/* * TI OMAP processors emulation. * * Copyright (C) 2006-2008 Andrzej Zaborowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "hw.h" #include "arm-misc.h" #include "omap.h" #include "sysemu.h" #include "qemu-timer.h" #include "qemu-char.h" #include "soc_dma.h" /* We use pc-style serial ports. */ #include "pc.h" /* Should signal the TCMI/GPMC */ uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr) { uint8_t ret; OMAP_8B_REG(addr); cpu_physical_memory_read(addr, (void *) &ret, 1); return ret; } void omap_badwidth_write8(void *opaque, target_phys_addr_t addr, uint32_t value) { uint8_t val8 = value; OMAP_8B_REG(addr); cpu_physical_memory_write(addr, (void *) &val8, 1); } uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr) { uint16_t ret; OMAP_16B_REG(addr); cpu_physical_memory_read(addr, (void *) &ret, 2); return ret; } void omap_badwidth_write16(void *opaque, target_phys_addr_t addr, uint32_t value) { uint16_t val16 = value; OMAP_16B_REG(addr); cpu_physical_memory_write(addr, (void *) &val16, 2); } uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr) { uint32_t ret; OMAP_32B_REG(addr); cpu_physical_memory_read(addr, (void *) &ret, 4); return ret; } void omap_badwidth_write32(void *opaque, target_phys_addr_t addr, uint32_t value) { OMAP_32B_REG(addr); cpu_physical_memory_write(addr, (void *) &value, 4); } /* Interrupt Handlers */ struct omap_intr_handler_bank_s { uint32_t irqs; uint32_t inputs; uint32_t mask; uint32_t fiq; uint32_t sens_edge; uint32_t swi; unsigned char priority[32]; }; struct omap_intr_handler_s { qemu_irq *pins; qemu_irq parent_intr[2]; unsigned char nbanks; int level_only; /* state */ uint32_t new_agr[2]; int sir_intr[2]; int autoidle; uint32_t mask; struct omap_intr_handler_bank_s bank[]; }; static void omap_inth_sir_update(struct omap_intr_handler_s *s, int is_fiq) { int i, j, sir_intr, p_intr, p, f; uint32_t level; sir_intr = 0; p_intr = 255; /* Find the interrupt line with the highest dynamic priority. * Note: 0 denotes the hightest priority. * If all interrupts have the same priority, the default order is IRQ_N, * IRQ_N-1,...,IRQ_0. */ for (j = 0; j < s->nbanks; ++j) { level = s->bank[j].irqs & ~s->bank[j].mask & (is_fiq ? s->bank[j].fiq : ~s->bank[j].fiq); for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f, level >>= f) { p = s->bank[j].priority[i]; if (p <= p_intr) { p_intr = p; sir_intr = 32 * j + i; } f = ffs(level >> 1); } } s->sir_intr[is_fiq] = sir_intr; } static inline void omap_inth_update(struct omap_intr_handler_s *s, int is_fiq) { int i; uint32_t has_intr = 0; for (i = 0; i < s->nbanks; ++i) has_intr |= s->bank[i].irqs & ~s->bank[i].mask & (is_fiq ? s->bank[i].fiq : ~s->bank[i].fiq); if (s->new_agr[is_fiq] & has_intr & s->mask) { s->new_agr[is_fiq] = 0; omap_inth_sir_update(s, is_fiq); qemu_set_irq(s->parent_intr[is_fiq], 1); } } #define INT_FALLING_EDGE 0 #define INT_LOW_LEVEL 1 static void omap_set_intr(void *opaque, int irq, int req) { struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque; uint32_t rise; struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5]; int n = irq & 31; if (req) { rise = ~bank->irqs & (1 << n); if (~bank->sens_edge & (1 << n)) rise &= ~bank->inputs; bank->inputs |= (1 << n); if (rise) { bank->irqs |= rise; omap_inth_update(ih, 0); omap_inth_update(ih, 1); } } else { rise = bank->sens_edge & bank->irqs & (1 << n); bank->irqs &= ~rise; bank->inputs &= ~(1 << n); } } /* Simplified version with no edge detection */ static void omap_set_intr_noedge(void *opaque, int irq, int req) { struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque; uint32_t rise; struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5]; int n = irq & 31; if (req) { rise = ~bank->inputs & (1 << n); if (rise) { bank->irqs |= bank->inputs |= rise; omap_inth_update(ih, 0); omap_inth_update(ih, 1); } } else bank->irqs = (bank->inputs &= ~(1 << n)) | bank->swi; } static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr) { struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque; int i, offset = addr; int bank_no = offset >> 8; int line_no; struct omap_intr_handler_bank_s *bank = &s->bank[bank_no]; offset &= 0xff; switch (offset) { case 0x00: /* ITR */ return bank->irqs; case 0x04: /* MIR */ return bank->mask; case 0x10: /* SIR_IRQ_CODE */ case 0x14: /* SIR_FIQ_CODE */ if (bank_no != 0) break; line_no = s->sir_intr[(offset - 0x10) >> 2]; bank = &s->bank[line_no >> 5]; i = line_no & 31; if (((bank->sens_edge >> i) & 1) == INT_FALLING_EDGE) bank->irqs &= ~(1 << i); return line_no; case 0x18: /* CONTROL_REG */ if (bank_no != 0) break; return 0; case 0x1c: /* ILR0 */ case 0x20: /* ILR1 */ case 0x24: /* ILR2 */ case 0x28: /* ILR3 */ case 0x2c: /* ILR4 */ case 0x30: /* ILR5 */ case 0x34: /* ILR6 */ case 0x38: /* ILR7 */ case 0x3c: /* ILR8 */ case 0x40: /* ILR9 */ case 0x44: /* ILR10 */ case 0x48: /* ILR11 */ case 0x4c: /* ILR12 */ case 0x50: /* ILR13 */ case 0x54: /* ILR14 */ case 0x58: /* ILR15 */ case 0x5c: /* ILR16 */ case 0x60: /* ILR17 */ case 0x64: /* ILR18 */ case 0x68: /* ILR19 */ case 0x6c: /* ILR20 */ case 0x70: /* ILR21 */ case 0x74: /* ILR22 */ case 0x78: /* ILR23 */ case 0x7c: /* ILR24 */ case 0x80: /* ILR25 */ case 0x84: /* ILR26 */ case 0x88: /* ILR27 */ case 0x8c: /* ILR28 */ case 0x90: /* ILR29 */ case 0x94: /* ILR30 */ case 0x98: /* ILR31 */ i = (offset - 0x1c) >> 2; return (bank->priority[i] << 2) | (((bank->sens_edge >> i) & 1) << 1) | ((bank->fiq >> i) & 1); case 0x9c: /* ISR */ return 0x00000000; } OMAP_BAD_REG(addr); return 0; } static void omap_inth_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque; int i, offset = addr; int bank_no = offset >> 8; struct omap_intr_handler_bank_s *bank = &s->bank[bank_no]; offset &= 0xff; switch (offset) { case 0x00: /* ITR */ /* Important: ignore the clearing if the IRQ is level-triggered and the input bit is 1 */ bank->irqs &= value | (bank->inputs & bank->sens_edge); return; case 0x04: /* MIR */ bank->mask = value; omap_inth_update(s, 0); omap_inth_update(s, 1); return; case 0x10: /* SIR_IRQ_CODE */ case 0x14: /* SIR_FIQ_CODE */ OMAP_RO_REG(addr); break; case 0x18: /* CONTROL_REG */ if (bank_no != 0) break; if (value & 2) { qemu_set_irq(s->parent_intr[1], 0); s->new_agr[1] = ~0; omap_inth_update(s, 1); } if (value & 1) { qemu_set_irq(s->parent_intr[0], 0); s->new_agr[0] = ~0; omap_inth_update(s, 0); } return; case 0x1c: /* ILR0 */ case 0x20: /* ILR1 */ case 0x24: /* ILR2 */ case 0x28: /* ILR3 */ case 0x2c: /* ILR4 */ case 0x30: /* ILR5 */ case 0x34: /* ILR6 */ case 0x38: /* ILR7 */ case 0x3c: /* ILR8 */ case 0x40: /* ILR9 */ case 0x44: /* ILR10 */ case 0x48: /* ILR11 */ case 0x4c: /* ILR12 */ case 0x50: /* ILR13 */ case 0x54: /* ILR14 */ case 0x58: /* ILR15 */ case 0x5c: /* ILR16 */ case 0x60: /* ILR17 */ case 0x64: /* ILR18 */ case 0x68: /* ILR19 */ case 0x6c: /* ILR20 */ case 0x70: /* ILR21 */ case 0x74: /* ILR22 */ case 0x78: /* ILR23 */ case 0x7c: /* ILR24 */ case 0x80: /* ILR25 */ case 0x84: /* ILR26 */ case 0x88: /* ILR27 */ case 0x8c: /* ILR28 */ case 0x90: /* ILR29 */ case 0x94: /* ILR30 */ case 0x98: /* ILR31 */ i = (offset - 0x1c) >> 2; bank->priority[i] = (value >> 2) & 0x1f; bank->sens_edge &= ~(1 << i); bank->sens_edge |= ((value >> 1) & 1) << i; bank->fiq &= ~(1 << i); bank->fiq |= (value & 1) << i; return; case 0x9c: /* ISR */ for (i = 0; i < 32; i ++) if (value & (1 << i)) { omap_set_intr(s, 32 * bank_no + i, 1); return; } return; } OMAP_BAD_REG(addr); } static CPUReadMemoryFunc *omap_inth_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_inth_read, }; static CPUWriteMemoryFunc *omap_inth_writefn[] = { omap_inth_write, omap_inth_write, omap_inth_write, }; void omap_inth_reset(struct omap_intr_handler_s *s) { int i; for (i = 0; i < s->nbanks; ++i){ s->bank[i].irqs = 0x00000000; s->bank[i].mask = 0xffffffff; s->bank[i].sens_edge = 0x00000000; s->bank[i].fiq = 0x00000000; s->bank[i].inputs = 0x00000000; s->bank[i].swi = 0x00000000; memset(s->bank[i].priority, 0, sizeof(s->bank[i].priority)); if (s->level_only) s->bank[i].sens_edge = 0xffffffff; } s->new_agr[0] = ~0; s->new_agr[1] = ~0; s->sir_intr[0] = 0; s->sir_intr[1] = 0; s->autoidle = 0; s->mask = ~0; qemu_set_irq(s->parent_intr[0], 0); qemu_set_irq(s->parent_intr[1], 0); } struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base, unsigned long size, unsigned char nbanks, qemu_irq **pins, qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk clk) { int iomemtype; struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) qemu_mallocz(sizeof(struct omap_intr_handler_s) + sizeof(struct omap_intr_handler_bank_s) * nbanks); s->parent_intr[0] = parent_irq; s->parent_intr[1] = parent_fiq; s->nbanks = nbanks; s->pins = qemu_allocate_irqs(omap_set_intr, s, nbanks * 32); if (pins) *pins = s->pins; omap_inth_reset(s); iomemtype = cpu_register_io_memory(0, omap_inth_readfn, omap_inth_writefn, s); cpu_register_physical_memory(base, size, iomemtype); return s; } static uint32_t omap2_inth_read(void *opaque, target_phys_addr_t addr) { struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque; int offset = addr; int bank_no, line_no; struct omap_intr_handler_bank_s *bank = 0; if ((offset & 0xf80) == 0x80) { bank_no = (offset & 0x60) >> 5; if (bank_no < s->nbanks) { offset &= ~0x60; bank = &s->bank[bank_no]; } } switch (offset) { case 0x00: /* INTC_REVISION */ return 0x21; case 0x10: /* INTC_SYSCONFIG */ return (s->autoidle >> 2) & 1; case 0x14: /* INTC_SYSSTATUS */ return 1; /* RESETDONE */ case 0x40: /* INTC_SIR_IRQ */ return s->sir_intr[0]; case 0x44: /* INTC_SIR_FIQ */ return s->sir_intr[1]; case 0x48: /* INTC_CONTROL */ return (!s->mask) << 2; /* GLOBALMASK */ case 0x4c: /* INTC_PROTECTION */ return 0; case 0x50: /* INTC_IDLE */ return s->autoidle & 3; /* Per-bank registers */ case 0x80: /* INTC_ITR */ return bank->inputs; case 0x84: /* INTC_MIR */ return bank->mask; case 0x88: /* INTC_MIR_CLEAR */ case 0x8c: /* INTC_MIR_SET */ return 0; case 0x90: /* INTC_ISR_SET */ return bank->swi; case 0x94: /* INTC_ISR_CLEAR */ return 0; case 0x98: /* INTC_PENDING_IRQ */ return bank->irqs & ~bank->mask & ~bank->fiq; case 0x9c: /* INTC_PENDING_FIQ */ return bank->irqs & ~bank->mask & bank->fiq; /* Per-line registers */ case 0x100 ... 0x300: /* INTC_ILR */ bank_no = (offset - 0x100) >> 7; if (bank_no > s->nbanks) break; bank = &s->bank[bank_no]; line_no = (offset & 0x7f) >> 2; return (bank->priority[line_no] << 2) | ((bank->fiq >> line_no) & 1); } OMAP_BAD_REG(addr); return 0; } static void omap2_inth_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque; int offset = addr; int bank_no, line_no; struct omap_intr_handler_bank_s *bank = 0; if ((offset & 0xf80) == 0x80) { bank_no = (offset & 0x60) >> 5; if (bank_no < s->nbanks) { offset &= ~0x60; bank = &s->bank[bank_no]; } } switch (offset) { case 0x10: /* INTC_SYSCONFIG */ s->autoidle &= 4; s->autoidle |= (value & 1) << 2; if (value & 2) /* SOFTRESET */ omap_inth_reset(s); return; case 0x48: /* INTC_CONTROL */ s->mask = (value & 4) ? 0 : ~0; /* GLOBALMASK */ if (value & 2) { /* NEWFIQAGR */ qemu_set_irq(s->parent_intr[1], 0); s->new_agr[1] = ~0; omap_inth_update(s, 1); } if (value & 1) { /* NEWIRQAGR */ qemu_set_irq(s->parent_intr[0], 0); s->new_agr[0] = ~0; omap_inth_update(s, 0); } return; case 0x4c: /* INTC_PROTECTION */ /* TODO: Make a bitmap (or sizeof(char)map) of access privileges * for every register, see Chapter 3 and 4 for privileged mode. */ if (value & 1) fprintf(stderr, "%s: protection mode enable attempt\n", __FUNCTION__); return; case 0x50: /* INTC_IDLE */ s->autoidle &= ~3; s->autoidle |= value & 3; return; /* Per-bank registers */ case 0x84: /* INTC_MIR */ bank->mask = value; omap_inth_update(s, 0); omap_inth_update(s, 1); return; case 0x88: /* INTC_MIR_CLEAR */ bank->mask &= ~value; omap_inth_update(s, 0); omap_inth_update(s, 1); return; case 0x8c: /* INTC_MIR_SET */ bank->mask |= value; return; case 0x90: /* INTC_ISR_SET */ bank->irqs |= bank->swi |= value; omap_inth_update(s, 0); omap_inth_update(s, 1); return; case 0x94: /* INTC_ISR_CLEAR */ bank->swi &= ~value; bank->irqs = bank->swi & bank->inputs; return; /* Per-line registers */ case 0x100 ... 0x300: /* INTC_ILR */ bank_no = (offset - 0x100) >> 7; if (bank_no > s->nbanks) break; bank = &s->bank[bank_no]; line_no = (offset & 0x7f) >> 2; bank->priority[line_no] = (value >> 2) & 0x3f; bank->fiq &= ~(1 << line_no); bank->fiq |= (value & 1) << line_no; return; case 0x00: /* INTC_REVISION */ case 0x14: /* INTC_SYSSTATUS */ case 0x40: /* INTC_SIR_IRQ */ case 0x44: /* INTC_SIR_FIQ */ case 0x80: /* INTC_ITR */ case 0x98: /* INTC_PENDING_IRQ */ case 0x9c: /* INTC_PENDING_FIQ */ OMAP_RO_REG(addr); return; } OMAP_BAD_REG(addr); } static CPUReadMemoryFunc *omap2_inth_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap2_inth_read, }; static CPUWriteMemoryFunc *omap2_inth_writefn[] = { omap2_inth_write, omap2_inth_write, omap2_inth_write, }; struct omap_intr_handler_s *omap2_inth_init(target_phys_addr_t base, int size, int nbanks, qemu_irq **pins, qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk fclk, omap_clk iclk) { int iomemtype; struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) qemu_mallocz(sizeof(struct omap_intr_handler_s) + sizeof(struct omap_intr_handler_bank_s) * nbanks); s->parent_intr[0] = parent_irq; s->parent_intr[1] = parent_fiq; s->nbanks = nbanks; s->level_only = 1; s->pins = qemu_allocate_irqs(omap_set_intr_noedge, s, nbanks * 32); if (pins) *pins = s->pins; omap_inth_reset(s); iomemtype = cpu_register_io_memory(0, omap2_inth_readfn, omap2_inth_writefn, s); cpu_register_physical_memory(base, size, iomemtype); return s; } /* MPU OS timers */ struct omap_mpu_timer_s { qemu_irq irq; omap_clk clk; uint32_t val; int64_t time; QEMUTimer *timer; QEMUBH *tick; int64_t rate; int it_ena; int enable; int ptv; int ar; int st; uint32_t reset_val; }; static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer) { uint64_t distance = qemu_get_clock(vm_clock) - timer->time; if (timer->st && timer->enable && timer->rate) return timer->val - muldiv64(distance >> (timer->ptv + 1), timer->rate, ticks_per_sec); else return timer->val; } static inline void omap_timer_sync(struct omap_mpu_timer_s *timer) { timer->val = omap_timer_read(timer); timer->time = qemu_get_clock(vm_clock); } static inline void omap_timer_update(struct omap_mpu_timer_s *timer) { int64_t expires; if (timer->enable && timer->st && timer->rate) { timer->val = timer->reset_val; /* Should skip this on clk enable */ expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1), ticks_per_sec, timer->rate); /* If timer expiry would be sooner than in about 1 ms and * auto-reload isn't set, then fire immediately. This is a hack * to make systems like PalmOS run in acceptable time. PalmOS * sets the interval to a very low value and polls the status bit * in a busy loop when it wants to sleep just a couple of CPU * ticks. */ if (expires > (ticks_per_sec >> 10) || timer->ar) qemu_mod_timer(timer->timer, timer->time + expires); else qemu_bh_schedule(timer->tick); } else qemu_del_timer(timer->timer); } static void omap_timer_fire(void *opaque) { struct omap_mpu_timer_s *timer = opaque; if (!timer->ar) { timer->val = 0; timer->st = 0; } if (timer->it_ena) /* Edge-triggered irq */ qemu_irq_pulse(timer->irq); } static void omap_timer_tick(void *opaque) { struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque; omap_timer_sync(timer); omap_timer_fire(timer); omap_timer_update(timer); } static void omap_timer_clk_update(void *opaque, int line, int on) { struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque; omap_timer_sync(timer); timer->rate = on ? omap_clk_getrate(timer->clk) : 0; omap_timer_update(timer); } static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer) { omap_clk_adduser(timer->clk, qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]); timer->rate = omap_clk_getrate(timer->clk); } static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque; switch (addr) { case 0x00: /* CNTL_TIMER */ return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st; case 0x04: /* LOAD_TIM */ break; case 0x08: /* READ_TIM */ return omap_timer_read(s); } OMAP_BAD_REG(addr); return 0; } static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque; switch (addr) { case 0x00: /* CNTL_TIMER */ omap_timer_sync(s); s->enable = (value >> 5) & 1; s->ptv = (value >> 2) & 7; s->ar = (value >> 1) & 1; s->st = value & 1; omap_timer_update(s); return; case 0x04: /* LOAD_TIM */ s->reset_val = value; return; case 0x08: /* READ_TIM */ OMAP_RO_REG(addr); break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_mpu_timer_read, }; static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_mpu_timer_write, }; static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s) { qemu_del_timer(s->timer); s->enable = 0; s->reset_val = 31337; s->val = 0; s->ptv = 0; s->ar = 0; s->st = 0; s->it_ena = 1; } struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base, qemu_irq irq, omap_clk clk) { int iomemtype; struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) qemu_mallocz(sizeof(struct omap_mpu_timer_s)); s->irq = irq; s->clk = clk; s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s); s->tick = qemu_bh_new(omap_timer_fire, s); omap_mpu_timer_reset(s); omap_timer_clk_setup(s); iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn, omap_mpu_timer_writefn, s); cpu_register_physical_memory(base, 0x100, iomemtype); return s; } /* Watchdog timer */ struct omap_watchdog_timer_s { struct omap_mpu_timer_s timer; uint8_t last_wr; int mode; int free; int reset; }; static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr) { struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque; switch (addr) { case 0x00: /* CNTL_TIMER */ return (s->timer.ptv << 9) | (s->timer.ar << 8) | (s->timer.st << 7) | (s->free << 1); case 0x04: /* READ_TIMER */ return omap_timer_read(&s->timer); case 0x08: /* TIMER_MODE */ return s->mode << 15; } OMAP_BAD_REG(addr); return 0; } static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque; switch (addr) { case 0x00: /* CNTL_TIMER */ omap_timer_sync(&s->timer); s->timer.ptv = (value >> 9) & 7; s->timer.ar = (value >> 8) & 1; s->timer.st = (value >> 7) & 1; s->free = (value >> 1) & 1; omap_timer_update(&s->timer); break; case 0x04: /* LOAD_TIMER */ s->timer.reset_val = value & 0xffff; break; case 0x08: /* TIMER_MODE */ if (!s->mode && ((value >> 15) & 1)) omap_clk_get(s->timer.clk); s->mode |= (value >> 15) & 1; if (s->last_wr == 0xf5) { if ((value & 0xff) == 0xa0) { if (s->mode) { s->mode = 0; omap_clk_put(s->timer.clk); } } else { /* XXX: on T|E hardware somehow this has no effect, * on Zire 71 it works as specified. */ s->reset = 1; qemu_system_reset_request(); } } s->last_wr = value & 0xff; break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_wd_timer_readfn[] = { omap_badwidth_read16, omap_wd_timer_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = { omap_badwidth_write16, omap_wd_timer_write, omap_badwidth_write16, }; static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s) { qemu_del_timer(s->timer.timer); if (!s->mode) omap_clk_get(s->timer.clk); s->mode = 1; s->free = 1; s->reset = 0; s->timer.enable = 1; s->timer.it_ena = 1; s->timer.reset_val = 0xffff; s->timer.val = 0; s->timer.st = 0; s->timer.ptv = 0; s->timer.ar = 0; omap_timer_update(&s->timer); } struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base, qemu_irq irq, omap_clk clk) { int iomemtype; struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) qemu_mallocz(sizeof(struct omap_watchdog_timer_s)); s->timer.irq = irq; s->timer.clk = clk; s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer); omap_wd_timer_reset(s); omap_timer_clk_setup(&s->timer); iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn, omap_wd_timer_writefn, s); cpu_register_physical_memory(base, 0x100, iomemtype); return s; } /* 32-kHz timer */ struct omap_32khz_timer_s { struct omap_mpu_timer_s timer; }; static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr) { struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* TVR */ return s->timer.reset_val; case 0x04: /* TCR */ return omap_timer_read(&s->timer); case 0x08: /* CR */ return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st; default: break; } OMAP_BAD_REG(addr); return 0; } static void omap_os_timer_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* TVR */ s->timer.reset_val = value & 0x00ffffff; break; case 0x04: /* TCR */ OMAP_RO_REG(addr); break; case 0x08: /* CR */ s->timer.ar = (value >> 3) & 1; s->timer.it_ena = (value >> 2) & 1; if (s->timer.st != (value & 1) || (value & 2)) { omap_timer_sync(&s->timer); s->timer.enable = value & 1; s->timer.st = value & 1; omap_timer_update(&s->timer); } break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_os_timer_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_os_timer_read, }; static CPUWriteMemoryFunc *omap_os_timer_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_os_timer_write, }; static void omap_os_timer_reset(struct omap_32khz_timer_s *s) { qemu_del_timer(s->timer.timer); s->timer.enable = 0; s->timer.it_ena = 0; s->timer.reset_val = 0x00ffffff; s->timer.val = 0; s->timer.st = 0; s->timer.ptv = 0; s->timer.ar = 1; } struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base, qemu_irq irq, omap_clk clk) { int iomemtype; struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) qemu_mallocz(sizeof(struct omap_32khz_timer_s)); s->timer.irq = irq; s->timer.clk = clk; s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer); omap_os_timer_reset(s); omap_timer_clk_setup(&s->timer); iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn, omap_os_timer_writefn, s); cpu_register_physical_memory(base, 0x800, iomemtype); return s; } /* Ultra Low-Power Device Module */ static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; uint16_t ret; switch (addr) { case 0x14: /* IT_STATUS */ ret = s->ulpd_pm_regs[addr >> 2]; s->ulpd_pm_regs[addr >> 2] = 0; qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]); return ret; case 0x18: /* Reserved */ case 0x1c: /* Reserved */ case 0x20: /* Reserved */ case 0x28: /* Reserved */ case 0x2c: /* Reserved */ OMAP_BAD_REG(addr); case 0x00: /* COUNTER_32_LSB */ case 0x04: /* COUNTER_32_MSB */ case 0x08: /* COUNTER_HIGH_FREQ_LSB */ case 0x0c: /* COUNTER_HIGH_FREQ_MSB */ case 0x10: /* GAUGING_CTRL */ case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */ case 0x30: /* CLOCK_CTRL */ case 0x34: /* SOFT_REQ */ case 0x38: /* COUNTER_32_FIQ */ case 0x3c: /* DPLL_CTRL */ case 0x40: /* STATUS_REQ */ /* XXX: check clk::usecount state for every clock */ case 0x48: /* LOCL_TIME */ case 0x4c: /* APLL_CTRL */ case 0x50: /* POWER_CTRL */ return s->ulpd_pm_regs[addr >> 2]; } OMAP_BAD_REG(addr); return 0; } static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { if (diff & (1 << 4)) /* USB_MCLK_EN */ omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1); if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */ omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1); } static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { if (diff & (1 << 0)) /* SOFT_DPLL_REQ */ omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1); if (diff & (1 << 1)) /* SOFT_COM_REQ */ omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1); if (diff & (1 << 2)) /* SOFT_SDW_REQ */ omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1); if (diff & (1 << 3)) /* SOFT_USB_REQ */ omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1); } static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int64_t now, ticks; int div, mult; static const int bypass_div[4] = { 1, 2, 4, 4 }; uint16_t diff; switch (addr) { case 0x00: /* COUNTER_32_LSB */ case 0x04: /* COUNTER_32_MSB */ case 0x08: /* COUNTER_HIGH_FREQ_LSB */ case 0x0c: /* COUNTER_HIGH_FREQ_MSB */ case 0x14: /* IT_STATUS */ case 0x40: /* STATUS_REQ */ OMAP_RO_REG(addr); break; case 0x10: /* GAUGING_CTRL */ /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */ if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) { now = qemu_get_clock(vm_clock); if (value & 1) s->ulpd_gauge_start = now; else { now -= s->ulpd_gauge_start; /* 32-kHz ticks */ ticks = muldiv64(now, 32768, ticks_per_sec); s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff; s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff; if (ticks >> 32) /* OVERFLOW_32K */ s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2; /* High frequency ticks */ ticks = muldiv64(now, 12000000, ticks_per_sec); s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff; s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff; if (ticks >> 32) /* OVERFLOW_HI_FREQ */ s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1; s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */ qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]); } } s->ulpd_pm_regs[addr >> 2] = value; break; case 0x18: /* Reserved */ case 0x1c: /* Reserved */ case 0x20: /* Reserved */ case 0x28: /* Reserved */ case 0x2c: /* Reserved */ OMAP_BAD_REG(addr); case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */ case 0x38: /* COUNTER_32_FIQ */ case 0x48: /* LOCL_TIME */ case 0x50: /* POWER_CTRL */ s->ulpd_pm_regs[addr >> 2] = value; break; case 0x30: /* CLOCK_CTRL */ diff = s->ulpd_pm_regs[addr >> 2] ^ value; s->ulpd_pm_regs[addr >> 2] = value & 0x3f; omap_ulpd_clk_update(s, diff, value); break; case 0x34: /* SOFT_REQ */ diff = s->ulpd_pm_regs[addr >> 2] ^ value; s->ulpd_pm_regs[addr >> 2] = value & 0x1f; omap_ulpd_req_update(s, diff, value); break; case 0x3c: /* DPLL_CTRL */ /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is * omitted altogether, probably a typo. */ /* This register has identical semantics with DPLL(1:3) control * registers, see omap_dpll_write() */ diff = s->ulpd_pm_regs[addr >> 2] & value; s->ulpd_pm_regs[addr >> 2] = value & 0x2fff; if (diff & (0x3ff << 2)) { if (value & (1 << 4)) { /* PLL_ENABLE */ div = ((value >> 5) & 3) + 1; /* PLL_DIV */ mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */ } else { div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */ mult = 1; } omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult); } /* Enter the desired mode. */ s->ulpd_pm_regs[addr >> 2] = (s->ulpd_pm_regs[addr >> 2] & 0xfffe) | ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1); /* Act as if the lock is restored. */ s->ulpd_pm_regs[addr >> 2] |= 2; break; case 0x4c: /* APLL_CTRL */ diff = s->ulpd_pm_regs[addr >> 2] & value; s->ulpd_pm_regs[addr >> 2] = value & 0xf; if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */ omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s, (value & (1 << 0)) ? "apll" : "dpll4")); break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = { omap_badwidth_read16, omap_ulpd_pm_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = { omap_badwidth_write16, omap_ulpd_pm_write, omap_badwidth_write16, }; static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu) { mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001; mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000; mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001; mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000; mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000; mpu->ulpd_pm_regs[0x18 >> 2] = 0x01; mpu->ulpd_pm_regs[0x1c >> 2] = 0x01; mpu->ulpd_pm_regs[0x20 >> 2] = 0x01; mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff; mpu->ulpd_pm_regs[0x28 >> 2] = 0x01; mpu->ulpd_pm_regs[0x2c >> 2] = 0x01; omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000); mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000; omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000); mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000; mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001; mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211; mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */ mpu->ulpd_pm_regs[0x48 >> 2] = 0x960; mpu->ulpd_pm_regs[0x4c >> 2] = 0x08; mpu->ulpd_pm_regs[0x50 >> 2] = 0x08; omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4); omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4")); } static void omap_ulpd_pm_init(target_phys_addr_t base, struct omap_mpu_state_s *mpu) { int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn, omap_ulpd_pm_writefn, mpu); cpu_register_physical_memory(base, 0x800, iomemtype); omap_ulpd_pm_reset(mpu); } /* OMAP Pin Configuration */ static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; switch (addr) { case 0x00: /* FUNC_MUX_CTRL_0 */ case 0x04: /* FUNC_MUX_CTRL_1 */ case 0x08: /* FUNC_MUX_CTRL_2 */ return s->func_mux_ctrl[addr >> 2]; case 0x0c: /* COMP_MODE_CTRL_0 */ return s->comp_mode_ctrl[0]; case 0x10: /* FUNC_MUX_CTRL_3 */ case 0x14: /* FUNC_MUX_CTRL_4 */ case 0x18: /* FUNC_MUX_CTRL_5 */ case 0x1c: /* FUNC_MUX_CTRL_6 */ case 0x20: /* FUNC_MUX_CTRL_7 */ case 0x24: /* FUNC_MUX_CTRL_8 */ case 0x28: /* FUNC_MUX_CTRL_9 */ case 0x2c: /* FUNC_MUX_CTRL_A */ case 0x30: /* FUNC_MUX_CTRL_B */ case 0x34: /* FUNC_MUX_CTRL_C */ case 0x38: /* FUNC_MUX_CTRL_D */ return s->func_mux_ctrl[(addr >> 2) - 1]; case 0x40: /* PULL_DWN_CTRL_0 */ case 0x44: /* PULL_DWN_CTRL_1 */ case 0x48: /* PULL_DWN_CTRL_2 */ case 0x4c: /* PULL_DWN_CTRL_3 */ return s->pull_dwn_ctrl[(addr & 0xf) >> 2]; case 0x50: /* GATE_INH_CTRL_0 */ return s->gate_inh_ctrl[0]; case 0x60: /* VOLTAGE_CTRL_0 */ return s->voltage_ctrl[0]; case 0x70: /* TEST_DBG_CTRL_0 */ return s->test_dbg_ctrl[0]; case 0x80: /* MOD_CONF_CTRL_0 */ return s->mod_conf_ctrl[0]; } OMAP_BAD_REG(addr); return 0; } static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s, uint32_t diff, uint32_t value) { if (s->compat1509) { if (diff & (1 << 9)) /* BLUETOOTH */ omap_clk_onoff(omap_findclk(s, "bt_mclk_out"), (~value >> 9) & 1); if (diff & (1 << 7)) /* USB.CLKO */ omap_clk_onoff(omap_findclk(s, "usb.clko"), (value >> 7) & 1); } } static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s, uint32_t diff, uint32_t value) { if (s->compat1509) { if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */ omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1); if (diff & (1 << 1)) /* CLK32K */ omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1); } } static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s, uint32_t diff, uint32_t value) { if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */ omap_clk_reparent(omap_findclk(s, "uart3_ck"), omap_findclk(s, ((value >> 31) & 1) ? "ck_48m" : "armper_ck")); if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */ omap_clk_reparent(omap_findclk(s, "uart2_ck"), omap_findclk(s, ((value >> 30) & 1) ? "ck_48m" : "armper_ck")); if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */ omap_clk_reparent(omap_findclk(s, "uart1_ck"), omap_findclk(s, ((value >> 29) & 1) ? "ck_48m" : "armper_ck")); if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */ omap_clk_reparent(omap_findclk(s, "mmc_ck"), omap_findclk(s, ((value >> 23) & 1) ? "ck_48m" : "armper_ck")); if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */ omap_clk_reparent(omap_findclk(s, "com_mclk_out"), omap_findclk(s, ((value >> 12) & 1) ? "ck_48m" : "armper_ck")); if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */ omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1); } static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; uint32_t diff; switch (addr) { case 0x00: /* FUNC_MUX_CTRL_0 */ diff = s->func_mux_ctrl[addr >> 2] ^ value; s->func_mux_ctrl[addr >> 2] = value; omap_pin_funcmux0_update(s, diff, value); return; case 0x04: /* FUNC_MUX_CTRL_1 */ diff = s->func_mux_ctrl[addr >> 2] ^ value; s->func_mux_ctrl[addr >> 2] = value; omap_pin_funcmux1_update(s, diff, value); return; case 0x08: /* FUNC_MUX_CTRL_2 */ s->func_mux_ctrl[addr >> 2] = value; return; case 0x0c: /* COMP_MODE_CTRL_0 */ s->comp_mode_ctrl[0] = value; s->compat1509 = (value != 0x0000eaef); omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]); omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]); return; case 