/* * OMAP2 Display Subsystem. * * Copyright (C) 2008 Nokia Corporation * Written by Andrzej Zaborowski <andrew@openedhand.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "hw.h" #include "console.h" #include "omap.h" struct omap_dss_s { qemu_irq irq; qemu_irq drq; DisplayState *state; int autoidle; int control; int enable; struct omap_dss_panel_s { int enable; int nx; int ny; int x; int y; } dig, lcd; struct { uint32_t idlemode; uint32_t irqst; uint32_t irqen; uint32_t control; uint32_t config; uint32_t capable; uint32_t timing[4]; int line; uint32_t bg[2]; uint32_t trans[2]; struct omap_dss_plane_s { int enable; int bpp; int posx; int posy; int nx; int ny; target_phys_addr_t addr[3]; uint32_t attr; uint32_t tresh; int rowinc; int colinc; int wininc; } l[3]; int invalidate; uint16_t palette[256]; } dispc; struct { int idlemode; uint32_t control; int enable; int pixels; int busy; int skiplines; uint16_t rxbuf; uint32_t config[2]; uint32_t time[4]; uint32_t data[6]; uint16_t vsync; uint16_t hsync; struct rfbi_chip_s *chip[2]; } rfbi; }; static void omap_dispc_interrupt_update(struct omap_dss_s *s) { qemu_set_irq(s->irq, s->dispc.irqst & s->dispc.irqen); } static void omap_rfbi_reset(struct omap_dss_s *s) { s->rfbi.idlemode = 0; s->rfbi.control = 2; s->rfbi.enable = 0; s->rfbi.pixels = 0; s->rfbi.skiplines = 0; s->rfbi.busy = 0; s->rfbi.config[0] = 0x00310000; s->rfbi.config[1] = 0x00310000; s->rfbi.time[0] = 0; s->rfbi.time[1] = 0; s->rfbi.time[2] = 0; s->rfbi.time[3] = 0; s->rfbi.data[0] = 0; s->rfbi.data[1] = 0; s->rfbi.data[2] = 0; s->rfbi.data[3] = 0; s->rfbi.data[4] = 0; s->rfbi.data[5] = 0; s->rfbi.vsync = 0; s->rfbi.hsync = 0; } void omap_dss_reset(struct omap_dss_s *s) { s->autoidle = 0; s->control = 0; s->enable = 0; s->dig.enable = 0; s->dig.nx = 1; s->dig.ny = 1; s->lcd.enable = 0; s->lcd.nx = 1; s->lcd.ny = 1; s->dispc.idlemode = 0; s->dispc.irqst = 0; s->dispc.irqen = 0; s->dispc.control = 0; s->dispc.config = 0; s->dispc.capable = 0x161; s->dispc.timing[0] = 0; s->dispc.timing[1] = 0; s->dispc.timing[2] = 0; s->dispc.timing[3] = 0; s->dispc.line = 0; s->dispc.bg[0] = 0; s->dispc.bg[1] = 0; s->dispc.trans[0] = 0; s->dispc.trans[1] = 0; s->dispc.l[0].enable = 0; s->dispc.l[0].bpp = 0; s->dispc.l[0].addr[0] = 0; s->dispc.l[0].addr[1] = 0; s->dispc.l[0].addr[2] = 0; s->dispc.l[0].posx = 0; s->dispc.l[0].posy = 0; s->dispc.l[0].nx = 1; s->dispc.l[0].ny = 1; s->dispc.l[0].attr = 0; s->dispc.l[0].tresh = 0; s->dispc.l[0].rowinc = 1; s->dispc.l[0].colinc = 1; s->dispc.l[0].wininc = 0; omap_rfbi_reset(s); omap_dispc_interrupt_update(s); } static uint32_t omap_diss_read(void *opaque, target_phys_addr_t addr) { struct omap_dss_s *s = (struct omap_dss_s *) opaque; switch (addr) { case 0x00: /* DSS_REVISIONNUMBER */ return 0x20; case 0x10: /* DSS_SYSCONFIG */ return s->autoidle; case 0x14: /* DSS_SYSSTATUS */ return 1; /* RESETDONE */ case 0x40: /* DSS_CONTROL */ return s->control; case 0x50: /* DSS_PSA_LCD_REG_1 */ case 0x54: /* DSS_PSA_LCD_REG_2 */ case 0x58: /* DSS_PSA_VIDEO_REG */ /* TODO: fake some values when appropriate s->control bits are set */ return 0; case 0x5c: /* DSS_STATUS */ return 1 + (s->control & 1); default: