/* * TI OMAP DMA gigacell. * * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org> * Copyright (C) 2007-2008 Lauro Ramos Venancio <lauro.venancio@indt.org.br> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "qemu-common.h" #include "qemu-timer.h" #include "omap.h" #include "irq.h" #include "soc_dma.h" struct omap_dma_channel_s { /* transfer data */ int burst[2]; int pack[2]; int endian[2]; int endian_lock[2]; int translate[2]; enum omap_dma_port port[2]; target_phys_addr_t addr[2]; omap_dma_addressing_t mode[2]; uint32_t elements; uint16_t frames; int32_t frame_index[2]; int16_t element_index[2]; int data_type; /* transfer type */ int transparent_copy; int constant_fill; uint32_t color; int prefetch; /* auto init and linked channel data */ int end_prog; int repeat; int auto_init; int link_enabled; int link_next_ch; /* interruption data */ int interrupts; int status; int cstatus; /* state data */ int active; int enable; int sync; int src_sync; int pending_request; int waiting_end_prog; uint16_t cpc; int set_update; /* sync type */ int fs; int bs; /* compatibility */ int omap_3_1_compatible_disable; qemu_irq irq; struct omap_dma_channel_s *sibling; struct omap_dma_reg_set_s { target_phys_addr_t src, dest; int frame; int element; int pck_element; int frame_delta[2]; int elem_delta[2]; int frames; int elements; int pck_elements; } active_set; struct soc_dma_ch_s *dma; /* unused parameters */ int write_mode; int priority; int interleave_disabled; int type; int suspend; int buf_disable; }; struct omap_dma_s { struct soc_dma_s *dma; struct omap_mpu_state_s *mpu; omap_clk clk; qemu_irq irq[4]; void (*intr_update)(struct omap_dma_s *s); enum omap_dma_model model; int omap_3_1_mapping_disabled; uint32_t gcr; uint32_t ocp; uint32_t caps[5]; uint32_t irqen[4]; uint32_t irqstat[4]; int chans; struct omap_dma_channel_s ch[32]; struct omap_dma_lcd_channel_s lcd_ch; }; /* Interrupts */ #define TIMEOUT_INTR (1 << 0) #define EVENT_DROP_INTR (1 << 1) #define HALF_FRAME_INTR (1 << 2) #define END_FRAME_INTR (1 << 3) #define LAST_FRAME_INTR (1 << 4) #define END_BLOCK_INTR (1 << 5) #define SYNC (1 << 6) #define END_PKT_INTR (1 << 7) #define TRANS_ERR_INTR (1 << 8) #define MISALIGN_INTR (1 << 11) static inline void omap_dma_interrupts_update(struct omap_dma_s *s) { return s->intr_update(s); } static void omap_dma_channel_load(struct omap_dma_channel_s *ch) { struct omap_dma_reg_set_s *a = &ch->active_set; int i, normal; int omap_3_1 = !ch->omap_3_1_compatible_disable; /* * TODO: verify address ranges and alignment * TODO: port endianness */ a->src = ch->addr[0]; a->dest = ch->addr[1]; a->frames = ch->frames; a->elements = ch->elements; a->pck_elements = ch->frame_index[!ch->src_sync]; a->frame = 0; a->element = 0; a->pck_element = 0; if (unlikely(!ch->elements || !ch->frames)) { printf("%s: bad DMA request\n", __FUNCTION__); return; } for (i = 0; i < 2; i ++) switch (ch->mode[i]) { case constant: a->elem_delta[i] = 0; a->frame_delta[i] = 0; break; case post_incremented: a->elem_delta[i] = ch->data_type; a->frame_delta[i] = 0; break; case single_index: a->elem_delta[i] = ch->data_type + ch->element_index[omap_3_1 ? 0 : i] - 1; a->frame_delta[i] = 0; break; case double_index: a->elem_delta[i] = ch->data_type + ch->element_index[omap_3_1 ? 0 : i] - 1; a->frame_delta[i] = ch->frame_index[omap_3_1 ? 0 : i] - ch->element_index[omap_3_1 ? 0 : i]; break; default: break; } normal = !ch->transparent_copy && !ch->constant_fill && /* FIFO is big-endian so either (ch->endian[n] == 1) OR * (ch->endian_lock[n] == 1) mean no endianism conversion. */ (ch->endian[0] | ch->endian_lock[0]) == (ch->endian[1] | ch->endian_lock[1]); for (i = 0; i < 2; i ++) { /* TODO: for a->frame_delta[i] > 0 still use the fast path, just * limit min_elems in omap_dma_transfer_setup to the nearest frame * end. */ if (!a->elem_delta[i] && normal && (a->frames == 1 || !a->frame_delta[i])) ch->dma->type[i] = soc_dma_access_const; else if (a->elem_delta[i] == ch->data_type && normal && (a->frames == 1 || !a->frame_delta[i])) ch->dma->type[i] = soc_dma_access_linear; else ch->dma->type[i] = soc_dma_access_other; ch->dma->vaddr[i] = ch->addr[i]; } soc_dma_ch_update(ch->dma); } static void omap_dma_activate_channel(struct omap_dma_s *s, struct omap_dma_channel_s *ch) { if (!ch->active) { if (ch->set_update) { /* It's not clear when the active set is supposed to be * loaded from registers. We're already loading it when the * channel is enabled, and for some guests this is not enough * but that may be also because of a race condition (no * delays in qemu) in the guest code, which we're just * working around here. */ omap_dma_channel_load(ch); ch->set_update = 0; } ch->active = 1; soc_dma_set_request(ch->dma, 1); if (ch->sync) ch->status |= SYNC; } } static void omap_dma_deactivate_channel(struct omap_dma_s *s, struct omap_dma_channel_s *ch) { /* Update cpc */ ch->cpc = ch->active_set.dest & 0xffff; if (ch->pending_request && !ch->waiting_end_prog && ch->enable) { /* Don't deactivate the channel */ ch->pending_request = 0; return; } /* Don't deactive the channel if it is synchronized and the DMA request is active */ if (ch->sync && ch->enable && (s->dma->drqbmp & (1 << ch->sync))) return; if (ch->active) { ch->active = 0; ch->status &= ~SYNC; soc_dma_set_request(ch->dma, 0); } } static void omap_dma_enable_channel(struct omap_dma_s *s, struct omap_dma_channel_s *ch) { if (!ch->enable) { ch->enable = 1; ch->waiting_end_prog = 0; omap_dma_channel_load(ch); /* TODO: theoretically if ch->sync && ch->prefetch && * !s->dma->drqbmp[ch->sync], we should also activate and fetch * from source and then stall until signalled. */ if ((!ch->sync) || (s->dma->drqbmp & (1 << ch->sync))) omap_dma_activate_channel(s, ch); } } static void omap_dma_disable_channel(struct