/* * OneNAND flash memories emulation. * * Copyright (C) 2008 Nokia Corporation * Written by Andrzej Zaborowski <andrew@openedhand.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu-common.h" #include "hw.h" #include "flash.h" #include "irq.h" #include "blockdev.h" /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */ #define PAGE_SHIFT 11 /* Fixed */ #define BLOCK_SHIFT (PAGE_SHIFT + 6) typedef struct { uint32_t id; int shift; target_phys_addr_t base; qemu_irq intr; qemu_irq rdy; BlockDriverState *bdrv; BlockDriverState *bdrv_cur; uint8_t *image; uint8_t *otp; uint8_t *current; ram_addr_t ram; uint8_t *boot[2]; uint8_t *data[2][2]; int iomemtype; int cycle; int otpmode; uint16_t addr[8]; uint16_t unladdr[8]; int bufaddr; int count; uint16_t command; uint16_t config[2]; uint16_t status; uint16_t intstatus; uint16_t wpstatus; ECCState ecc; int density_mask; int secs; int secs_cur; int blocks; uint8_t *blockwp; } OneNANDState; enum { ONEN_BUF_BLOCK = 0, ONEN_BUF_BLOCK2 = 1, ONEN_BUF_DEST_BLOCK = 2, ONEN_BUF_DEST_PAGE = 3, ONEN_BUF_PAGE = 7, }; enum { ONEN_ERR_CMD = 1 << 10, ONEN_ERR_ERASE = 1 << 11, ONEN_ERR_PROG = 1 << 12, ONEN_ERR_LOAD = 1 << 13, }; enum { ONEN_INT_RESET = 1 << 4, ONEN_INT_ERASE = 1 << 5, ONEN_INT_PROG = 1 << 6, ONEN_INT_LOAD = 1 << 7, ONEN_INT = 1 << 15, }; enum { ONEN_LOCK_LOCKTIGHTEN = 1 << 0, ONEN_LOCK_LOCKED = 1 << 1, ONEN_LOCK_UNLOCKED = 1 << 2, }; void onenand_base_update(void *opaque, target_phys_addr_t new) { OneNANDState *s = (OneNANDState *) opaque; s->base = new; /* XXX: We should use IO_MEM_ROMD but we broke it earlier... * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to * write boot commands. Also take note of the BWPS bit. */ cpu_register_physical_memory(s->base + (0x0000 << s->shift), 0x0200 << s->shift, s->iomemtype); cpu_register_physical_memory(s->base + (0x0200 << s->shift), 0xbe00 << s->shift, (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM); if (s->iomemtype) cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift), 0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift)); } void onenand_base_unmap(void *opaque) { OneNANDState *s = (OneNANDState *) opaque; cpu_register_physical_memory(s->base, 0x10000 << s->shift, IO_MEM_UNASSIGNED); } static void onenand_intr_update(OneNANDState *s) { qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1); } /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */ static void onenand_reset(OneNANDState *s, int cold) { memset(&s->addr, 0, sizeof(s->addr)); s->command = 0; s->count = 1; s->bufaddr = 0; s->config[0] = 0x40c0; s->config[1] = 0x0000; onenand_intr_update(s); qemu_irq_raise(s->rdy); s->status = 0x0000; s->intstatus = cold ? 0x8080 : 0x8010; s->unladdr[0] = 0; s->unladdr[1] = 0; s->wpstatus = 0x0002; s->cycle = 0; s->otpmode = 0; s->bdrv_cur = s->bdrv; s->current = s->image; s->secs_cur = s->secs; if (cold) { /* Lock the whole flash */ memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks); if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0) hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__); } } static inline int onenand_load_main(OneNANDState *s, int sec, int secn, void *dest) { if (s->bdrv_cur) return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0; else if (sec + secn > s->secs_cur) return 1; memcpy(dest, s->current + (sec << 9), secn << 9); return 0; } static inline int onenand_prog_main(OneNANDState *s, int sec, int secn, void *src) { if (s->bdrv_cur) return bdrv_write(s->bdrv_cur, sec, src, secn) < 0; else if (sec + secn > s->secs_cur) return 1; memcpy(s->current + (sec << 9), src, secn << 9); return 0; } static inline int onenand_load_spare(OneNANDState *s, int sec, int secn, void *dest) { uint8_t buf[512]; if (s->bdrv_cur) { if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) return 