break; } OMAP_BAD_REG(addr); return 0; } static void omap_diss_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_dss_s *s = (struct omap_dss_s *) opaque; switch (addr) { case 0x00: /* DSS_REVISIONNUMBER */ case 0x14: /* DSS_SYSSTATUS */ case 0x50: /* DSS_PSA_LCD_REG_1 */ case 0x54: /* DSS_PSA_LCD_REG_2 */ case 0x58: /* DSS_PSA_VIDEO_REG */ case 0x5c: /* DSS_STATUS */ OMAP_RO_REG(addr); break; case 0x10: /* DSS_SYSCONFIG */ if (value & 2) /* SOFTRESET */ omap_dss_reset(s); s->autoidle = value & 1; break; case 0x40: /* DSS_CONTROL */ s->control = value & 0x3dd; break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_diss1_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_diss_read, }; static CPUWriteMemoryFunc *omap_diss1_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_diss_write, }; static uint32_t omap_disc_read(void *opaque, target_phys_addr_t addr) { struct omap_dss_s *s = (struct omap_dss_s *) opaque; switch (addr) { case 0x000: /* DISPC_REVISION */ return 0x20; case 0x010: /* DISPC_SYSCONFIG */ return s->dispc.idlemode; case 0x014: /* DISPC_SYSSTATUS */ return 1; /* RESETDONE */ case 0x018: /* DISPC_IRQSTATUS */ return s->dispc.irqst; case 0x01c: /* DISPC_IRQENABLE */ return s->dispc.irqen; case 0x040: /* DISPC_CONTROL */ return s->dispc.control; case 0x044: /* DISPC_CONFIG */ return s->dispc.config; case 0x048: /* DISPC_CAPABLE */ return s->dispc.capable; case 0x04c: /* DISPC_DEFAULT_COLOR0 */ return s->dispc.bg[0]; case 0x050: /* DISPC_DEFAULT_COLOR1 */ return s->dispc.bg[1]; case 0x054: /* DISPC_TRANS_COLOR0 */ return s->dispc.trans[0]; case 0x058: /* DISPC_TRANS_COLOR1 */ return s->dispc.trans[1]; case 0x05c: /* DISPC_LINE_STATUS */ return 0x7ff; case 0x060: /* DISPC_LINE_NUMBER */ return s->dispc.line; case 0x064: /* DISPC_TIMING_H */ return s->dispc.timing[0]; case 0x068: /* DISPC_TIMING_V */ return s->dispc.timing[1]; case 0x06c: /* DISPC_POL_FREQ */ return s->dispc.timing[2]; case 0x070: /* DISPC_DIVISOR */ return s->dispc.timing[3]; case 0x078: /* DISPC_SIZE_DIG */ return ((s->dig.ny - 1) << 16) | (s->dig.nx - 1); case 0x07c: /* DISPC_SIZE_LCD */ return ((s->lcd.ny - 1) << 16) | (s->lcd.nx - 1); case 0x080: /* DISPC_GFX_BA0 */ return s->dispc.l[0].addr[0]; case 0x084: /* DISPC_GFX_BA1 */ return s->dispc.l[0].addr[1]; case 0x088: /* DISPC_GFX_POSITION */ return (s->dispc.l[0].posy << 16) | s->dispc.l[0].posx; case 0x08c: /* DISPC_GFX_SIZE */ return ((s->dispc.l[0].ny - 1) << 16) | (s->dispc.l[0].nx - 1); case 0x0a0: /* DISPC_GFX_ATTRIBUTES */ return s->dispc.l[0].attr; case 0x0a4: /* DISPC_GFX_FIFO_TRESHOLD */ return s->dispc.l[0].tresh; case 0x0a8: /* DISPC_GFX_FIFO_SIZE_STATUS */ return 256; case 0x0ac: /* DISPC_GFX_ROW_INC */ return s->dispc.l[0].rowinc; case 0x0b0: /* DISPC_GFX_PIXEL_INC */ return s->dispc.l[0].colinc; case 0x0b4: /* DISPC_GFX_WINDOW_SKIP */ return s->dispc.l[0].wininc; case 0x0b8: /* DISPC_GFX_TABLE_BA */ return s->dispc.l[0].addr[2]; case 0x0bc: /* DISPC_VID1_BA0 */ case 0x0c0: /* DISPC_VID1_BA1 */ case 0x0c4: /* DISPC_VID1_POSITION */ case 0x0c8: /* DISPC_VID1_SIZE */ case 0x0cc: /* DISPC_VID1_ATTRIBUTES */ case 0x0d0: /* DISPC_VID1_FIFO_TRESHOLD */ case 0x0d4: /* DISPC_VID1_FIFO_SIZE_STATUS */ case 0x0d8: /* DISPC_VID1_ROW_INC */ case 0x0dc: /* DISPC_VID1_PIXEL_INC */ case 0x0e0: /* DISPC_VID1_FIR */ case 0x0e4: /* DISPC_VID1_PICTURE_SIZE */ case 0x0e8: /* DISPC_VID1_ACCU0 */ case 0x0ec: /* DISPC_VID1_ACCU1 */ case 0x0f0 ... 