omap_dma_s *s, struct omap_dma_channel_s *ch) { if (ch->enable) { ch->enable = 0; /* Discard any pending request */ ch->pending_request = 0; omap_dma_deactivate_channel(s, ch); } } static void omap_dma_channel_end_prog(struct omap_dma_s *s, struct omap_dma_channel_s *ch) { if (ch->waiting_end_prog) { ch->waiting_end_prog = 0; if (!ch->sync || ch->pending_request) { ch->pending_request = 0; omap_dma_activate_channel(s, ch); } } } static void omap_dma_interrupts_3_1_update(struct omap_dma_s *s) { struct omap_dma_channel_s *ch = s->ch; /* First three interrupts are shared between two channels each. */ if (ch[0].status | ch[6].status) qemu_irq_raise(ch[0].irq); if (ch[1].status | ch[7].status) qemu_irq_raise(ch[1].irq); if (ch[2].status | ch[8].status) qemu_irq_raise(ch[2].irq); if (ch[3].status) qemu_irq_raise(ch[3].irq); if (ch[4].status) qemu_irq_raise(ch[4].irq); if (ch[5].status) qemu_irq_raise(ch[5].irq); } static void omap_dma_interrupts_3_2_update(struct omap_dma_s *s) { struct omap_dma_channel_s *ch = s->ch; int i; for (i = s->chans; i; ch ++, i --) if (ch->status) qemu_irq_raise(ch->irq); } static void omap_dma_enable_3_1_mapping(struct omap_dma_s *s) { s->omap_3_1_mapping_disabled = 0; s->chans = 9; s->intr_update = omap_dma_interrupts_3_1_update; } static void omap_dma_disable_3_1_mapping(struct omap_dma_s *s) { s->omap_3_1_mapping_disabled = 1; s->chans = 16; s->intr_update = omap_dma_interrupts_3_2_update; } static void omap_dma_process_request(struct omap_dma_s *s, int request) { int channel; int drop_event = 0; struct omap_dma_channel_s *ch = s->ch; for (channel = 0; channel < s->chans; channel ++, ch ++) { if (ch->enable && ch->sync == request) { if (!ch->active) omap_dma_activate_channel(s, ch); else if (!ch->pending_request) ch->pending_request = 1; else { /* Request collision */ /* Second request received while processing other request */ ch->status |= EVENT_DROP_INTR; drop_event = 1; } } } if (drop_event) omap_dma_interrupts_update(s); } static void omap_dma_transfer_generic(struct soc_dma_ch_s *dma) { uint8_t value[4]; struct omap_dma_channel_s *ch = dma->opaque; struct omap_dma_reg_set_s *a = &ch->active_set; int bytes = dma->bytes; #ifdef MULTI_REQ uint16_t status = ch->status; #endif do { /* Transfer a single element */ /* FIXME: check the endianness */ if (!ch->constant_fill) cpu_physical_memory_read(a->src, value, ch->data_type); else *(uint32_t *) value = ch->color; if (!ch->transparent_copy || *(uint32_t *) value != ch->color) cpu_physical_memory_write(a->dest, value, ch->data_type); a->src += a->elem_delta[0]; a->dest += a->elem_delta[1]; a->element ++; #ifndef MULTI_REQ if (a->element == a->elements) { /* End of Frame */ a->element = 0; a->src += a->frame_delta[0]; a->dest += a->frame_delta[1]; a->frame ++; /* If the channel is async, update cpc */ if (!ch->sync) ch->cpc = a->dest & 0xffff; } } while ((bytes -= ch->data_type)); #else /* If the channel is element synchronized, deactivate it */ if (ch->sync && !ch->fs && !ch->bs) omap_dma_deactivate_channel(s, ch); /* If it is the last frame, set the LAST_FRAME interrupt */ if (a->element == 1 && a->frame == a->frames - 1) if (ch->interrupts & LAST_FRAME_INTR) ch->status |= LAST_FRAME_INTR; /* If the half of the frame was reached, set the HALF_FRAME interrupt */ if (a->element == (a->elements >> 1)) if (ch->interrupts & HALF_FRAME_INTR) ch->status |= HALF_FRAME_INTR; if (ch->fs && ch->bs) { a->pck_element ++; /* Check if a full packet has beed transferred. */ if (a->pck_element == a->pck_elements) { a->pck_element = 0; /* Set the END_PKT interrupt */ if ((ch->interrupts & END_PKT_INTR) && !ch->src_sync) ch->status |= END_PKT_INTR; /* If the channel is packet-synchronized, deactivate it */ if (ch->sync) omap_dma_deactivate_channel(s, ch); } } if (a->element == a->elements) { /* End of Frame */ a->element = 0; a->src += a->frame_delta[0]; a->dest += a->frame_delta[1]; a->frame ++; /* If the channel is frame synchronized, deactivate it */ if (ch->sync && ch->fs && !ch->bs) omap_dma_deactivate_channel(s, ch); /* If the channel is async, update cpc */ if (!ch->sync) ch->cpc = a->dest & 0xffff; /* Set the END_FRAME interrupt */ if (ch->interrupts & END_FRAME_INTR) ch->status |= END_FRAME_INTR; if (a->frame == a->frames) { /* End of Block */ /* Disable the channel */ if (ch->omap_3_1_compatible_disable) { omap_dma_disable_channel(s, ch); if (ch->link_enabled) omap_dma_enable_channel(s, &s->ch[ch->link_next_ch]); } else { if (!ch->auto_init) omap_dma_disable_channel(s, ch); else if (ch->repeat || ch->end_prog) omap_dma_channel_load(ch); else { ch->waiting_end_prog = 1; omap_dma_deactivate_channel(s, ch); } } if (ch->interrupts & END_BLOCK_INTR) ch->status |= END_BLOCK_INTR; } } } while (status == ch->status && ch->active); omap_dma_interrupts_update(s); #endif } enum { omap_dma_intr_element_sync, omap_dma_intr_last_frame, omap_dma_intr_half_frame, omap_dma_intr_frame, omap_dma_intr_frame_sync, omap_dma_intr_packet, omap_dma_intr_packet_sync, omap_dma_intr_block, __omap_dma_intr_last, }; static void omap_dma_transfer_setup(struct soc_dma_ch_s *dma) { struct omap_dma_port_if_s *src_p, *dest_p; struct omap_dma_reg_set_s *a; struct omap_dma_channel_s *ch = dma->opaque; struct omap_dma_s *s = dma->dma->opaque; int frames, min_elems, elements[__omap_dma_intr_last]; a = &ch->active_set; src_p = &s->mpu->port[ch->port[0]]; dest_p = &s->mpu->port[ch->port[1]]; if ((!ch->constant_fill && !src_p->addr_valid(s->mpu, a->src)) || (!dest_p->addr_valid(s->mpu, a->dest))) { #if 0 /* Bus time-out */ if (ch->interrupts & TIMEOUT_INTR) ch->status |= TIMEOUT_INTR; omap_dma_deactivate_channel(s, ch); continue; #endif printf("%s: Bus time-out in DMA%i operation\n", __FUNCTION__, dma->num); } min_elems = INT_MAX; /* Check