1; memcpy(dest, buf + ((sec & 31) << 4), secn << 4); } else if (sec + secn > s->secs_cur) return 1; else memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4); return 0; } static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn, void *src) { uint8_t buf[512]; if (s->bdrv_cur) { if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) return 1; memcpy(buf + ((sec & 31) << 4), src, secn << 4); return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0; } else if (sec + secn > s->secs_cur) return 1; memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4); return 0; } static inline int onenand_erase(OneNANDState *s, int sec, int num) { /* TODO: optimise */ uint8_t buf[512]; memset(buf, 0xff, sizeof(buf)); for (; num > 0; num --, sec ++) { if (onenand_prog_main(s, sec, 1, buf)) return 1; if (onenand_prog_spare(s, sec, 1, buf)) return 1; } return 0; } static void onenand_command(OneNANDState *s, int cmd) { int b; int sec; void *buf; #define SETADDR(block, page) \ sec = (s->addr[page] & 3) + \ ((((s->addr[page] >> 2) & 0x3f) + \ (((s->addr[block] & 0xfff) | \ (s->addr[block] >> 15 ? \ s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9)); #define SETBUF_M() \ buf = (s->bufaddr & 8) ? \ s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \ buf += (s->bufaddr & 3) << 9; #define SETBUF_S() \ buf = (s->bufaddr & 8) ? \ s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \ buf += (s->bufaddr & 3) << 4; switch (cmd) { case 0x00: /* Load single/multiple sector data unit into buffer */ SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) SETBUF_M() if (onenand_load_main(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; #if 0 SETBUF_S() if (onenand_load_spare(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; #endif /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) * then we need two split the read/write into two chunks. */ s->intstatus |= ONEN_INT | ONEN_INT_LOAD; break; case 0x13: /* Load single/multiple spare sector into buffer */ SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) SETBUF_S() if (onenand_load_spare(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) * then we need two split the read/write into two chunks. */ s->intstatus |= ONEN_INT | ONEN_INT_LOAD; break; case 0x80: /* Program single/multiple sector data unit from buffer */ SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) SETBUF_M() if (onenand_prog_main(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; #if 0 SETBUF_S() if (onenand_prog_spare(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; #endif /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) * then we need two split the read/write into two chunks. */ s->intstatus |= ONEN_INT | ONEN_INT_PROG; break; case 0x1a: /* Program single/multiple spare area sector from buffer */ SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) SETBUF_S() if (onenand_prog_spare(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) * then we need two split the read/write into two chunks. */ s->intstatus |= ONEN_INT | ONEN_INT_PROG; break; case 0x1b: /* Copy-back program */ SETBUF_S() SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) if (onenand_load_main(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE) if (onenand_prog_main(s, sec, s->count, buf)) s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; /* TODO: spare areas */ s->intstatus |= ONEN_INT | ONEN_INT_PROG; break; case 0x23: /* Unlock NAND array block(s) */ s->intstatus |= ONEN_INT; /* XXX the previous (?) area should be locked automatically */ for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { if (b >= s->blocks) { s->status |= ONEN_ERR_CMD; break; } if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) break; s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED; } break; case 