0x140: /* DISPC_VID1_FIR_COEF, DISPC_VID1_CONV_COEF */ case 0x14c: /* DISPC_VID2_BA0 */ case 0x150: /* DISPC_VID2_BA1 */ case 0x154: /* DISPC_VID2_POSITION */ case 0x158: /* DISPC_VID2_SIZE */ case 0x15c: /* DISPC_VID2_ATTRIBUTES */ case 0x160: /* DISPC_VID2_FIFO_TRESHOLD */ case 0x164: /* DISPC_VID2_FIFO_SIZE_STATUS */ case 0x168: /* DISPC_VID2_ROW_INC */ case 0x16c: /* DISPC_VID2_PIXEL_INC */ case 0x170: /* DISPC_VID2_FIR */ case 0x174: /* DISPC_VID2_PICTURE_SIZE */ case 0x178: /* DISPC_VID2_ACCU0 */ case 0x17c: /* DISPC_VID2_ACCU1 */ case 0x180 ... 0x1d0: /* DISPC_VID2_FIR_COEF, DISPC_VID2_CONV_COEF */ case 0x1d4: /* DISPC_DATA_CYCLE1 */ case 0x1d8: /* DISPC_DATA_CYCLE2 */ case 0x1dc: /* DISPC_DATA_CYCLE3 */ return 0; default: break; } OMAP_BAD_REG(addr); return 0; } static void omap_disc_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_dss_s *s = (struct omap_dss_s *) opaque; switch (addr) { case 0x010: /* DISPC_SYSCONFIG */ if (value & 2) /* SOFTRESET */ omap_dss_reset(s); s->dispc.idlemode = value & 0x301b; break; case 0x018: /* DISPC_IRQSTATUS */ s->dispc.irqst &= ~value; omap_dispc_interrupt_update(s); break; case 0x01c: /* DISPC_IRQENABLE */ s->dispc.irqen = value & 0xffff; omap_dispc_interrupt_update(s); break; case 0x040: /* DISPC_CONTROL */ s->dispc.control = value & 0x07ff9fff; s->dig.enable = (value >> 1) & 1; s->lcd.enable = (value >> 0) & 1; if (value & (1 << 12)) /* OVERLAY_OPTIMIZATION */ if (~((s->dispc.l[1].attr | s->dispc.l[2].attr) & 1)) fprintf(stderr, "%s: Overlay Optimization when no overlay " "region effectively exists leads to " "unpredictable behaviour!\n", __FUNCTION__); if (value & (1 << 6)) { /* GODIGITAL */ /* XXX: Shadowed fields are: * s->dispc.config * s->dispc.capable * s->dispc.bg[0] * s->dispc.bg[1] * s->dispc.trans[0] * s->dispc.trans[1] * s->dispc.line * s->dispc.timing[0] * s->dispc.timing[1] * s->dispc.timing[2] * s->dispc.timing[3] * s->lcd.nx * s->lcd.ny * s->dig.nx * s->dig.ny * s->dispc.l[0].addr[0] * s->dispc.l[0].addr[1] * s->dispc.l[0].addr[2] * s->dispc.l[0].posx * s->dispc.l[0].posy * s->dispc.l[0].nx * s->dispc.l[0].ny * s->dispc.l[0].tresh * s->dispc.l[0].rowinc * s->dispc.l[0].colinc * s->dispc.l[0].wininc * All they need to be loaded here from their shadow registers. */ } if (value & (1 << 5)) { /* GOLCD */ /* XXX: Likewise for LCD here. */ } s->dispc.invalidate = 1; break; case 0x044: /* DISPC_CONFIG */ s->dispc.config = value & 0x3fff; /* XXX: * bits 2:1 (LOADMODE) reset to 0 after set to 1 and palette loaded * bits 2:1 (LOADMODE) reset to 2 after set to 3 and palette loaded */ s->dispc.invalidate = 1; break; case 0x048: /* DISPC_CAPABLE */ s->dispc.capable = value & 0x3ff; break; case 0x04c: /* DISPC_DEFAULT_COLOR0 */ s->dispc.bg[0] = value & 0xffffff; s->dispc.invalidate = 1; break; case 0x050: /* DISPC_DEFAULT_COLOR1 */ s->dispc.bg[1] = value & 0xffffff; s->dispc.invalidate = 1; break; case 0x054: /* DISPC_TRANS_COLOR0 */ s->dispc.trans[0] = value & 