all the conditions that terminate the transfer starting * with those that can occur the soonest. */ #define INTR_CHECK(cond, id, nelements) \ if (cond) { \ elements[id] = nelements; \ if (elements[id] < min_elems) \ min_elems = elements[id]; \ } else \ elements[id] = INT_MAX; /* Elements */ INTR_CHECK( ch->sync && !ch->fs && !ch->bs, omap_dma_intr_element_sync, 1) /* Frames */ /* TODO: for transfers where entire frames can be read and written * using memcpy() but a->frame_delta is non-zero, try to still do * transfers using soc_dma but limit min_elems to a->elements - ... * See also the TODO in omap_dma_channel_load. */ INTR_CHECK( (ch->interrupts & LAST_FRAME_INTR) && ((a->frame < a->frames - 1) || !a->element), omap_dma_intr_last_frame, (a->frames - a->frame - 2) * a->elements + (a->elements - a->element + 1)) INTR_CHECK( ch->interrupts & HALF_FRAME_INTR, omap_dma_intr_half_frame, (a->elements >> 1) + (a->element >= (a->elements >> 1) ? a->elements : 0) - a->element) INTR_CHECK( ch->sync && ch->fs && (ch->interrupts & END_FRAME_INTR), omap_dma_intr_frame, a->elements - a->element) INTR_CHECK( ch->sync && ch->fs && !ch->bs, omap_dma_intr_frame_sync, a->elements - a->element) /* Packets */ INTR_CHECK( ch->fs && ch->bs && (ch->interrupts & END_PKT_INTR) && !ch->src_sync, omap_dma_intr_packet, a->pck_elements - a->pck_element) INTR_CHECK( ch->fs && ch->bs && ch->sync, omap_dma_intr_packet_sync, a->pck_elements - a->pck_element) /* Blocks */ INTR_CHECK( 1, omap_dma_intr_block, (a->frames - a->frame - 1) * a->elements + (a->elements - a->element)) dma->bytes = min_elems * ch->data_type; /* Set appropriate interrupts and/or deactivate channels */ #ifdef MULTI_REQ /* TODO: should all of this only be done if dma->update, and otherwise * inside omap_dma_transfer_generic below - check what's faster. */ if (dma->update) { #endif /* If the channel is element synchronized, deactivate it */ if (min_elems == elements[omap_dma_intr_element_sync]) omap_dma_deactivate_channel(s, ch); /* If it is the last frame, set the LAST_FRAME interrupt */ if (min_elems == elements[omap_dma_intr_last_frame]) ch->status |= LAST_FRAME_INTR; /* If exactly half of the frame was reached, set the HALF_FRAME interrupt */ if (min_elems == elements[omap_dma_intr_half_frame]) ch->status |= HALF_FRAME_INTR; /* If a full packet has been transferred, set the END_PKT interrupt */ if (min_elems == elements[omap_dma_intr_packet]) ch->status |= END_PKT_INTR; /* If the channel is packet-synchronized, deactivate it */ if (min_elems == elements[omap_dma_intr_packet_sync]) omap_dma_deactivate_channel(s, ch); /* If the channel is frame synchronized, deactivate it */ if (min_elems == elements[omap_dma_intr_frame_sync]) omap_dma_deactivate_channel(s, ch); /* Set the END_FRAME interrupt */ if (min_elems == elements[omap_dma_intr_frame]) ch->status |= END_FRAME_INTR; if (min_elems == elements[omap_dma_intr_block]) { /* End of Block */ /* Disable the channel */ if (ch->omap_3_1_compatible_disable) { omap_dma_disable_channel(s, ch); if (ch->link_enabled) omap_dma_enable_channel(s, &s->ch[ch->link_next_ch]); } else { if (!ch->auto_init) omap_dma_disable_channel(s, ch); else if (ch->repeat || ch->end_prog) omap_dma_channel_load(ch); else { ch->waiting_end_prog = 1; omap_dma_deactivate_channel(s, ch); } } if (ch->interrupts & END_BLOCK_INTR) ch->status |= END_BLOCK_INTR; } /* Update packet number */ if (ch->fs && ch->bs) { a->pck_element += min_elems; a->pck_element %= a->pck_elements; } /* TODO: check if we really need to update anything here or perhaps we * can skip part of this. */ #ifndef MULTI_REQ if (dma->update) { #endif a->element += min_elems; frames = a->element / a->elements; a->element = a->element % a->elements; a->frame += frames; a->src += min_elems * a->elem_delta[0] + frames * a->frame_delta[0]; a->dest += min_elems * a->elem_delta[1] + frames * a->frame_delta[1]; /* If the channel is async, update cpc */ if (!ch->sync && frames) ch->cpc = a->dest & 0xffff; /* TODO: if the destination port is IMIF or EMIFF, set the dirty * bits on it. */ } omap_dma_interrupts_update(s); } void omap_dma_reset(struct soc_dma_s *dma) { int i; struct omap_dma_s *s = dma->opaque; soc_dma_reset(s->dma); if (s->model < omap_dma_4) s->gcr = 0x0004; else s->gcr = 0x00010010; s->ocp = 0x00000000; memset(&s->irqstat, 0, sizeof(s->irqstat)); memset(&s->irqen, 0, sizeof(s->irqen)); s->lcd_ch.src = emiff; s->lcd_ch.condition = 0; s->lcd_ch.interrupts = 0; s->lcd_ch.dual = 0; if (s->model < omap_dma_4) omap_dma_enable_3_1_mapping(s); for (i = 0; i < s->chans; i ++) { s->ch[i].suspend = 0; s->ch[i].prefetch = 0; s->ch[i].buf_disable = 0; s->ch[i].src_sync = 0; memset(&s->ch[i].burst, 0, sizeof(s->ch[i].burst)); memset(&s->ch[i].port, 0, sizeof(s->ch[i].port)); memset(&s->ch[i].mode, 0, sizeof(s->ch[i].mode)); memset(&s->ch[i].frame_index, 0, sizeof(s->ch[i].frame_index)); memset(&s->ch[i].element_index, 0, sizeof(s->ch[i].element_index)); memset(&s->ch[i].endian, 0, sizeof(s->ch[i].endian)); memset(&s->ch[i].endian_lock, 0, sizeof(s->ch[i].endian_lock)); memset(&s->ch[i].translate, 0, sizeof(s->ch[i].translate)); s->ch[i].write_mode = 0; s->ch[i].data_type = 0; s->ch[i].transparent_copy = 0; s->ch[i].constant_fill = 0; s->ch[i].color = 0x00000000; s->ch[i].end_prog = 0; s->ch[i].repeat = 0; s->ch[i].auto_init = 0; s->ch[i].link_enabled = 0; if (s->model < omap_dma_4) s->ch[i].interrupts = 0x0003; else s->ch[i].interrupts = 0x0000; s->ch[i].status = 0; s->ch[i].cstatus = 0; s->ch[i].active = 0; s->ch[i].enable = 0; s->ch[i].sync = 0; s->ch[i].pending_request = 0; s->ch[i].waiting_end_prog = 0; s->ch[i].cpc = 0x0000; s->ch[i].fs = 0; s->ch[i].bs = 0; s->ch[i].omap_3_1_compatible_disable = 0; memset(&s->ch[i].active_set, 0, sizeof(s->ch[i].active_set)); s->ch[i].priority = 0; s->ch[i].interleave_disabled = 0; s->ch[i].type = 0; } } static int omap_dma_ch_reg_read(struct omap_dma_s *s, struct omap_dma_channel_s *ch, int reg, uint16_t *value) { switch (reg) { case 0x00: /* SYS_DMA_CSDP_CH0 */ *value = (ch->burst[1] << 14) | (ch->pack[1] << 13) | (ch->port[1] << 9) | (ch->burst[0] << 7) | (ch->pack[0] << 6) | (ch->port[0] << 2) | (ch->data_type >> 1); break; case 0x02: /* SYS_DMA_CCR_CH0 */ if (s->model <= omap_dma_3_1) *value = 0 << 10; /* FIFO_FLUSH reads as 0 */ else *value = ch->omap_3_1_compatible_disable << 10; *value |= (ch->mode[1] << 14) | (ch->mode[0] << 12) | (ch->end_prog << 11) | (ch->repeat << 9) | (ch->auto_init << 8) | (ch->enable << 7) | (ch->priority << 6) | (ch->fs << 5) | ch->sync; break; case 0x04: /* SYS_DMA_CICR_CH0 */ *value = ch->interrupts; break; case 0x06: /* SYS_DMA_CSR_CH0 */ *value = ch->status; ch->status &= SYNC; if (!ch->omap_3_1_compatible_disable && ch->sibling) { *value |= (ch->sibling->status & 0x3f) << 6; ch->sibling->status &= SYNC; } qemu_irq_lower(ch->irq); break; case 0x08: /* SYS_DMA_CSSA_L_CH0 */ *value = ch->addr[0] & 0x0000ffff; break; case 0x0a: /* SYS_DMA_CSSA_U_CH0 */ *value = ch->addr[0] >> 16; break; case 0x0c: /* SYS_DMA_CDSA_L_CH0 */ *value = ch->addr[1] & 0x0000ffff; break; case 0x0e: /* SYS_DMA_CDSA_U_CH0 */ *value = ch->addr[1] >> 16; break; case 0x10: /* SYS_DMA_CEN_CH0 */ *value = ch->elements; break; case 0x12: /* SYS_DMA_CFN_CH0 */ *value = ch->frames; break; case 0x14: /* SYS_DMA_CFI_CH0 */ *value = ch->frame_index[0]; break; case 0x16: /* SYS_DMA_CEI_CH0 */ *value = ch->element_index[0]; break; case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */ if (ch->omap_3_1_compatible_disable) *value = ch->active_set.src & 0xffff; /* CSAC */ else *value = ch->cpc; break; case 0x1a: /* DMA_CDAC */ *value = ch->active_set.dest & 0xffff; /* CDAC */ break; case 0x1c: /* DMA_CDEI */ *value = ch->element_index[1]; break; case 0x1e: /* DMA_CDFI */ *value = ch->frame_index[1]; break; case 0x20: /* DMA_COLOR_L */ *value = ch->color & 0xffff; break; case 0x22: /* DMA_COLOR_U */ *value = ch->color >> 16; break; case 0x24: /* DMA_CCR2 */ *value = (ch->bs << 2) | (ch->transparent_copy << 1) | ch->constant_fill; break; case 0x28: /* DMA_CLNK_CTRL */ *value = (ch->link_enabled << 15) | (ch->link_next_ch & 0xf); break; case 0x2a: /* DMA_LCH_CTRL */ *value = (ch->interleave_disabled << 15) | ch->type; break; default: return 1; } return 0; } static int omap_dma_ch_reg_write(struct omap_dma_s *s, struct omap_dma_channel_s *ch, int reg, uint16_t value) { switch (reg) { case 0x00: /* SYS_DMA_CSDP_CH0 */ ch->burst[1] = (value & 0xc000) >> 14; ch->pack[1] = (value & 0x2000) >> 13; ch->port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9); ch->burst[0] = (value & 0x0180) >> 7; ch->pack[0] = (value & 0x0040) >> 6; ch->port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2); ch->data_type = 1 << (value & 3); if (ch->port[0] >= __omap_dma_port_last) printf("%s: invalid DMA port %i\n", __FUNCTION__, ch->port[0]); if (ch->port[1] >= __omap_dma_port_last) printf("%s: invalid DMA port %i\n", __FUNCTION__, ch->port[1]); if ((value & 3) == 3) printf("%s: bad data_type for DMA channel\n", __FUNCTION__); break; case 0x02: /* SYS_DMA_CCR_CH0 */ ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14); ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12); ch->end_prog = (value & 0x0800) >> 11; if (s->model >= omap_dma_3_2) ch->omap_3_1_compatible_disable = (value >> 10) & 0x1; ch->repeat = (value & 0x0200) >> 9; ch->auto_init = (value & 0x0100) >> 8; ch->priority = (value & 0x0040) >> 6; ch->fs = (value & 0x0020) >> 5; ch->sync = value & 0x001f; if (value & 0x0080) omap_dma_enable_channel(s, ch); else omap_dma_disable_channel(s, ch); if (ch->end_prog) omap_dma_channel_end_prog(s, ch); break; case 0x04: /* SYS_DMA_CICR_CH0 */ ch->interrupts = value & 0x3f; break; case 0x06: /* SYS_DMA_CSR_CH0 */ OMAP_RO_REG((target_phys_addr_t) reg); break; case 0x08: /* SYS_DMA_CSSA_L_CH0 */ ch->addr[0] &= 0xffff0000; ch->addr[0] |= value; break; case 0x0a: /* SYS_DMA_CSSA_U_CH0 */ ch->addr[0] &= 0x0000ffff; ch->addr[0] |= (uint32_t) value << 16; break; case 0x0c: /* SYS_DMA_CDSA_L_CH0 */ ch->addr[1] &= 0xffff0000; ch->addr[1] |= value; break; case 0x0e: /* SYS_DMA_CDSA_U_CH0 */ ch->addr[1] &= 0x0000ffff; ch->addr[1] |= (uint32_t) value << 16; break; case 0x10: /* SYS_DMA_CEN_CH0 */ ch->elements = value; break; case 0x12: /* SYS_DMA_CFN_CH0 */ ch->frames = value; break; case 0x14: /* SYS_DMA_CFI_CH0 */ ch->frame_index[0] = (int16_t) value; break; case 0x16: /* SYS_DMA_CEI_CH0 */ ch->element_index[0] = (int16_t) value; break; case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */ OMAP_RO_REG((target_phys_addr_t) reg); break; case 0x1c: /* DMA_CDEI */ ch->element_index[1] = (int16_t) value; break; case 0x1e: /* DMA_CDFI */ ch->frame_index[1] = (int16_t) value; break; case 0x20: /* DMA_COLOR_L */ ch->color &= 0xffff0000; ch->color |= value; break; case 0x22: /* DMA_COLOR_U */ ch->color &= 0xffff; ch->color |= value << 16; break; case 0x24: /* DMA_CCR2 */ ch->bs = (value >> 2) & 0x1; ch->transparent_copy = (value >> 1) & 0x1; ch->constant_fill = value & 0x1; break; case 0x28: /* DMA_CLNK_CTRL */ ch->link_enabled = (value >> 15) & 0x1; if (value & (1 << 14)) { /* Stop_Lnk */ ch->link_enabled = 0; omap_dma_disable_channel(s, ch); } ch->link_next_ch = value & 0x1f; break; case 0x2a: /* DMA_LCH_CTRL */ ch->interleave_disabled = (value >> 15) & 0x1; ch->type = value & 0xf; break; default: return 1; } return 0; } static int omap_dma_3_2_lcd_write(struct omap_dma_lcd_channel_s *s, int offset, uint16_t value) { switch (offset) { case 0xbc0: /* DMA_LCD_CSDP */ s->brust_f2 = (value >> 14) & 0x3; s->pack_f2 = (value >> 13) & 