0x27: /* Unlock All NAND array blocks */ s->intstatus |= ONEN_INT; for (b = 0; b < s->blocks; b ++) { if (b >= s->blocks) { s->status |= ONEN_ERR_CMD; break; } if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) break; s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED; } break; case 0x2a: /* Lock NAND array block(s) */ s->intstatus |= ONEN_INT; for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { if (b >= s->blocks) { s->status |= ONEN_ERR_CMD; break; } if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) break; s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED; } break; case 0x2c: /* Lock-tight NAND array block(s) */ s->intstatus |= ONEN_INT; for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { if (b >= s->blocks) { s->status |= ONEN_ERR_CMD; break; } if (s->blockwp[b] == ONEN_LOCK_UNLOCKED) continue; s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN; } break; case 0x71: /* Erase-Verify-Read */ s->intstatus |= ONEN_INT; break; case 0x95: /* Multi-block erase */ qemu_irq_pulse(s->intr); /* Fall through. */ case 0x94: /* Block erase */ sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) | (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0)) << (BLOCK_SHIFT - 9); if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9))) s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE; s->intstatus |= ONEN_INT | ONEN_INT_ERASE; break; case 0xb0: /* Erase suspend */ break; case 0x30: /* Erase resume */ s->intstatus |= ONEN_INT | ONEN_INT_ERASE; break; case 0xf0: /* Reset NAND Flash core */ onenand_reset(s, 0); break; case 0xf3: /* Reset OneNAND */ onenand_reset(s, 0); break; case 0x65: /* OTP Access */ s->intstatus |= ONEN_INT; s->bdrv_cur = NULL; s->current = s->otp; s->secs_cur = 1 << (BLOCK_SHIFT - 9); s->addr[ONEN_BUF_BLOCK] = 0; s->otpmode = 1; break; default: s->status |= ONEN_ERR_CMD; s->intstatus |= ONEN_INT; fprintf(stderr, "%s: unknown OneNAND command %x\n", __FUNCTION__, cmd); } onenand_intr_update(s); } static uint32_t onenand_read(void *opaque, target_phys_addr_t addr) { OneNANDState *s = (OneNANDState *) opaque; int offset = addr >> s->shift; switch (offset) { case 0x0000 ... 0xc000: return lduw_le_p(s->boot[0] + addr); case 0xf000: /* Manufacturer ID */ return (s->id >> 16) & 0xff; case 0xf001: /* Device ID */ return (s->id >> 8) & 0xff; /* TODO: get the following values from a real chip! */ case 0xf002: /* Version ID */ return (s->id >> 0) & 0xff; case 0xf003: /* Data Buffer size */ return 1 << PAGE_SHIFT; case 0xf004: /* Boot Buffer size */ return 0x200; case 0xf005: /* Amount of buffers */ return 1 | (2 << 8); case 0xf006: /* Technology */ return 0; case 0xf100 ... 0xf107: /* Start addresses */ return s->addr[offset - 0xf100]; case 0xf200: /* Start buffer */ return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10))); case 0xf220: /* Command */ return s->command; case 0xf221: /* System Configuration 1 */ return s->config[0] & 0xffe0; case 0xf222: /* System Configuration 2 */ return s->config[1]; case 0xf240: /* Controller Status */ return s->status; case 0xf241: /* Interrupt */ return s->intstatus; case 0xf24c: /* Unlock Start Block Address */ return s->unladdr[0]; case 0xf24d: /* Unlock End Block Address */ return s->unladdr[1]; case 0xf24e: /* Write Protection Status */ return s->wpstatus; case 0xff00: /* ECC Status */ return 0x00; case 0xff01: /* ECC Result of main area data */ case 0xff02: /* ECC Result of spare area data */ case 0xff03: /* ECC Result of main area data */ case 0xff04: /* ECC Result of spare area data */ hw_error("%s: imeplement ECC\n", __FUNCTION__); return 0x0000; } fprintf(stderr, "%s: unknown OneNAND register %x\n", __FUNCTION__, offset); return 0; } static void onenand_write(void *opaque, target_phys_addr_t addr, uint32_t value) { OneNANDState *s = (OneNANDState *) opaque; int offset = addr >> s->shift; int sec; switch (offset) { case 0x0000 ... 