0xffffff; s->dispc.invalidate = 1; break; case 0x058: /* DISPC_TRANS_COLOR1 */ s->dispc.trans[1] = value & 0xffffff; s->dispc.invalidate = 1; break; case 0x060: /* DISPC_LINE_NUMBER */ s->dispc.line = value & 0x7ff; break; case 0x064: /* DISPC_TIMING_H */ s->dispc.timing[0] = value & 0x0ff0ff3f; break; case 0x068: /* DISPC_TIMING_V */ s->dispc.timing[1] = value & 0x0ff0ff3f; break; case 0x06c: /* DISPC_POL_FREQ */ s->dispc.timing[2] = value & 0x0003ffff; break; case 0x070: /* DISPC_DIVISOR */ s->dispc.timing[3] = value & 0x00ff00ff; break; case 0x078: /* DISPC_SIZE_DIG */ s->dig.nx = ((value >> 0) & 0x7ff) + 1; /* PPL */ s->dig.ny = ((value >> 16) & 0x7ff) + 1; /* LPP */ s->dispc.invalidate = 1; break; case 0x07c: /* DISPC_SIZE_LCD */ s->lcd.nx = ((value >> 0) & 0x7ff) + 1; /* PPL */ s->lcd.ny = ((value >> 16) & 0x7ff) + 1; /* LPP */ s->dispc.invalidate = 1; break; case 0x080: /* DISPC_GFX_BA0 */ s->dispc.l[0].addr[0] = (target_phys_addr_t) value; s->dispc.invalidate = 1; break; case 0x084: /* DISPC_GFX_BA1 */ s->dispc.l[0].addr[1] = (target_phys_addr_t) value; s->dispc.invalidate = 1; break; case 0x088: /* DISPC_GFX_POSITION */ s->dispc.l[0].posx = ((value >> 0) & 0x7ff); /* GFXPOSX */ s->dispc.l[0].posy = ((value >> 16) & 0x7ff); /* GFXPOSY */ s->dispc.invalidate = 1; break; case 0x08c: /* DISPC_GFX_SIZE */ s->dispc.l[0].nx = ((value >> 0) & 0x7ff) + 1; /* GFXSIZEX */ s->dispc.l[0].ny = ((value >> 16) & 0x7ff) + 1; /* GFXSIZEY */ s->dispc.invalidate = 1; break; case 0x0a0: /* DISPC_GFX_ATTRIBUTES */ s->dispc.l[0].attr = value & 0x7ff; if (value & (3 << 9)) fprintf(stderr, "%s: Big-endian pixel format not supported\n", __FUNCTION__); s->dispc.l[0].enable = value & 1; s->dispc.l[0].bpp = (value >> 1) & 0xf; s->dispc.invalidate = 1; break; case 0x0a4: /* DISPC_GFX_FIFO_TRESHOLD */ s->dispc.l[0].tresh = value & 0x01ff01ff; break; case 0x0ac: /* DISPC_GFX_ROW_INC */ s->dispc.l[0].rowinc = value; s->dispc.invalidate = 1; break; case 0x0b0: /* DISPC_GFX_PIXEL_INC */ s->dispc.l[0].colinc = value; s->dispc.invalidate = 1; break; case 0x0b4: /* DISPC_GFX_WINDOW_SKIP */ s->dispc.l[0].wininc = value; break; case 0x0b8: /* DISPC_GFX_TABLE_BA */ s->dispc.l[0].addr[2] = (target_phys_addr_t) value; s->dispc.invalidate = 1; break; case 0x0bc: /* DISPC_VID1_BA0 */ case 0x0c0: /* DISPC_VID1_BA1 */ case 0x0c4: /* DISPC_VID1_POSITION */ case 0x0c8: /* DISPC_VID1_SIZE */ case 0x0cc: /* DISPC_VID1_ATTRIBUTES */ case 0x0d0: /* DISPC_VID1_FIFO_TRESHOLD */ case 0x0d8: /* DISPC_VID1_ROW_INC */ case 0x0dc: /* DISPC_VID1_PIXEL_INC */ case 0x0e0: /* DISPC_VID1_FIR */ case 0x0e4: /* DISPC_VID1_PICTURE_SIZE */ case 0x0e8: /* DISPC_VID1_ACCU0 */ case 0x0ec: /* DISPC_VID1_ACCU1 */ case 0x0f0 ... 0x140: /* DISPC_VID1_FIR_COEF, DISPC_VID1_CONV_COEF */ case 0x14c: /* DISPC_VID2_BA0 */ case 0x150: /* DISPC_VID2_BA1 */ case 0x154: /* DISPC_VID2_POSITION */ case 0x158: /* DISPC_VID2_SIZE */ case 0x15c: /* DISPC_VID2_ATTRIBUTES */ case 0x160: /* DISPC_VID2_FIFO_TRESHOLD */ case 0x168: /* DISPC_VID2_ROW_INC */ case 0x16c: /* DISPC_VID2_PIXEL_INC */ case 0x170: /* DISPC_VID2_FIR */ case 0x174: /* DISPC_VID2_PICTURE_SIZE */ case 0x178: /* DISPC_VID2_ACCU0 */ case 0x17c: /* DISPC_VID2_ACCU1 */ case 0x180 ... 