0x10: /* FUNC_MUX_CTRL_3 */ case 0x14: /* FUNC_MUX_CTRL_4 */ case 0x18: /* FUNC_MUX_CTRL_5 */ case 0x1c: /* FUNC_MUX_CTRL_6 */ case 0x20: /* FUNC_MUX_CTRL_7 */ case 0x24: /* FUNC_MUX_CTRL_8 */ case 0x28: /* FUNC_MUX_CTRL_9 */ case 0x2c: /* FUNC_MUX_CTRL_A */ case 0x30: /* FUNC_MUX_CTRL_B */ case 0x34: /* FUNC_MUX_CTRL_C */ case 0x38: /* FUNC_MUX_CTRL_D */ s->func_mux_ctrl[(addr >> 2) - 1] = value; return; case 0x40: /* PULL_DWN_CTRL_0 */ case 0x44: /* PULL_DWN_CTRL_1 */ case 0x48: /* PULL_DWN_CTRL_2 */ case 0x4c: /* PULL_DWN_CTRL_3 */ s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value; return; case 0x50: /* GATE_INH_CTRL_0 */ s->gate_inh_ctrl[0] = value; return; case 0x60: /* VOLTAGE_CTRL_0 */ s->voltage_ctrl[0] = value; return; case 0x70: /* TEST_DBG_CTRL_0 */ s->test_dbg_ctrl[0] = value; return; case 0x80: /* MOD_CONF_CTRL_0 */ diff = s->mod_conf_ctrl[0] ^ value; s->mod_conf_ctrl[0] = value; omap_pin_modconf1_update(s, diff, value); return; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_pin_cfg_read, }; static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_pin_cfg_write, }; static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu) { /* Start in Compatibility Mode. */ mpu->compat1509 = 1; omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0); omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0); omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0); memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl)); memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl)); memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl)); memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl)); memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl)); memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl)); memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl)); } static void omap_pin_cfg_init(target_phys_addr_t base, struct omap_mpu_state_s *mpu) { int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn, omap_pin_cfg_writefn, mpu); cpu_register_physical_memory(base, 0x800, iomemtype); omap_pin_cfg_reset(mpu); } /* Device Identification, Die Identification */ static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; switch (addr) { case 0xfffe1800: /* DIE_ID_LSB */ return 0xc9581f0e; case 0xfffe1804: /* DIE_ID_MSB */ return 0xa8858bfa; case 0xfffe2000: /* PRODUCT_ID_LSB */ return 0x00aaaafc; case 0xfffe2004: /* PRODUCT_ID_MSB */ return 0xcafeb574; case 0xfffed400: /* JTAG_ID_LSB */ switch (s->mpu_model) { case omap310: return 0x03310315; case omap1510: return 0x03310115; default: cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__); } break; case 0xfffed404: /* JTAG_ID_MSB */ switch (s->mpu_model) { case omap310: return 0xfb57402f; case omap1510: return 0xfb47002f; default: cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__); } break; } OMAP_BAD_REG(addr); return 0; } static void omap_id_write(void *opaque, target_phys_addr_t addr, uint32_t value) { OMAP_BAD_REG(addr); } static CPUReadMemoryFunc *omap_id_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_id_read, }; static CPUWriteMemoryFunc *omap_id_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_id_write, }; static void omap_id_init(struct omap_mpu_state_s *mpu) { int iomemtype = cpu_register_io_memory(0, omap_id_readfn, omap_id_writefn, mpu); cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800); cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400); if (!cpu_is_omap15xx(mpu)) cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000); } /* MPUI Control (Dummy) */ static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; switch (addr) { case 0x00: /* CTRL */ return s->mpui_ctrl; case 0x04: /* DEBUG_ADDR */ return 0x01ffffff; case 0x08: /* DEBUG_DATA */ return 0xffffffff; case 0x0c: /* DEBUG_FLAG */ return 0x00000800; case 0x10: /* STATUS */ return 0x00000000; /* Not in OMAP310 */ case 0x14: /* DSP_STATUS */ case 0x18: /* DSP_BOOT_CONFIG */ return 0x00000000; case 0x1c: /* DSP_MPUI_CONFIG */ return 0x0000ffff; } OMAP_BAD_REG(addr); return 0; } static void omap_mpui_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; switch (addr) { case 0x00: /* CTRL */ s->mpui_ctrl = value & 0x007fffff; break; case 0x04: /* DEBUG_ADDR */ case 0x08: /* DEBUG_DATA */ case 0x0c: /* DEBUG_FLAG */ case 0x10: /* STATUS */ /* Not in OMAP310 */ case 0x14: /* DSP_STATUS */ OMAP_RO_REG(addr); case 0x18: /* DSP_BOOT_CONFIG */ case 0x1c: /* DSP_MPUI_CONFIG */ break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_mpui_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_mpui_read, }; static CPUWriteMemoryFunc *omap_mpui_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_mpui_write, }; static void omap_mpui_reset(struct omap_mpu_state_s *s) { s->mpui_ctrl = 0x0003ff1b; } static void omap_mpui_init(target_phys_addr_t base, struct omap_mpu_state_s *mpu) { int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn, omap_mpui_writefn, mpu); cpu_register_physical_memory(base, 0x100, iomemtype); omap_mpui_reset(mpu); } /* TIPB Bridges */ struct omap_tipb_bridge_s { qemu_irq abort; int width_intr; uint16_t control; uint16_t alloc; uint16_t buffer; uint16_t enh_control; }; static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr) { struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque; switch (addr) { case 0x00: /* TIPB_CNTL */ return s->control; case 0x04: /* TIPB_BUS_ALLOC */ return s->alloc; case 0x08: /* MPU_TIPB_CNTL */ return s->buffer; case 0x0c: /* ENHANCED_TIPB_CNTL */ return s->enh_control; case 0x10: /* ADDRESS_DBG */ case 0x14: /* DATA_DEBUG_LOW */ case 0x18: /* DATA_DEBUG_HIGH */ return 0xffff; case 0x1c: /* DEBUG_CNTR_SIG */ return 0x00f8; } OMAP_BAD_REG(addr); return 0; } static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque; switch (addr) { case 0x00: /* TIPB_CNTL */ s->control = value & 0xffff; break; case 0x04: /* TIPB_BUS_ALLOC */ s->alloc = value & 0x003f; break; case 0x08: /* MPU_TIPB_CNTL */ s->buffer = value & 0x0003; break; case 0x0c: /* ENHANCED_TIPB_CNTL */ s->width_intr = !(value & 2); s->enh_control = value & 0x000f; break; case 0x10: /* ADDRESS_DBG */ case 0x14: /* DATA_DEBUG_LOW */ case 0x18: /* DATA_DEBUG_HIGH */ case 0x1c: /* DEBUG_CNTR_SIG */ OMAP_RO_REG(addr); break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = { omap_badwidth_read16, omap_tipb_bridge_read, omap_tipb_bridge_read, }; static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = { omap_badwidth_write16, omap_tipb_bridge_write, omap_tipb_bridge_write, }; static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s) { s->control = 0xffff; s->alloc = 0x0009; s->buffer = 0x0000; s->enh_control = 0x000f; } struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base, qemu_irq abort_irq, omap_clk clk) { int iomemtype; struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) qemu_mallocz(sizeof(struct omap_tipb_bridge_s)); s->abort = abort_irq; omap_tipb_bridge_reset(s); iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn, omap_tipb_bridge_writefn, s); cpu_register_physical_memory(base, 0x100, iomemtype); return s; } /* Dummy Traffic Controller's Memory Interface */ static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; uint32_t ret; switch (addr) { case 0x00: /* IMIF_PRIO */ case 0x04: /* EMIFS_PRIO */ case 0x08: /* EMIFF_PRIO */ case 0x0c: /* EMIFS_CONFIG */ case 0x10: /* EMIFS_CS0_CONFIG */ case 0x14: /* EMIFS_CS1_CONFIG */ case 0x18: /* EMIFS_CS2_CONFIG */ case 0x1c: /* EMIFS_CS3_CONFIG */ case 0x24: /* EMIFF_MRS */ case 0x28: /* TIMEOUT1 */ case 0x2c: /* TIMEOUT2 */ case 0x30: /* TIMEOUT3 */ case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */ case 0x40: /* EMIFS_CFG_DYN_WAIT */ return s->tcmi_regs[addr >> 2]; case 0x20: /* EMIFF_SDRAM_CONFIG */ ret = s->tcmi_regs[addr >> 2]; s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */ /* XXX: We can try using the VGA_DIRTY flag for this */ return ret; } OMAP_BAD_REG(addr); return 0; } static void