0x01ff: case 0x8000 ... 0x800f: if (s->cycle) { s->cycle = 0; if (value == 0x0000) { SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) onenand_load_main(s, sec, 1 << (PAGE_SHIFT - 9), s->data[0][0]); s->addr[ONEN_BUF_PAGE] += 4; s->addr[ONEN_BUF_PAGE] &= 0xff; } break; } switch (value) { case 0x00f0: /* Reset OneNAND */ onenand_reset(s, 0); break; case 0x00e0: /* Load Data into Buffer */ s->cycle = 1; break; case 0x0090: /* Read Identification Data */ memset(s->boot[0], 0, 3 << s->shift); s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff; s->boot[0][1 << s->shift] = (s->id >> 8) & 0xff; s->boot[0][2 << s->shift] = s->wpstatus & 0xff; break; default: fprintf(stderr, "%s: unknown OneNAND boot command %x\n", __FUNCTION__, value); } break; case 0xf100 ... 0xf107: /* Start addresses */ s->addr[offset - 0xf100] = value; break; case 0xf200: /* Start buffer */ s->bufaddr = (value >> 8) & 0xf; if (PAGE_SHIFT == 11) s->count = (value & 3) ?: 4; else if (PAGE_SHIFT == 10) s->count = (value & 1) ?: 2; break; case 0xf220: /* Command */ if (s->intstatus & (1 << 15)) break; s->command = value; onenand_command(s, s->command); break; case 0xf221: /* System Configuration 1 */ s->config[0] = value; onenand_intr_update(s); qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1); break; case 0xf222: /* System Configuration 2 */ s->config[1] = value; break; case 0xf241: /* Interrupt */ s->intstatus &= value; if ((1 << 15) & ~s->intstatus) s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE | ONEN_ERR_PROG | ONEN_ERR_LOAD); onenand_intr_update(s); break; case 0xf24c: /* Unlock Start Block Address */ s->unladdr[0] = value & (s->blocks - 1); /* For some reason we have to set the end address to by default * be same as start because the software forgets to write anything * in there. */ s->unladdr[1] = value & (s->blocks - 1); break; case 0xf24d: /* Unlock End Block Address */ s->unladdr[1] = value & (s->blocks - 1); break; default: fprintf(stderr, "%s: unknown OneNAND register %x\n", __FUNCTION__, offset); } } static CPUReadMemoryFunc * const onenand_readfn[] = { onenand_read, /* TODO */ onenand_read, onenand_read, }; static CPUWriteMemoryFunc * const onenand_writefn[] = { onenand_write, /* TODO */ onenand_write, onenand_write, }; void *onenand_init(uint32_t id, int regshift, qemu_irq irq) { OneNANDState *s = (OneNANDState *) qemu_mallocz(sizeof(*s)); DriveInfo *dinfo = drive_get(IF_MTD, 0, 0); uint32_t size = 1 << (24 + ((id >> 12) & 7)); void *ram; s->shift = regshift; s->intr = irq; s->rdy = NULL; s->id = id; s->blocks = size >> BLOCK_SHIFT; s->secs = size >> 9; s->blockwp = qemu_malloc(s->blocks); s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0; s->iomemtype = cpu_register_io_memory(onenand_readfn, onenand_writefn, s, DEVICE_NATIVE_ENDIAN); if (!dinfo) s->image = memset(qemu_malloc(size + (size >> 5)), 0xff, size + (size >> 5)); else s->bdrv = dinfo->bdrv; s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT), 0xff, (64 + 2) << PAGE_SHIFT); s->ram = qemu_ram_alloc(NULL, "onenand.ram", 0xc000 << s->shift); ram = qemu_get_ram_ptr(s->ram); s->boot[0] = ram + (0x0000 << s->shift); s->boot[1] = ram + (0x8000 << s->shift); s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift); s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift); s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift); s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift); onenand_reset(s, 1); return s; } void *onenand_raw_otp(void *opaque) { OneNANDState *s = (OneNANDState *) opaque; return s->otp; }