0x1d0: /* DISPC_VID2_FIR_COEF, DISPC_VID2_CONV_COEF */ case 0x1d4: /* DISPC_DATA_CYCLE1 */ case 0x1d8: /* DISPC_DATA_CYCLE2 */ case 0x1dc: /* DISPC_DATA_CYCLE3 */ break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_disc1_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_disc_read, }; static CPUWriteMemoryFunc *omap_disc1_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_disc_write, }; static void omap_rfbi_transfer_stop(struct omap_dss_s *s) { if (!s->rfbi.busy) return; /* TODO: in non-Bypass mode we probably need to just deassert the DRQ. */ s->rfbi.busy = 0; } static void omap_rfbi_transfer_start(struct omap_dss_s *s) { void *data; target_phys_addr_t len; target_phys_addr_t data_addr; int pitch; static void *bounce_buffer; static target_phys_addr_t bounce_len; if (!s->rfbi.enable || s->rfbi.busy) return; if (s->rfbi.control & (1 << 1)) { /* BYPASS */ /* TODO: in non-Bypass mode we probably need to just assert the * DRQ and wait for DMA to write the pixels. */ fprintf(stderr, "%s: Bypass mode unimplemented\n", __FUNCTION__); return; } if (!(s->dispc.control & (1 << 11))) /* RFBIMODE */ return; /* TODO: check that LCD output is enabled in DISPC. */ s->rfbi.busy = 1; len = s->rfbi.pixels * 2; data_addr = s->dispc.l[0].addr[0]; data = cpu_physical_memory_map(data_addr, &len, 0); if (data && len != s->rfbi.pixels * 2) { cpu_physical_memory_unmap(data, len, 0, 0); data = NULL; len = s->rfbi.pixels * 2; } if (!data) { if (len > bounce_len) { bounce_buffer = qemu_realloc(bounce_buffer, len); } data = bounce_buffer; cpu_physical_memory_read(data_addr, data, len); } /* TODO bpp */ s->rfbi.pixels = 0; /* TODO: negative values */ pitch = s->dispc.l[0].nx + (s->dispc.l[0].rowinc - 1) / 2; if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0]) s->rfbi.chip[0]->block(s->rfbi.chip[0]->opaque, 1, data, len, pitch); if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1]) s->rfbi.chip[1]->block(s->rfbi.chip[1]->opaque, 1, data, len, pitch); if (data != bounce_buffer) { cpu_physical_memory_unmap(data, len, 0, len); } omap_rfbi_transfer_stop(s); /* TODO */ s->dispc.irqst |= 1; /* FRAMEDONE */ omap_dispc_interrupt_update(s); } static uint32_t omap_rfbi_read(void *opaque, target_phys_addr_t addr) { struct omap_dss_s *s = (struct omap_dss_s *) opaque; switch (addr) { case 0x00: /* RFBI_REVISION */ return 0x10; case 0x10: /* RFBI_SYSCONFIG */ return s->rfbi.idlemode; case 0x14: /* RFBI_SYSSTATUS */ return 1 | (s->rfbi.busy << 8); /* RESETDONE */ case 0x40: /* RFBI_CONTROL */ return s->rfbi.control; case 0x44: /* RFBI_PIXELCNT */ return s->rfbi.pixels; case 0x48: /* RFBI_LINE_NUMBER */ return s->rfbi.skiplines; case 0x58: /* RFBI_READ */ case 0x5c: /* RFBI_STATUS */ return s->rfbi.rxbuf; case 0x60: /* RFBI_CONFIG0 */ return s->rfbi.config[0]; case 0x64: /* RFBI_ONOFF_TIME0 */ return s->rfbi.time[0]; case 0x68: /* RFBI_CYCLE_TIME0 */ return s->rfbi.time[1]; case 0x6c: /* RFBI_DATA_CYCLE1_0 */ return s->rfbi.data[0]; case 0x70: /* RFBI_DATA_CYCLE2_0 */ return s->rfbi.data[1]; case 0x74: /* RFBI_DATA_CYCLE3_0 */ return s->rfbi.data[2]; case 0x78: /* RFBI_CONFIG1 */ return s->rfbi.config[1]; case 0x7c: /* RFBI_ONOFF_TIME1 */ return