omap_tcmi_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; switch (addr) { case 0x00: /* IMIF_PRIO */ case 0x04: /* EMIFS_PRIO */ case 0x08: /* EMIFF_PRIO */ case 0x10: /* EMIFS_CS0_CONFIG */ case 0x14: /* EMIFS_CS1_CONFIG */ case 0x18: /* EMIFS_CS2_CONFIG */ case 0x1c: /* EMIFS_CS3_CONFIG */ case 0x20: /* EMIFF_SDRAM_CONFIG */ case 0x24: /* EMIFF_MRS */ case 0x28: /* TIMEOUT1 */ case 0x2c: /* TIMEOUT2 */ case 0x30: /* TIMEOUT3 */ case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */ case 0x40: /* EMIFS_CFG_DYN_WAIT */ s->tcmi_regs[addr >> 2] = value; break; case 0x0c: /* EMIFS_CONFIG */ s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4); break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_tcmi_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_tcmi_read, }; static CPUWriteMemoryFunc *omap_tcmi_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_tcmi_write, }; static void omap_tcmi_reset(struct omap_mpu_state_s *mpu) { mpu->tcmi_regs[0x00 >> 2] = 0x00000000; mpu->tcmi_regs[0x04 >> 2] = 0x00000000; mpu->tcmi_regs[0x08 >> 2] = 0x00000000; mpu->tcmi_regs[0x0c >> 2] = 0x00000010; mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb; mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb; mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb; mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb; mpu->tcmi_regs[0x20 >> 2] = 0x00618800; mpu->tcmi_regs[0x24 >> 2] = 0x00000037; mpu->tcmi_regs[0x28 >> 2] = 0x00000000; mpu->tcmi_regs[0x2c >> 2] = 0x00000000; mpu->tcmi_regs[0x30 >> 2] = 0x00000000; mpu->tcmi_regs[0x3c >> 2] = 0x00000003; mpu->tcmi_regs[0x40 >> 2] = 0x00000000; } static void omap_tcmi_init(target_phys_addr_t base, struct omap_mpu_state_s *mpu) { int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn, omap_tcmi_writefn, mpu); cpu_register_physical_memory(base, 0x100, iomemtype); omap_tcmi_reset(mpu); } /* Digital phase-locked loops control */ static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr) { struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque; if (addr == 0x00) /* CTL_REG */ return s->mode; OMAP_BAD_REG(addr); return 0; } static void omap_dpll_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque; uint16_t diff; static const int bypass_div[4] = { 1, 2, 4, 4 }; int div, mult; if (addr == 0x00) { /* CTL_REG */ /* See omap_ulpd_pm_write() too */ diff = s->mode & value; s->mode = value & 0x2fff; if (diff & (0x3ff << 2)) { if (value & (1 << 4)) { /* PLL_ENABLE */ div = ((value >> 5) & 3) + 1; /* PLL_DIV */ mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */ } else { div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */ mult = 1; } omap_clk_setrate(s->dpll, div, mult); } /* Enter the desired mode. */ s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1); /* Act as if the lock is restored. */ s->mode |= 2; } else { OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_dpll_readfn[] = { omap_badwidth_read16, omap_dpll_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_dpll_writefn[] = { omap_badwidth_write16, omap_dpll_write, omap_badwidth_write16, }; static void omap_dpll_reset(struct dpll_ctl_s *s) { s->mode = 0x2002; omap_clk_setrate(s->dpll, 1, 1); } static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base, omap_clk clk) { int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn, omap_dpll_writefn, s); s->dpll = clk; omap_dpll_reset(s); cpu_register_physical_memory(base, 0x100, iomemtype); } /* UARTs */ struct omap_uart_s { target_phys_addr_t base; SerialState *serial; /* TODO */ struct omap_target_agent_s *ta; omap_clk fclk; qemu_irq irq; uint8_t eblr; uint8_t syscontrol; uint8_t wkup; uint8_t cfps; uint8_t mdr[2]; uint8_t scr; uint8_t clksel; }; void omap_uart_reset(struct omap_uart_s *s) { s->eblr = 0x00; s->syscontrol = 0; s->wkup = 0x3f; s->cfps = 0x69; s->clksel = 0; } struct omap_uart_s *omap_uart_init(target_phys_addr_t base, qemu_irq irq, omap_clk fclk, omap_clk iclk, qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr) { struct omap_uart_s *s = (struct omap_uart_s *) qemu_mallocz(sizeof(struct omap_uart_s)); s->base = base; s->fclk = fclk; s->irq = irq; s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16, chr ?: qemu_chr_open("null", "null"), 1); return s; } static uint32_t omap_uart_read(void *opaque, target_phys_addr_t addr) { struct omap_uart_s *s = (struct omap_uart_s *) opaque; addr &= 0xff; switch (addr) { case 0x20: /* MDR1 */ return s->mdr[0]; case 0x24: /* MDR2 */ return s->mdr[1]; case 0x40: /* SCR */ return s->scr; case 0x44: /* SSR */ return 0x0; case 0x48: /* EBLR (OMAP2) */ return s->eblr; case 0x4C: /* OSC_12M_SEL (OMAP1) */ return s->clksel; case 0x50: /* MVR */ return 0x30; case 0x54: /* SYSC (OMAP2) */ return s->syscontrol; case 0x58: /* SYSS (OMAP2) */ return 1; case 0x5c: /* WER (OMAP2) */ return s->wkup; case 0x60: /* CFPS (OMAP2) */ return s->cfps; } OMAP_BAD_REG(addr); return 0; } static void omap_uart_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_uart_s *s = (struct omap_uart_s *) opaque; addr &= 0xff; switch (addr) { case 0x20: /* MDR1 */ s->mdr[0] = value & 0x7f; break; case 0x24: /* MDR2 */ s->mdr[1] = value & 0xff; break; case 0x40: /* SCR */ s->scr = value & 0xff; break; case 0x48: /* EBLR (OMAP2) */ s->eblr = value & 0xff; break; case 0x4C: /* OSC_12M_SEL (OMAP1) */ s->clksel = value & 1; break; case 0x44: /* SSR */ case 0x50: /* MVR */ case 0x58: /* SYSS (OMAP2) */ OMAP_RO_REG(addr); break; case 0x54: /* SYSC (OMAP2) */ s->syscontrol = value & 0x1d; if (value & 2) omap_uart_reset(s); break; case 0x5c: /* WER (OMAP2) */ s->wkup = value & 0x7f; break; case 0x60: /* CFPS (OMAP2) */ s->cfps = value & 0xff; break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_uart_readfn[] = { omap_uart_read, omap_uart_read, omap_badwidth_read8, }; static CPUWriteMemoryFunc *omap_uart_writefn[] = { omap_uart_write, omap_uart_write, omap_badwidth_write8, }; struct omap_uart_s *omap2_uart_init(struct omap_target_agent_s *ta, qemu_irq irq, omap_clk fclk, omap_clk iclk, qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr) { target_phys_addr_t base = omap_l4_attach(ta, 0, 0); struct omap_uart_s *s = omap_uart_init(base, irq, fclk, iclk, txdma, rxdma, chr); int iomemtype = cpu_register_io_memory(0, omap_uart_readfn, omap_uart_writefn, s); s->ta = ta; cpu_register_physical_memory(base + 0x20, 0x100, iomemtype); return s; } void omap_uart_attach(struct omap_uart_s *s, CharDriverState *chr) { /* TODO: Should reuse or destroy current s->serial */ s->serial = serial_mm_init(s->base, 2, s->irq, omap_clk_getrate(s->fclk) / 16, chr ?: qemu_chr_open("null", "null"), 1); } /* MPU Clock/Reset/Power Mode Control */ static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; switch (addr) { case 0x00: /* ARM_CKCTL */ return s->clkm.arm_ckctl; case 0x04: /* ARM_IDLECT1 */ return s->clkm.arm_idlect1; case 0x08: /* ARM_IDLECT2 */ return s->clkm.arm_idlect2; case 0x0c: /* ARM_EWUPCT */ return s->clkm.arm_ewupct; case 0x10: /* ARM_RSTCT1 */ return s->clkm.arm_rstct1; case 0x14: /* ARM_RSTCT2 */ return s->clkm.arm_rstct2; case 0x18: /* ARM_SYSST */ return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start; case 0x1c: /* ARM_CKOUT1 */ return s->clkm.arm_ckout1; case 0x20: /* ARM_CKOUT2 */ break; } OMAP_BAD_REG(addr); return 0; } static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { omap_clk clk; if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */ if (value & (1 << 14)) /* Reserved */; else { clk = omap_findclk(s, "arminth_ck"); omap_clk_reparent(clk, omap_findclk(s, "tc_ck")); } } if (diff & (1 << 12)) { /* ARM_TIMXO */ clk = omap_findclk(s, "armtim_ck"); if (value & (1 << 12)) omap_clk_reparent(clk, omap_findclk(s, "clkin")); else omap_clk_reparent(clk, omap_findclk(s, "ck_gen1")); } /* XXX: en_dspck */ if (diff & (3 << 10)) { /* DSPMMUDIV */ clk = omap_findclk(s, "dspmmu_ck"); omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1); } if (diff & (3 << 8)) { /* TCDIV */ clk = omap_findclk(s, "tc_ck"); omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1); } if (diff & (3 << 6)) { /* DSPDIV */ clk = omap_findclk(s, "dsp_ck"); omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1); } if (diff & (3 << 4)) { /* ARMDIV */ clk = omap_findclk(s, "arm_ck"); omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1); } if (diff & (3 << 2)) { /* LCDDIV */ clk = omap_findclk(s, "lcd_ck"); omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1); } if (diff & (3 << 0)) { /* PERDIV */ clk = omap_findclk(s, "armper_ck"); omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1); } } static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { omap_clk clk; if (value & (1 << 11)) /* SETARM_IDLE */ cpu_interrupt(s->env, CPU_INTERRUPT_HALT); if (!