0x1; s->data_type_f2 = (1 << ((value >> 11) & 0x3)); s->brust_f1 = (value >> 7) & 0x3; s->pack_f1 = (value >> 6) & 0x1; s->data_type_f1 = (1 << ((value >> 0) & 0x3)); break; case 0xbc2: /* DMA_LCD_CCR */ s->mode_f2 = (value >> 14) & 0x3; s->mode_f1 = (value >> 12) & 0x3; s->end_prog = (value >> 11) & 0x1; s->omap_3_1_compatible_disable = (value >> 10) & 0x1; s->repeat = (value >> 9) & 0x1; s->auto_init = (value >> 8) & 0x1; s->running = (value >> 7) & 0x1; s->priority = (value >> 6) & 0x1; s->bs = (value >> 4) & 0x1; break; case 0xbc4: /* DMA_LCD_CTRL */ s->dst = (value >> 8) & 0x1; s->src = ((value >> 6) & 0x3) << 1; s->condition = 0; /* Assume no bus errors and thus no BUS_ERROR irq bits. */ s->interrupts = (value >> 1) & 1; s->dual = value & 1; break; case 0xbc8: /* TOP_B1_L */ s->src_f1_top &= 0xffff0000; s->src_f1_top |= 0x0000ffff & value; break; case 0xbca: /* TOP_B1_U */ s->src_f1_top &= 0x0000ffff; s->src_f1_top |= value << 16; break; case 0xbcc: /* BOT_B1_L */ s->src_f1_bottom &= 0xffff0000; s->src_f1_bottom |= 0x0000ffff & value; break; case 0xbce: /* BOT_B1_U */ s->src_f1_bottom &= 0x0000ffff; s->src_f1_bottom |= (uint32_t) value << 16; break; case 0xbd0: /* TOP_B2_L */ s->src_f2_top &= 0xffff0000; s->src_f2_top |= 0x0000ffff & value; break; case 0xbd2: /* TOP_B2_U */ s->src_f2_top &= 0x0000ffff; s->src_f2_top |= (uint32_t) value << 16; break; case 0xbd4: /* BOT_B2_L */ s->src_f2_bottom &= 0xffff0000; s->src_f2_bottom |= 0x0000ffff & value; break; case 0xbd6: /* BOT_B2_U */ s->src_f2_bottom &= 0x0000ffff; s->src_f2_bottom |= (uint32_t) value << 16; break; case 0xbd8: /* DMA_LCD_SRC_EI_B1 */ s->element_index_f1 = value; break; case 0xbda: /* DMA_LCD_SRC_FI_B1_L */ s->frame_index_f1 &= 0xffff0000; s->frame_index_f1 |= 0x0000ffff & value; break; case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */ s->frame_index_f1 &= 0x0000ffff; s->frame_index_f1 |= (uint32_t) value << 16; break; case 0xbdc: /* DMA_LCD_SRC_EI_B2 */ s->element_index_f2 = value; break; case 0xbde: /* DMA_LCD_SRC_FI_B2_L */ s->frame_index_f2 &= 0xffff0000; s->frame_index_f2 |= 0x0000ffff & value; break; case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */ s->frame_index_f2 &= 0x0000ffff; s->frame_index_f2 |= (uint32_t) value << 16; break; case 0xbe0: /* DMA_LCD_SRC_EN_B1 */ s->elements_f1 = value; break; case 0xbe4: /* DMA_LCD_SRC_FN_B1 */ s->frames_f1 = value; break; case 0xbe2: /* DMA_LCD_SRC_EN_B2 */ s->elements_f2 = value; break; case 0xbe6: /* DMA_LCD_SRC_FN_B2 */ s->frames_f2 = value; break; case 0xbea: /* DMA_LCD_LCH_CTRL */ s->lch_type = value & 0xf; break; default: return 1; } return 0; } static int omap_dma_3_2_lcd_read(struct omap_dma_lcd_channel_s *s, int offset, uint16_t *ret) { switch (offset) { case 0xbc0: /* DMA_LCD_CSDP */ *ret = (s->brust_f2 << 14) | (s->pack_f2 << 13) | ((s->data_type_f2 >> 1) << 11) | (s->brust_f1 << 7) | (s->pack_f1 << 6) | ((s->data_type_f1 >> 1) << 0); break; case 0xbc2: /* DMA_LCD_CCR */ *ret = (s->mode_f2 << 14) | (s->mode_f1 << 12) | (s->end_prog << 11) | (s->omap_3_1_compatible_disable << 10) | (s->repeat << 9) | (s->auto_init << 8) | (s->running << 7) | (s->priority << 6) | (s->bs << 4); break; case 0xbc4: /* DMA_LCD_CTRL */ qemu_irq_lower(s->irq); *ret = (s->dst << 8) | ((s->src & 0x6) << 5) | (s->condition << 3) | (s->interrupts << 1) | s->dual; break; case 0xbc8: /* TOP_B1_L */ *ret = s->src_f1_top & 0xffff; break; case 0xbca: /* TOP_B1_U */ *ret = s->src_f1_top >> 16; break; case 0xbcc: /* BOT_B1_L */ *ret = s->src_f1_bottom & 0xffff; break; case 0xbce: /* BOT_B1_U */ *ret = s->src_f1_bottom >> 16; break; case 0xbd0: /* TOP_B2_L */ *ret = s->src_f2_top & 0xffff; break; case 0xbd2: /* TOP_B2_U */ *ret = s->src_f2_top >> 16; break; case 0xbd4: /* BOT_B2_L */ *ret = s->src_f2_bottom & 0xffff; break; case 0xbd6: /* BOT_B2_U */ *ret = s->src_f2_bottom >> 16; break; case 0xbd8: /* DMA_LCD_SRC_EI_B1 */ *ret = s->element_index_f1; break; case 0xbda: /* DMA_LCD_SRC_FI_B1_L */ *ret = s->frame_index_f1 & 0xffff; break; case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */ *ret = s->frame_index_f1 >> 16; break; case 0xbdc: /* DMA_LCD_SRC_EI_B2 */ *ret = s->element_index_f2; break; case 0xbde: /* DMA_LCD_SRC_FI_B2_L */ *ret = s->frame_index_f2 & 0xffff; break; case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */ *ret = s->frame_index_f2 >> 16; break; case 0xbe0: /* DMA_LCD_SRC_EN_B1 */ *ret = s->elements_f1; break; case 0xbe4: /* DMA_LCD_SRC_FN_B1 */ *ret = s->frames_f1; break; case 0xbe2: /* DMA_LCD_SRC_EN_B2 */ *ret = s->elements_f2; break; case 0xbe6: /* DMA_LCD_SRC_FN_B2 */ *ret = s->frames_f2; break; case 0xbea: /* DMA_LCD_LCH_CTRL */ *ret = s->lch_type; break; default: return 1; } return 0; } static int omap_dma_3_1_lcd_write(struct omap_dma_lcd_channel_s *s, int offset, uint16_t value) { switch (offset) { case 0x300: /* SYS_DMA_LCD_CTRL */ s->src = (value & 0x40) ? imif : emiff; s->condition = 0; /* Assume no bus errors and thus no BUS_ERROR irq bits. */ s->interrupts = (value >> 1) & 1; s->dual = value & 1; break; case 0x302: /* SYS_DMA_LCD_TOP_F1_L */ s->src_f1_top &= 0xffff0000; s->src_f1_top |= 0x0000ffff & value; break; case 0x304: /* SYS_DMA_LCD_TOP_F1_U */ s->src_f1_top &= 0x0000ffff; s->src_f1_top |= value << 16; break; case 0x306: /* SYS_DMA_LCD_BOT_F1_L */ s->src_f1_bottom &= 0xffff0000; s->src_f1_bottom |= 0x0000ffff & value; break; case 0x308: /* SYS_DMA_LCD_BOT_F1_U */ s->src_f1_bottom &= 0x0000ffff; s->src_f1_bottom |= value << 16; break; case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */ s->src_f2_top &= 0xffff0000; s->src_f2_top |= 0x0000ffff & value; break; case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */ s->src_f2_top &= 0x0000ffff; s->src_f2_top |= value << 16; break; case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */ s->src_f2_bottom &= 0xffff0000; s->src_f2_bottom |= 0x0000ffff & value; break; case 0x310: /* SYS_DMA_LCD_BOT_F2_U */ s->src_f2_bottom &= 0x0000ffff; s->src_f2_bottom |= value << 16; break; default: return 1; } return 0; } static int omap_dma_3_1_lcd_read(struct omap_dma_lcd_channel_s *s, int offset, uint16_t *ret) { int i; switch (offset) { case 0x300: /* SYS_DMA_LCD_CTRL */ i = s->condition; s->condition = 0; qemu_irq_lower(s->irq); *ret = ((s->src == imif) << 6) | (i << 3) | (s->interrupts << 1) | s->dual; break; case 0x302: /* SYS_DMA_LCD_TOP_F1_L */ *ret = s->src_f1_top & 0xffff; break; case 0x304: /* SYS_DMA_LCD_TOP_F1_U */ *ret = s->src_f1_top >> 16; break; case 0x306: /* SYS_DMA_LCD_BOT_F1_L */ *ret = s->src_f1_bottom & 0xffff; break; case 0x308: /* SYS_DMA_LCD_BOT_F1_U */ *ret = s->src_f1_bottom >> 16; break; case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */ *ret = s->src_f2_top & 0xffff; break; case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */ *ret = s->src_f2_top >> 16; break; case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */ *ret = s->src_f2_bottom & 0xffff; break; case 0x310: /* SYS_DMA_LCD_BOT_F2_U */ *ret = s->src_f2_bottom >> 16; break; default: return 1; } return 0; } static int omap_dma_sys_write(struct omap_dma_s *s, int offset, uint16_t value) { switch (offset) { case 0x400: /* SYS_DMA_GCR */ s->gcr = value; break; case 0x404: /* DMA_GSCR */ if (value & 0x8) omap_dma_disable_3_1_mapping(s); else omap_dma_enable_3_1_mapping(s); break; case 0x408: /* DMA_GRST */ if (value & 0x1) omap_dma_reset(s->dma); break; default: return 1; } return 0; } static int omap_dma_sys_read(struct omap_dma_s *s, int offset, uint16_t *ret) { switch (offset) { case 0x400: /* SYS_DMA_GCR */ *ret = s->gcr; break; case 0x404: /* DMA_GSCR */ *ret = s->omap_3_1_mapping_disabled << 3; break; case 0x408: /* DMA_GRST */ *ret = 0; break; case 0x442: /* DMA_HW_ID */ case 0x444: /* DMA_PCh2_ID */ case 0x446: /* DMA_PCh0_ID */ case 0x448: /* DMA_PCh1_ID */ case 0x44a: /* DMA_PChG_ID */ case 0x44c: /* DMA_PChD_ID */ *ret = 1; break; case 0x44e: /* DMA_CAPS_0_U */ *ret = (s->caps[0] >> 16) & 0xffff; break; case 0x450: /* DMA_CAPS_0_L */ *ret = (s->caps[0] >> 0) & 0xffff; break; case 0x452: /* DMA_CAPS_1_U */ *ret = (s->caps[1] >> 16) & 0xffff; break; case 0x454: /* DMA_CAPS_1_L */ *ret = (s->caps[1] >> 0) & 0xffff; break; case 0x456: /* DMA_CAPS_2 */ *ret = s->caps[2]; break; case 0x458: /* DMA_CAPS_3 */ *ret = s->caps[3]; break; case 0x45a: /* DMA_CAPS_4 */ *ret = s->caps[4]; break; case 0x460: /* DMA_PCh2_SR */ case 0x480: /* DMA_PCh0_SR */ case 0x482: /* DMA_PCh1_SR */ case 0x4c0: /* DMA_PChD_SR_0 */ printf("%s: Physical Channel Status Registers not implemented.\n", __FUNCTION__); *ret = 0xff; break; default: return 1; } return 0; } static uint32_t omap_dma_read(void *opaque, target_phys_addr_t addr) { struct omap_dma_s *s = (struct omap_dma_s *) opaque; int reg, ch; uint16_t ret; switch (addr) { case 0x300 ... 0x3fe: if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) { if (omap_dma_3_1_lcd_read(&s->lcd_ch, addr, &ret)) break; return ret; } /* Fall through. */ case 0x000 ... 0x2fe: reg = addr & 0x3f; ch = (addr >> 6) & 0x0f; if (omap_dma_ch_reg_read(s, &s->ch[ch], reg, &ret)) break; return ret; case 0x404 ... 0x4fe: if (s->model <= omap_dma_3_1) break; /* Fall through. */ case 0x400: if (omap_dma_sys_read(s, addr, &ret)) break; return ret; case 0xb00 ... 0xbfe: if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) { if (omap_dma_3_2_lcd_read(&s->lcd_ch, addr, &ret)) break; return ret; } break; } OMAP_BAD_REG(addr); return 0; } static void omap_dma_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_dma_s *s = (struct omap_dma_s *) opaque; int reg, ch; switch (addr) { case 0x300 ... 0x3fe: if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) { if (omap_dma_3_1_lcd_write(&s->lcd_ch, addr, value)) break; return; } /* Fall through. */ case 0x000 ... 0x2fe: reg = addr & 0x3f; ch = (addr >> 6) & 0x0f; if (omap_dma_ch_reg_write(s, &s->ch[ch], reg, value)) break; return; case 0x404 ... 0x4fe: if (s->model <= omap_dma_3_1) break; case 0x400: /* Fall through. */ if (omap_dma_sys_write(s, addr, value)) break; return; case 0xb00 ... 0xbfe: if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) { if (omap_dma_3_2_lcd_write(&s->lcd_ch, addr, value)) break; return; } break; } OMAP_BAD_REG(addr); } static CPUReadMemoryFunc *omap_dma_readfn[] = { omap_badwidth_read16, omap_dma_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_dma_writefn[] = { omap_badwidth_write16, omap_dma_write, omap_badwidth_write16, }; static void omap_dma_request(void *opaque, int drq, int req) { struct omap_dma_s *s = (struct omap_dma_s *) opaque; /* The request pins are level triggered in QEMU. */ if (req) { if (~s->dma->drqbmp & (1 << drq)) { s->dma->drqbmp |= 1 << drq; omap_dma_process_request(s, drq); } } else s->dma->drqbmp &= ~(1 << drq); } /* XXX: this won't be needed once soc_dma knows about clocks. */ static void omap_dma_clk_update(void *opaque, int line, int on) { struct omap_dma_s *s = (struct omap_dma_s *) opaque; int i; s->dma->freq = omap_clk_getrate(s->clk); for (i = 0; i < s->chans; i ++) if (s->ch[i].active) soc_dma_set_request(s->ch[i].dma, on); } static void omap_dma_setcaps(struct omap_dma_s *s) { switch (s->model) { default: case omap_dma_3_1: break; case omap_dma_3_2: case omap_dma_4: /* XXX Only available for sDMA */ s->caps[0] = (1 << 19) | /* Constant Fill Capability */ (1 << 18); /* Transparent BLT Capability */ s->caps[1] = (1 << 1); /* 1-bit palettized capability (DMA 3.2 only) */ s->caps[2] = (1 << 8) | /* SEPARATE_SRC_AND_DST_INDEX_CPBLTY */ (1 << 7) | /* DST_DOUBLE_INDEX_ADRS_CPBLTY */ (1 << 6) | /* DST_SINGLE_INDEX_ADRS_CPBLTY */ (1 << 5) | /* DST_POST_INCRMNT_ADRS_CPBLTY */ (1 << 4) | /* DST_CONST_ADRS_CPBLTY */ (1 << 3) | /* SRC_DOUBLE_INDEX_ADRS_CPBLTY */ (1 << 2) | /* SRC_SINGLE_INDEX_ADRS_CPBLTY */ (1 << 1) | /* SRC_POST_INCRMNT_ADRS_CPBLTY */ (1 << 0); /* SRC_CONST_ADRS_CPBLTY */ s->caps[3] = (1 << 6) | /* BLOCK_SYNCHR_CPBLTY (DMA 4 only) */ (1 << 7) | /* PKT_SYNCHR_CPBLTY (DMA 4 only) */ (1 << 5) | /* CHANNEL_CHAINING_CPBLTY */ (1 << 4) | /* LCh_INTERLEAVE_CPBLTY */ (1 << 3) | /* AUTOINIT_REPEAT_CPBLTY (DMA 3.2 only) */ (1 << 2) | /* AUTOINIT_ENDPROG_CPBLTY (DMA 3.2 only) */ (1 << 1) | /* FRAME_SYNCHR_CPBLTY */ (1 << 0); /* ELMNT_SYNCHR_CPBLTY */ s->caps[4] = (1 << 7) | /* PKT_INTERRUPT_CPBLTY (DMA 4 only) */ (1 << 6) | /* SYNC_STATUS_CPBLTY */ (1 << 5) | /* BLOCK_INTERRUPT_CPBLTY */ (1 << 4) | /* LAST_FRAME_INTERRUPT_CPBLTY */ (1 << 3) | /* FRAME_INTERRUPT_CPBLTY */ (1 << 2) | /* HALF_FRAME_INTERRUPT_CPBLTY */ (1 << 1) | /* EVENT_DROP_INTERRUPT_CPBLTY */ (1 << 0); /* TIMEOUT_INTERRUPT_CPBLTY (DMA 3.2 only) */ break; } } struct soc_dma_s *omap_dma_init(target_phys_addr_t base, qemu_irq *irqs, qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk, enum omap_dma_model model) { int iomemtype, num_irqs, memsize, i; struct omap_dma_s *s = (struct omap_dma_s *) qemu_mallocz(sizeof(struct omap_dma_s)); if (model <= omap_dma_3_1) { num_irqs = 6; memsize = 0x800; } else { num_irqs = 16; memsize = 0xc00; } s->model = model; s->mpu = mpu; s->clk = clk; s->lcd_ch.irq = lcd_irq; s->lcd_ch.mpu = mpu; s->dma = soc_dma_init((model <= omap_dma_3_1) ? 9 : 16); s->dma->freq = omap_clk_getrate(clk); s->dma->transfer_fn = omap_dma_transfer_generic; s->dma->setup_fn = omap_dma_transfer_setup; s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 32); s->dma->opaque = s; while (num_irqs --) s->ch[num_irqs].irq = irqs[num_irqs]; for (i = 0; i < 3; i ++) { s->ch[i].sibling = &s->ch[i + 6]; s->ch[i + 6].sibling = &s->ch[i]; } for (i = (model <= omap_dma_3_1) ? 8 : 15; i >= 0; i --) { s->ch[i].dma = &s->dma->ch[i]; s->dma->ch[i].opaque = &s->ch[i]; } omap_dma_setcaps(s); omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]); omap_dma_reset(s->dma); omap_dma_clk_update(s, 0, 1); iomemtype = cpu_register_io_memory(0, omap_dma_readfn, omap_dma_writefn, s); cpu_register_physical_memory(base, memsize, iomemtype); mpu->drq = s->dma->drq; return s->dma; } static void omap_dma_interrupts_4_update(struct omap_dma_s *s) { struct omap_dma_channel_s *ch = s->ch; uint32_t bmp, bit; for (bmp = 0, bit = 1; bit; ch ++, bit <<= 1) if (ch->status) { bmp |= bit; ch->cstatus |= ch->status; ch->status = 0; } if ((s->irqstat[0] |= s->irqen[0] & bmp)) qemu_irq_raise(s->irq[0]); if ((s->irqstat[1] |= s->irqen[1] & bmp)) qemu_irq_raise(s->irq[1]); if ((s->irqstat[2] |= s->irqen[2] & bmp)) qemu_irq_raise(s->irq[2]); if ((s->irqstat[3] |= s->irqen[3] & bmp)) qemu_irq_raise(s->irq[3]); } static uint32_t omap_dma4_read(void *opaque, target_phys_addr_t addr) { struct omap_dma_s *s = (struct omap_dma_s *) opaque; int irqn = 0, chnum; struct omap_dma_channel_s *ch; switch (addr) { case 0x00: /* DMA4_REVISION */ return 0x40; case 0x14: /* DMA4_IRQSTATUS_L3 */ irqn ++; case 0x10: /* DMA4_IRQSTATUS_L2 */ irqn ++; case 0x0c: /* DMA4_IRQSTATUS_L1 */ irqn ++; case 0x08: /* DMA4_IRQSTATUS_L0 */ return s->irqstat[irqn]; case 0x24: /* DMA4_IRQENABLE_L3 */ irqn ++; case 0x20: /* DMA4_IRQENABLE_L2 */ irqn ++; case 0x1c: /* DMA4_IRQENABLE_L1 */ irqn ++; case 0x18: /* DMA4_IRQENABLE_L0 */ return s->irqen[irqn]; case 0x28: /* DMA4_SYSSTATUS */ return 1; /* RESETDONE */ case 0x2c: /* DMA4_OCP_SYSCONFIG */ return s->ocp; case 0x64: /* DMA4_CAPS_0 */ return s->caps[0]; case 0x6c: /* DMA4_CAPS_2 */ return s->caps[2]; case 0x70: /* DMA4_CAPS_3 */ return s->caps[3]; case 0x74: /* DMA4_CAPS_4 */ return s->caps[4]; case 0x78: /* DMA4_GCR */ return s->gcr; case 0x80 ... 0xfff: addr -= 0x80; chnum = addr / 0x60; ch = s->ch + chnum; addr -= chnum * 0x60; break; default: OMAP_BAD_REG(addr); return 0; } /* Per-channel registers */ switch (addr) { case 0x00: /* DMA4_CCR */ return (ch->buf_disable << 25) | (ch->src_sync << 24) | (ch->prefetch << 23) | ((ch->sync & 0x60) << 14) | (ch->bs << 18) | (ch->transparent_copy << 17) | (ch->constant_fill << 16) | (ch->mode[1] << 14) | (ch->mode[0] << 12) | (0 << 10) | (0 << 9) | (ch->suspend << 8) | (ch->enable << 7) | (ch->priority << 6) | (ch->fs << 5) | (ch->sync & 0x1f); case 0x04: /* DMA4_CLNK_CTRL */ return (ch->link_enabled << 15) | ch->link_next_ch; case 0x08: /* DMA4_CICR */ return ch->interrupts; case 0x0c: /* DMA4_CSR */ return ch->cstatus; case 0x10: /* DMA4_CSDP */ return (ch->endian[0] << 21) | (ch->endian_lock[0] << 20) | (ch->endian[1] << 19) | (ch->endian_lock[1] << 18) | (ch->write_mode << 16) | (ch->burst[1] << 14) | (ch->pack[1] << 13) | (ch->translate[1] << 9) | (ch->burst[0] << 7) | (ch->pack[0] << 6) | (ch->translate[0] << 2) | (ch->data_type >> 1); case 0x14: /* DMA4_CEN */ return ch->elements; case 0x18: /* DMA4_CFN */ return ch->frames; case 0x1c: /* DMA4_CSSA */ return ch->addr[0]; case 0x20: /* DMA4_CDSA */ return ch->addr[1]; case 0x24: /* DMA4_CSEI */ return ch->element_index[0]; case 0x28: /* DMA4_CSFI */ return ch->frame_index[0]; case 0x2c: /* DMA4_CDEI */ return ch->element_index[1]; case 0x30: /* DMA4_CDFI */ return ch->frame_index[1]; case 0x34: /* DMA4_CSAC */ return ch->active_set.src & 0xffff; case 0x38: /* DMA4_CDAC */ return ch->active_set.dest & 0xffff; case 0x3c: /* DMA4_CCEN */ return ch->active_set.element; case 0x40: /* DMA4_CCFN */ return ch->active_set.frame; case 0x44: /* DMA4_COLOR */ /* XXX only in sDMA */ return ch->color; default: OMAP_BAD_REG(addr); return 0; } } static void omap_dma4_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_dma_s *s = (struct omap_dma_s *) opaque; int