s->rfbi.time[2]; case 0x80: /* RFBI_CYCLE_TIME1 */ return s->rfbi.time[3]; case 0x84: /* RFBI_DATA_CYCLE1_1 */ return s->rfbi.data[3]; case 0x88: /* RFBI_DATA_CYCLE2_1 */ return s->rfbi.data[4]; case 0x8c: /* RFBI_DATA_CYCLE3_1 */ return s->rfbi.data[5]; case 0x90: /* RFBI_VSYNC_WIDTH */ return s->rfbi.vsync; case 0x94: /* RFBI_HSYNC_WIDTH */ return s->rfbi.hsync; } OMAP_BAD_REG(addr); return 0; } static void omap_rfbi_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_dss_s *s = (struct omap_dss_s *) opaque; switch (addr) { case 0x10: /* RFBI_SYSCONFIG */ if (value & 2) /* SOFTRESET */ omap_rfbi_reset(s); s->rfbi.idlemode = value & 0x19; break; case 0x40: /* RFBI_CONTROL */ s->rfbi.control = value & 0xf; s->rfbi.enable = value & 1; if (value & (1 << 4) && /* ITE */ !(s->rfbi.config[0] & s->rfbi.config[1] & 0xc)) omap_rfbi_transfer_start(s); break; case 0x44: /* RFBI_PIXELCNT */ s->rfbi.pixels = value; break; case 0x48: /* RFBI_LINE_NUMBER */ s->rfbi.skiplines = value & 0x7ff; break; case 0x4c: /* RFBI_CMD */ if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0]) s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 0, value & 0xffff); if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1]) s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 0, value & 0xffff); break; case 0x50: /* RFBI_PARAM */ if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0]) s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value & 0xffff); if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1]) s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value & 0xffff); break; case 0x54: /* RFBI_DATA */ /* TODO: take into account the format set up in s->rfbi.config[?] and * s->rfbi.data[?], but special-case the most usual scenario so that * speed doesn't suffer. */ if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0]) { s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value & 0xffff); s->rfbi.chip[0]->write(s->rfbi.chip[0]->opaque, 1, value >> 16); } if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1]) { s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value & 0xffff); s->rfbi.chip[1]->write(s->rfbi.chip[1]->opaque, 1, value >> 16); } if (!-- s->rfbi.pixels) omap_rfbi_transfer_stop(s); break; case 0x58: /* RFBI_READ */ if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0]) s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 1); else if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1]) s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 1); if (!-- s->rfbi.pixels) omap_rfbi_transfer_stop(s); break; case 0x5c: /* RFBI_STATUS */ if ((s->rfbi.control & (1 << 2)) && s->rfbi.chip[0]) s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 0); else if ((s->rfbi.control & (1 << 3)) && s->rfbi.chip[1]) s->rfbi.rxbuf = s->rfbi.chip[0]->read(s->rfbi.chip[0]->opaque, 0); if (!