWriteMemoryFunc * const mpic_ext_write[] = { &openpic_buggy_write, &openpic_buggy_write, &mpic_src_ext_write, }; static CPUReadMemoryFunc * const mpic_ext_read[] = { &openpic_buggy_read, &openpic_buggy_read, &mpic_src_ext_read, }; static CPUWriteMemoryFunc * const mpic_int_write[] = { &openpic_buggy_write, &openpic_buggy_write, &mpic_src_int_write, }; static CPUReadMemoryFunc * const mpic_int_read[] = { &openpic_buggy_read, &openpic_buggy_read, &mpic_src_int_read, }; static CPUWriteMemoryFunc * const mpic_msg_write[] = { &openpic_buggy_write, &openpic_buggy_write, &mpic_src_msg_write, }; static CPUReadMemoryFunc * const mpic_msg_read[] = { &openpic_buggy_read, &openpic_buggy_read, &mpic_src_msg_read, }; static CPUWriteMemoryFunc * const mpic_msi_write[] = { &openpic_buggy_write, &openpic_buggy_write, &mpic_src_msi_write, }; static CPUReadMemoryFunc * const mpic_msi_read[] = { &openpic_buggy_read, &openpic_buggy_read, &mpic_src_msi_read, }; qemu_irq *mpic_init (target_phys_addr_t base, int nb_cpus, qemu_irq **irqs, qemu_irq irq_out) { openpic_t *mpp; int i; struct { CPUReadMemoryFunc * const *read; CPUWriteMemoryFunc * const *write; target_phys_addr_t start_addr; ram_addr_t size; } const list[] = { {mpic_glb_read, mpic_glb_write, MPIC_GLB_REG_START, MPIC_GLB_REG_SIZE}, {mpic_tmr_read, mpic_tmr_write, MPIC_TMR_REG_START, MPIC_TMR_REG_SIZE}, {mpic_ext_read, mpic_ext_write, MPIC_EXT_REG_START, MPIC_EXT_REG_SIZE}, {mpic_int_read, mpic_int_write, MPIC_INT_REG_START, MPIC_INT_REG_SIZE}, {mpic_msg_read, mpic_msg_write, MPIC_MSG_REG_START, MPIC_MSG_REG_SIZE}, {mpic_msi_read, mpic_msi_write, MPIC_MSI_REG_START, MPIC_MSI_REG_SIZE}, {mpic_cpu_read, mpic_cpu_write, MPIC_CPU_REG_START, MPIC_CPU_REG_SIZE}, }; mpp = g_malloc0(sizeof(openpic_t)); for (i = 0; i < sizeof(list)/sizeof(list[0]); i++) { int mem_index; mem_index = cpu_register_io_memory(list[i].read, list[i].write, mpp, DEVICE_BIG_ENDIAN); if (mem_index < 0) { goto free; } cpu_register_physical_memory(base + list[i].start_addr, list[i].size, mem_index); } mpp->nb_cpus = nb_cpus; mpp->max_irq = MPIC_MAX_IRQ; mpp->irq_ipi0 = MPIC_IPI_IRQ; mpp->irq_tim0 = MPIC_TMR_IRQ; for (i = 0; i < nb_cpus; i++) mpp->dst[i].irqs = irqs[i]; mpp->irq_out = irq_out; mpp->irq_raise = mpic_irq_raise; mpp->reset = mpic_reset; register_savevm(NULL, "mpic", 0, 2, openpic_save, openpic_load, mpp); qemu_register_reset(mpic_reset, mpp); return qemu_allocate_irqs(openpic_set_irq, mpp, mpp->max_irq); free: g_free(mpp); return NULL; }