chnum, irqn = 0; struct omap_dma_channel_s *ch; switch (addr) { case 0x14: /* DMA4_IRQSTATUS_L3 */ irqn ++; case 0x10: /* DMA4_IRQSTATUS_L2 */ irqn ++; case 0x0c: /* DMA4_IRQSTATUS_L1 */ irqn ++; case 0x08: /* DMA4_IRQSTATUS_L0 */ s->irqstat[irqn] &= ~value; if (!s->irqstat[irqn]) qemu_irq_lower(s->irq[irqn]); return; case 0x24: /* DMA4_IRQENABLE_L3 */ irqn ++; case 0x20: /* DMA4_IRQENABLE_L2 */ irqn ++; case 0x1c: /* DMA4_IRQENABLE_L1 */ irqn ++; case 0x18: /* DMA4_IRQENABLE_L0 */ s->irqen[irqn] = value; return; case 0x2c: /* DMA4_OCP_SYSCONFIG */ if (value & 2) /* SOFTRESET */ omap_dma_reset(s->dma); s->ocp = value & 0x3321; if (((s->ocp >> 12) & 3) == 3) /* MIDLEMODE */ fprintf(stderr, "%s: invalid DMA power mode\n", __FUNCTION__); return; case 0x78: /* DMA4_GCR */ s->gcr = value & 0x00ff00ff; if ((value & 0xff) == 0x00) /* MAX_CHANNEL_FIFO_DEPTH */ fprintf(stderr, "%s: wrong FIFO depth in GCR\n", __FUNCTION__); return; case 0x80 ... 0xfff: addr -= 0x80; chnum = addr / 0x60; ch = s->ch + chnum; addr -= chnum * 0x60; break; case 0x00: /* DMA4_REVISION */ case 0x28: /* DMA4_SYSSTATUS */ case 0x64: /* DMA4_CAPS_0 */ case 0x6c: /* DMA4_CAPS_2 */ case 0x70: /* DMA4_CAPS_3 */ case 0x74: /* DMA4_CAPS_4 */ OMAP_RO_REG(addr); return; default: OMAP_BAD_REG(addr); return; } /* Per-channel registers */ switch (addr) { case 0x00: /* DMA4_CCR */ ch->buf_disable = (value >> 25) & 1; ch->src_sync = (value >> 24) & 1; /* XXX For CamDMA must be 1 */ if (ch->buf_disable && !ch->src_sync) fprintf(stderr, "%s: Buffering disable is not allowed in " "destination synchronised mode\n", __FUNCTION__); ch->prefetch = (value >> 23) & 1; ch->bs = (value >> 18) & 1; ch->transparent_copy = (value >> 17) & 1; ch->constant_fill = (value >> 16) & 1; ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14); ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12); ch->suspend = (value & 0x0100) >> 8; ch->priority = (value & 0x0040) >> 6; ch->fs = (value & 0x0020) >> 5; if (ch->fs && ch->bs && ch->mode[0] && ch->mode[1]) fprintf(stderr, "%s: For a packet transfer at least one port " "must be constant-addressed\n", __FUNCTION__); ch->sync = (value & 0x001f) | ((value >> 14) & 0x0060); /* XXX must be 0x01 for CamDMA */ if (value & 0x0080) omap_dma_enable_channel(s, ch); else omap_dma_disable_channel(s, ch); break; case 0x04: /* DMA4_CLNK_CTRL */ ch->link_enabled = (value >> 15) & 0x1; ch->link_next_ch = value & 0x1f; break; case 0x08: /* DMA4_CICR */ ch->interrupts = value & 0x09be; break; case 0x0c: /* DMA4_CSR */ ch->cstatus &= ~value; break; case 0x10: /* DMA4_CSDP */ ch->endian[0] =(value >> 21) & 1; ch->endian_lock[0] =(value >> 20) & 1; ch->endian[1] =(value >> 19) & 1; ch->endian_lock[1] =(value >> 18) & 1; if (ch->endian[0] != ch->endian[1]) fprintf(stderr, "%s: DMA endiannes conversion enable attempt\n", __FUNCTION__); ch->write_mode = (value >> 16) & 3; ch->burst[1] = (value & 0xc000) >> 14; ch->pack[1] = (value & 0x2000) >> 13; ch->translate[1] = (value & 0x1e00) >> 9; ch->burst[0] = (value & 0x0180) >> 7; ch->pack[0] = (value & 0x0040) >> 6; ch->translate[0] = (value & 0x003c) >> 2; if (ch->translate[0] | ch->translate[1]) fprintf(stderr, "%s: bad MReqAddressTranslate sideband signal\n", __FUNCTION__); ch->data_type = 1 << (value & 3); if ((value & 3) == 3) printf("%s: bad data_type for DMA channel\n", __FUNCTION__); break; case 0x14: /* DMA4_CEN */ ch->set_update = 1; ch->elements = value & 0xffffff; break; case 0x18: /* DMA4_CFN */ ch->frames = value & 0xffff; ch->set_update = 1; break; case 0x1c: /* DMA4_CSSA */ ch->addr[0] = (target_phys_addr_t) (uint32_t) value; ch->set_update = 1; break; case 0x20: /* DMA4_CDSA */ ch->addr[1] = (target_phys_addr_t) (uint32_t) value; ch->set_update = 1; break; case 0x24: /* DMA4_CSEI */ ch->element_index[0] = (int16_t) value; ch->set_update = 1; break; case 0x28: /* DMA4_CSFI */ ch->frame_index[0] = (int32_t) value; ch->set_update = 1; break; case 0x2c: /* DMA4_CDEI */ ch->element_index[1] = (int16_t) value; ch->set_update = 1; break; case 0x30: /* DMA4_CDFI */ ch->frame_index[1] = (int32_t) value; ch->set_update = 1; break; case 0x44: /* DMA4_COLOR */ /* XXX only in sDMA */ ch->color = value; break; case 0x34: /* DMA4_CSAC */ case 0x38: /* DMA4_CDAC */ case 0x3c: /* DMA4_CCEN */ case 0x40: /* DMA4_CCFN */ OMAP_RO_REG(addr); break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_dma4_readfn[] = { omap_badwidth_read16, omap_dma4_read, omap_dma4_read, }; static CPUWriteMemoryFunc *omap_dma4_writefn[] = { omap_badwidth_write16, omap_dma4_write, omap_dma4_write, }; struct soc_dma_s *omap_dma4_init(target_phys_addr_t base, qemu_irq *irqs, struct omap_mpu_state_s *mpu, int fifo, int chans, omap_clk iclk, omap_clk fclk) { int iomemtype, i; struct omap_dma_s *s = (struct omap_dma_s *) qemu_mallocz(sizeof(struct omap_dma_s)); s->model = omap_dma_4; s->chans = chans; s->mpu = mpu; s->clk = fclk; s->dma = soc_dma_init(s->chans); s->dma->freq = omap_clk_getrate(fclk); s->dma->transfer_fn = omap_dma_transfer_generic; s->dma->setup_fn = omap_dma_transfer_setup; s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 64); s->dma->opaque = s; for (i = 0; i < s->chans; i ++) { s->ch[i].dma = &s->dma->ch[i]; s->dma->ch[i].opaque = &s->ch[i]; } memcpy(&s->irq, irqs, sizeof(s->irq)); s->intr_update = omap_dma_interrupts_4_update; omap_dma_setcaps(s); omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]); omap_dma_reset(s->dma); omap_dma_clk_update(s, 0, !!s->dma->freq); iomemtype = cpu_register_io_memory(0, omap_dma4_readfn, omap_dma4_writefn, s); cpu_register_physical_memory(base, 0x1000, iomemtype); mpu->drq = s->dma->drq; return s->dma; } struct omap_dma_lcd_channel_s *omap_dma_get_lcdch(struct soc_dma_s *dma) { struct omap_dma_s *s = dma->opaque; return &s->lcd_ch; }