-- s->rfbi.pixels) omap_rfbi_transfer_stop(s); break; case 0x60: /* RFBI_CONFIG0 */ s->rfbi.config[0] = value & 0x003f1fff; break; case 0x64: /* RFBI_ONOFF_TIME0 */ s->rfbi.time[0] = value & 0x3fffffff; break; case 0x68: /* RFBI_CYCLE_TIME0 */ s->rfbi.time[1] = value & 0x0fffffff; break; case 0x6c: /* RFBI_DATA_CYCLE1_0 */ s->rfbi.data[0] = value & 0x0f1f0f1f; break; case 0x70: /* RFBI_DATA_CYCLE2_0 */ s->rfbi.data[1] = value & 0x0f1f0f1f; break; case 0x74: /* RFBI_DATA_CYCLE3_0 */ s->rfbi.data[2] = value & 0x0f1f0f1f; break; case 0x78: /* RFBI_CONFIG1 */ s->rfbi.config[1] = value & 0x003f1fff; break; case 0x7c: /* RFBI_ONOFF_TIME1 */ s->rfbi.time[2] = value & 0x3fffffff; break; case 0x80: /* RFBI_CYCLE_TIME1 */ s->rfbi.time[3] = value & 0x0fffffff; break; case 0x84: /* RFBI_DATA_CYCLE1_1 */ s->rfbi.data[3] = value & 0x0f1f0f1f; break; case 0x88: /* RFBI_DATA_CYCLE2_1 */ s->rfbi.data[4] = value & 0x0f1f0f1f; break; case 0x8c: /* RFBI_DATA_CYCLE3_1 */ s->rfbi.data[5] = value & 0x0f1f0f1f; break; case 0x90: /* RFBI_VSYNC_WIDTH */ s->rfbi.vsync = value & 0xffff; break; case 0x94: /* RFBI_HSYNC_WIDTH */ s->rfbi.hsync = value & 0xffff; break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_rfbi1_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_rfbi_read, }; static CPUWriteMemoryFunc *omap_rfbi1_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_rfbi_write, }; static uint32_t omap_venc_read(void *opaque, target_phys_addr_t addr) { switch (addr) { case 0x00: /* REV_ID */ case 0x04: /* STATUS */ case 0x08: /* F_CONTROL */ case 0x10: /* VIDOUT_CTRL */ case 0x14: /* SYNC_CTRL */ case 0x1c: /* LLEN */ case 0x20: /* FLENS */ case 0x24: /* HFLTR_CTRL */ case 0x28: /* CC_CARR_WSS_CARR */ case 0x2c: /* C_PHASE */ case 0x30: /* GAIN_U */ case 0x34: /* GAIN_V */ case 0x38: /* GAIN_Y */ case 0x3c: /* BLACK_LEVEL */ case 0x40: /* BLANK_LEVEL */ case 0x44: /* X_COLOR */ case 0x48: /* M_CONTROL */ case 0x4c: /* BSTAMP_WSS_DATA */ case 0x50: /* S_CARR */ case 0x54: /* LINE21 */ case 0x58: /* LN_SEL */ case 0x5c: /* L21__WC_CTL */ case 0x60: /* HTRIGGER_VTRIGGER */ case 0x64: /* SAVID__EAVID */ case 0x68: /* FLEN__FAL */ case 0x6c: /* LAL__PHASE_RESET */ case 0x70: /* HS_INT_START_STOP_X */ case 0x74: /* HS_EXT_START_STOP_X */ case 0x78: /* VS_INT_START_X */ case 0x7c: /* VS_INT_STOP_X__VS_INT_START_Y */ case 0x80: /* VS_INT_STOP_Y__VS_INT_START_X */ case 0x84: /* VS_EXT_STOP_X__VS_EXT_START_Y */ case 0x88: /* VS_EXT_STOP_Y */ case 0x90: /* AVID_START_STOP_X */ case 0x94: /* AVID_START_STOP_Y */ case 0xa0: /* FID_INT_START_X__FID_INT_START_Y */ case 0xa4: /* FID_INT_OFFSET_Y__FID_EXT_START_X */ case 0xa8: /* FID_EXT_START_Y__FID_EXT_OFFSET_Y */ case 0xb0: /* TVDETGP_INT_START_STOP_X */ case 0xb4: /* TVDETGP_INT_START_STOP_Y */ case 0xb8: /* GEN_CTRL */ case 0xc4: /* DAC_TST__DAC_A */ case 0xc8: /* DAC_B__DAC_C */ return 0; default: break; } OMAP_BAD_REG(addr); return 0; } static void omap_venc_write(void *opaque, target_phys_addr_t addr, uint32_t value) { switch (addr) { case 0x08: /* F_CONTROL */ case 0x10: /* VIDOUT_CTRL */ case 0x14: /* SYNC_CTRL */ case 0x1c: /* LLEN */ case 0x20: /* FLENS */ case 0x24: /* HFLTR_CTRL */ case 0x28: /* CC_CARR_WSS_CARR */ case 0x2c: /* C_PHASE */ case 0x30: /* GAIN_U */ case 0x34: /* GAIN_V */ case 0x38: /* GAIN_Y */ case 0x3c: /* BLACK_LEVEL */ case 0x40: /* BLANK_LEVEL */ case 0x44: /* X_COLOR */ case 0x48: /* M_CONTROL */ case 0x4c: /* BSTAMP_WSS_DATA */ case 0x50: /* S_CARR */ case 0x54: /* LINE21 */ case 0x58: /* LN_SEL */ case 0x5c: /* L21__WC_CTL */ case 0x60: /* HTRIGGER_VTRIGGER */ case 0x64: /* SAVID__EAVID */ case 0x68: /* FLEN__FAL */ case 0x6c: /* LAL__PHASE_RESET */ case 0x70: /* HS_INT_START_STOP_X */ case 0x74: /* HS_EXT_START_STOP_X */ case 0x78: /* VS_INT_START_X */ case 0x7c: /* VS_INT_STOP_X__VS_INT_START_Y */ case 0x80: /* VS_INT_STOP_Y__VS_INT_START_X */ case 0x84: /* VS_EXT_STOP_X__VS_EXT_START_Y */ case 0x88: /* VS_EXT_STOP_Y */ case 0x90: /* AVID_START_STOP_X */ case 0x94: /* AVID_START_STOP_Y */ case 0xa0: /* FID_INT_START_X__FID_INT_START_Y */ case 0xa4: /* FID_INT_OFFSET_Y__FID_EXT_START_X */ case 0xa8: /* FID_EXT_START_Y__FID_EXT_OFFSET_Y */ case 0xb0: /* TVDETGP_INT_START_STOP_X */ case 0xb4: /* TVDETGP_INT_START_STOP_Y */ case 0xb8: /* GEN_CTRL */ case 0xc4: /* DAC_TST__DAC_A */ case 0xc8: /* DAC_B__DAC_C */ break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_venc1_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_venc_read, }; static CPUWriteMemoryFunc *omap_venc1_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_venc_write, }; static uint32_t omap_im3_read(void *opaque, target_phys_addr_t addr) { switch (addr) { case 0x0a8: /* SBIMERRLOGA */ case 0x0b0: /* SBIMERRLOG */ case 0x190: /* SBIMSTATE */ case 0x198: /* SBTMSTATE_L */ case 0x19c: /* SBTMSTATE_H */ case 0x1a8: /* SBIMCONFIG_L */ case 0x1ac: /* SBIMCONFIG_H */ case 0x1f8: /* SBID_L */ case 0x1fc: /* SBID_H */ return 0; default: break; } OMAP_BAD_REG(addr); return 0; } static void omap_im3_write(void *opaque, target_phys_addr_t addr, uint32_t value) { switch (addr) { case 0x0b0: /* SBIMERRLOG */ case 0x190: /* SBIMSTATE */ case 0x198: /* SBTMSTATE_L */ case 0x19c: /* SBTMSTATE_H */ case 0x1a8: /* SBIMCONFIG_L */ case 0x1ac: /* SBIMCONFIG_H */ break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_im3_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_im3_read, }; static CPUWriteMemoryFunc *omap_im3_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_im3_write, }; struct omap_dss_s *omap_dss_init(struct omap_target_agent_s *ta, target_phys_addr_t l3_base, qemu_irq irq, qemu_irq drq, omap_clk fck1, omap_clk fck2, omap_clk ck54m, omap_clk ick1, omap_clk ick2) { int iomemtype[5]; struct omap_dss_s *s = (struct omap_dss_s *) qemu_mallocz(sizeof(struct omap_dss_s)); s->irq = irq; s->drq = drq; omap_dss_reset(s); iomemtype[0] = l4_register_io_memory(omap_diss1_readfn, omap_diss1_writefn, s); iomemtype[1] = l4_register_io_memory(omap_disc1_readfn, omap_disc1_writefn, s); iomemtype[2] = l4_register_io_memory(omap_rfbi1_readfn, omap_rfbi1_writefn, s); iomemtype[3] = l4_register_io_memory(omap_venc1_readfn, omap_venc1_writefn, s); iomemtype[4] = cpu_register_io_memory(omap_im3_readfn, omap_im3_writefn, s); omap_l4_attach(ta, 0, iomemtype[0]); omap_l4_attach(ta, 1, iomemtype[1]); omap_l4_attach(ta, 2, iomemtype[2]); omap_l4_attach(ta, 3, iomemtype[3]); cpu_register_physical_memory(l3_base, 0x1000, iomemtype[4]); #if 0 s->state = graphic_console_init(omap_update_display, omap_invalidate_display, omap_screen_dump, s); #endif return s; } void omap_rfbi_attach(struct omap_dss_s *s, int cs, struct rfbi_chip_s *chip) { if (cs < 0 || cs > 1) hw_error("%s: wrong CS %i\n", __FUNCTION__, cs); s->rfbi.chip[cs] = chip; }