(value & (1 << 10))) /* WKUP_MODE */ qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */ #define SET_CANIDLE(clock, bit) \ if (diff & (1 << bit)) { \ clk = omap_findclk(s, clock); \ omap_clk_canidle(clk, (value >> bit) & 1); \ } SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */ SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */ SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */ SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */ SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */ SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */ SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */ SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */ SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */ SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */ SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */ SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */ SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */ SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */ } static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { omap_clk clk; #define SET_ONOFF(clock, bit) \ if (diff & (1 << bit)) { \ clk = omap_findclk(s, clock); \ omap_clk_onoff(clk, (value >> bit) & 1); \ } SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */ SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */ SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */ SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */ SET_ONOFF("lb_ck", 4) /* EN_LBCK */ SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */ SET_ONOFF("mpui_ck", 6) /* EN_APICK */ SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */ SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */ SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */ SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */ } static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { omap_clk clk; if (diff & (3 << 4)) { /* TCLKOUT */ clk = omap_findclk(s, "tclk_out"); switch ((value >> 4) & 3) { case 1: omap_clk_reparent(clk, omap_findclk(s, "ck_gen3")); omap_clk_onoff(clk, 1); break; case 2: omap_clk_reparent(clk, omap_findclk(s, "tc_ck")); omap_clk_onoff(clk, 1); break; default: omap_clk_onoff(clk, 0); } } if (diff & (3 << 2)) { /* DCLKOUT */ clk = omap_findclk(s, "dclk_out"); switch ((value >> 2) & 3) { case 0: omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck")); break; case 1: omap_clk_reparent(clk, omap_findclk(s, "ck_gen2")); break; case 2: omap_clk_reparent(clk, omap_findclk(s, "dsp_ck")); break; case 3: omap_clk_reparent(clk, omap_findclk(s, "ck_ref14")); break; } } if (diff & (3 << 0)) { /* ACLKOUT */ clk = omap_findclk(s, "aclk_out"); switch ((value >> 0) & 3) { case 1: omap_clk_reparent(clk, omap_findclk(s, "ck_gen1")); omap_clk_onoff(clk, 1); break; case 2: omap_clk_reparent(clk, omap_findclk(s, "arm_ck")); omap_clk_onoff(clk, 1); break; case 3: omap_clk_reparent(clk, omap_findclk(s, "ck_ref14")); omap_clk_onoff(clk, 1); break; default: omap_clk_onoff(clk, 0); } } } static void omap_clkm_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; uint16_t diff; omap_clk clk; static const char *clkschemename[8] = { "fully synchronous", "fully asynchronous", "synchronous scalable", "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4", }; switch (addr) { case 0x00: /* ARM_CKCTL */ diff = s->clkm.arm_ckctl ^ value; s->clkm.arm_ckctl = value & 0x7fff; omap_clkm_ckctl_update(s, diff, value); return; case 0x04: /* ARM_IDLECT1 */ diff = s->clkm.arm_idlect1 ^ value; s->clkm.arm_idlect1 = value & 0x0fff; omap_clkm_idlect1_update(s, diff, value); return; case 0x08: /* ARM_IDLECT2 */ diff = s->clkm.arm_idlect2 ^ value; s->clkm.arm_idlect2 = value & 0x07ff; omap_clkm_idlect2_update(s, diff, value); return; case 0x0c: /* ARM_EWUPCT */ diff = s->clkm.arm_ewupct ^ value; s->clkm.arm_ewupct = value & 0x003f; return; case 0x10: /* ARM_RSTCT1 */ diff = s->clkm.arm_rstct1 ^ value; s->clkm.arm_rstct1 = value & 0x0007; if (value & 9) { qemu_system_reset_request(); s->clkm.cold_start = 0xa; } if (diff & ~value & 4) { /* DSP_RST */ omap_mpui_reset(s); omap_tipb_bridge_reset(s->private_tipb); omap_tipb_bridge_reset(s->public_tipb); } if (diff & 2) { /* DSP_EN */ clk = omap_findclk(s, "dsp_ck"); omap_clk_canidle(clk, (~value >> 1) & 1); } return; case 0x14: /* ARM_RSTCT2 */ s->clkm.arm_rstct2 = value & 0x0001; return; case 0x18: /* ARM_SYSST */ if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) { s->clkm.clocking_scheme = (value >> 11) & 7; printf("%s: clocking scheme set to %s\n", __FUNCTION__, clkschemename[s->clkm.clocking_scheme]); } s->clkm.cold_start &= value & 0x3f; return; case 0x1c: /* ARM_CKOUT1 */ diff = s->clkm.arm_ckout1 ^ value; s->clkm.arm_ckout1 = value & 0x003f; omap_clkm_ckout1_update(s, diff, value); return; case 0x20: /* ARM_CKOUT2 */ default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_clkm_readfn[] = { omap_badwidth_read16, omap_clkm_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_clkm_writefn[] = { omap_badwidth_write16, omap_clkm_write, omap_badwidth_write16, }; static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; switch (addr) { case 0x04: /* DSP_IDLECT1 */ return s->clkm.dsp_idlect1; case 0x08: /* DSP_IDLECT2 */ return s->clkm.dsp_idlect2; case 0x14: /* DSP_RSTCT2 */ return s->clkm.dsp_rstct2; case 0x18: /* DSP_SYSST */ return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start | (s->env->halted << 6); /* Quite useless... */ } OMAP_BAD_REG(addr); return 0; } static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { omap_clk clk; SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */ } static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { omap_clk clk; SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */ } static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; uint16_t diff; switch (addr) { case 0x04: /* DSP_IDLECT1 */ diff = s->clkm.dsp_idlect1 ^ value; s->clkm.dsp_idlect1 = value & 0x01f7; omap_clkdsp_idlect1_update(s, diff, value); break; case 0x08: /* DSP_IDLECT2 */ s->clkm.dsp_idlect2 = value & 0x0037; diff = s->clkm.dsp_idlect1 ^ value; omap_clkdsp_idlect2_update(s, diff, value); break; case 0x14: /* DSP_RSTCT2 */ s->clkm.dsp_rstct2 = value & 0x0001; break; case 0x18: /* DSP_SYSST */ s->clkm.cold_start &= value & 0x3f; break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_clkdsp_readfn[] = { omap_badwidth_read16, omap_clkdsp_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = { omap_badwidth_write16, omap_clkdsp_write, omap_badwidth_write16, }; static void omap_clkm_reset(struct omap_mpu_state_s *s) { if (s->wdt && s->wdt->reset) s->clkm.cold_start = 0x6; s->clkm.clocking_scheme = 0; omap_clkm_ckctl_update(s, ~0, 0x3000); s->clkm.arm_ckctl = 0x3000; omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400); s->clkm.arm_idlect1 = 0x0400; omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100); s->clkm.arm_idlect2 = 0x0100; s->clkm.arm_ewupct = 0x003f; s->clkm.arm_rstct1 = 0x0000; s->clkm.arm_rstct2 = 0x0000; s->clkm.arm_ckout1 = 0x0015; s->clkm.dpll1_mode = 0x2002; omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040); s->clkm.dsp_idlect1 = 0x0040; omap_clkdsp_idlect2_update(s, ~0, 0x0000); s->clkm.dsp_idlect2 = 0x0000; s->clkm.dsp_rstct2 = 0x0000; } static void omap_clkm_init(target_phys_addr_t mpu_base, target_phys_addr_t dsp_base, struct omap_mpu_state_s *s) { int iomemtype[2] = { cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s), cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s), }; s->clkm.arm_idlect1 = 0x03ff; s->clkm.arm_idlect2 = 0x0100; s->clkm.dsp_idlect1 = 0x0002; omap_clkm_reset(s); s->clkm.cold_start = 0x3a; cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]); cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]); } /* MPU I/O */ struct omap_mpuio_s { qemu_irq irq; qemu_irq kbd_irq; qemu_irq *in; qemu_irq handler[16]; qemu_irq wakeup; uint16_t inputs; uint16_t outputs; uint16_t dir; uint16_t edge; uint16_t mask; uint16_t ints; uint16_t debounce; uint16_t latch; uint8_t event; uint8_t buttons[5]; uint8_t row_latch; uint8_t cols; int kbd_mask; int clk; }; static void omap_mpuio_set(void *opaque, int line, int level) { struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; uint16_t prev = s->inputs; if (level) s->inputs |= 1 << line; else s->inputs &= ~(1 << line); if (((1 << line) & s->dir & ~s->mask) && s->clk) { if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) { s->ints |= 1 << line; qemu_irq_raise(s->irq); /* TODO: wakeup */ } if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */ (s->event >> 1) == line) /* PIN_SELECT */ s->latch = s->inputs; } } static void omap_mpuio_kbd_update(struct omap_mpuio_s *s) { int i; uint8_t *row, rows = 0, cols = ~s->cols; for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1) if (*row & cols) rows |= i; qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk); s->row_latch = ~rows; } static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr) { struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; uint16_t ret; switch (offset) { case 0x00: /* INPUT_LATCH */ return s->inputs; case 0x04: /* OUTPUT_REG */ return s->outputs; case 0x08: /* IO_CNTL */ return s->dir; case 0x10: /* KBR_LATCH */ return s->row_latch; case 0x14: /* KBC_REG */ return s->cols; case 0x18: /* GPIO_EVENT_MODE_REG */ return s->event; case 0x1c: /* GPIO_INT_EDGE_REG */ return s->edge; case 0x20: /* KBD_INT */ return (~s->row_latch & 0x1f) && !s->kbd_mask; case 0x24: /* GPIO_INT */ ret = s->ints; s->ints &= s->mask; if (ret) qemu_irq_lower(s->irq); return ret; case 0x28: /* KBD_MASKIT */ return s->kbd_mask; case 0x2c: /* GPIO_MASKIT */ return s->mask; case 0x30: /* GPIO_DEBOUNCING_REG */ return s->debounce; case 0x34: /* GPIO_LATCH_REG */ return s->latch; } OMAP_BAD_REG(addr); return 0; } static void omap_mpuio_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; uint16_t diff; int ln; switch (offset) { case 0x04: /* OUTPUT_REG */ diff = (s->outputs ^ value) & ~s->dir; s->outputs = value; while ((ln = ffs(diff))) { ln --; if (s->handler[ln]) qemu_set_irq(s->handler[ln], (value >> ln) & 1); diff &= ~(1 << ln); } break; case 0x08: /* IO_CNTL */ diff = s->outputs & (s->dir ^ value); s->dir = value; value = s->outputs & ~s->dir; while ((ln = ffs(diff))) { ln --; if (s->handler[ln]) qemu_set_irq(s->handler[ln], (value >> ln) & 1); diff &= ~(1 << ln); } break; case 0x14: /* KBC_REG */ s->cols = value; omap_mpuio_kbd_update(s); break; case 0x18: /* GPIO_EVENT_MODE_REG */ s->event = value & 0x1f; break; case 0x1c: /* GPIO_INT_EDGE_REG */ s->edge = value; break; case 0x28: /* KBD_MASKIT */ s->kbd_mask = value & 1; omap_mpuio_kbd_update(s); break; case 0x2c: /* GPIO_MASKIT */ s->mask = value; break; case 0x30: /* GPIO_DEBOUNCING_REG */ s->debounce = value & 0x1ff; break; case 0x00: /* INPUT_LATCH */ case 0x10: /* KBR_LATCH */ case 0x20: /* KBD_INT */ case 0x24: /* GPIO_INT */ case 0x34: /* GPIO_LATCH_REG */ OMAP_RO_REG(addr); return; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_mpuio_readfn[] = { omap_badwidth_read16, omap_mpuio_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_mpuio_writefn[] = { omap_badwidth_write16, omap_mpuio_write, omap_badwidth_write16, }; static void omap_mpuio_reset(struct omap_mpuio_s *s) { s->inputs = 0; s->outputs = 0; s->dir = ~0; s->event = 0; s->edge = 0; s->kbd_mask = 0; s->mask = 0; s->debounce = 0; s->latch = 0; s->ints = 0; s->row_latch = 0x1f; s->clk = 1; } static void omap_mpuio_onoff(void *opaque, int line, int on) { struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; s->clk = on; if (on) omap_mpuio_kbd_update(s); } struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base, qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup, omap_clk clk) { int iomemtype; struct omap_mpuio_s *s = (struct omap_mpuio_s *) qemu_mallocz(sizeof(struct omap_mpuio_s)); s->irq = gpio_int; s->kbd_irq = kbd_int; s->wakeup = wakeup; s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16); omap_mpuio_reset(s); iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn, omap_mpuio_writefn, s); cpu_register_physical_memory(base, 0x800, iomemtype); omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]); return s; } qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s) { return s->in; } void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler) { if (line >= 16 || line < 0) cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line); s->handler[line] = handler; } void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down) { if (row >= 5 || row < 0) cpu_abort(cpu_single_env, "%s: No key %i-%i\n", __FUNCTION__, col, row); if (down) s->buttons[row] |= 1 << col; else s->buttons[row] &= ~(1 << col); omap_mpuio_kbd_update(s); } /* General-Purpose I/O */ struct omap_gpio_s { qemu_irq irq; qemu_irq *in; qemu_irq handler[16]; uint16_t inputs; uint16_t outputs; uint16_t dir; uint16_t edge; uint16_t mask; uint16_t ints; uint16_t pins; }; static void omap_gpio_set(void *opaque, int line, int level) { struct omap_gpio_s *s = (struct omap_gpio_s *) opaque; uint16_t prev = s->inputs; if (level) s->inputs |= 1 << line; else s->inputs &= ~(1 << line); if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) & (1 << line) & s->dir & ~s->mask) { s->ints |= 1 << line; qemu_irq_raise(s->irq); } } static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr) { struct omap_gpio_s *s = (struct omap_gpio_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* DATA_INPUT */ return s->inputs & s->pins; case 0x04: /* DATA_OUTPUT */ return s->outputs; case 0x08: /* DIRECTION_CONTROL */ return s->dir; case 0x0c: /* INTERRUPT_CONTROL */ return s->edge; case 0x10: /* INTERRUPT_MASK */ return s->mask; case 0x14: /* INTERRUPT_STATUS */ return s->ints; case 0x18: /* PIN_CONTROL (not in OMAP310) */ OMAP_BAD_REG(addr); return s->pins; } OMAP_BAD_REG(addr); return 0; } static void omap_gpio_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_gpio_s *s = (struct omap_gpio_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; uint16_t diff; int ln; switch (offset) { case 0x00: /* DATA_INPUT */ OMAP_RO_REG(addr); return; case 0x04: /* DATA_OUTPUT */ diff = (s->outputs ^ value) & ~s->dir; s->outputs = value; while ((ln = ffs(diff))) { ln --; if (s->handler[ln]) qemu_set_irq(s->handler[ln], (value >> ln) & 1); diff &= ~(1 << ln); } break; case 0x08: /* DIRECTION_CONTROL */ diff = s->outputs & (s->dir ^ value); s->dir = value; value = s->outputs & ~s->dir; while ((ln = ffs(diff))) { ln --; if (s->handler[ln]) qemu_set_irq(s->handler[ln], (value >> ln) & 1); diff &= ~(1 << ln); } break; case 0x0c: /* INTERRUPT_CONTROL */ s->edge = value; break; case 0x10: /* INTERRUPT_MASK */ s->mask = value; break; case 0x14: /* INTERRUPT_STATUS */ s->ints &= ~value; if (!s->ints) qemu_irq_lower(s->irq); break; case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */ OMAP_BAD_REG(addr); s->pins = value; break; default: OMAP_BAD_REG(addr); return; } } /* *Some* sources say the memory region is 32-bit. */ static CPUReadMemoryFunc *omap_gpio_readfn[] = { omap_badwidth_read16, omap_gpio_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_gpio_writefn[] = { omap_badwidth_write16, omap_gpio_write, omap_badwidth_write16, }; static void omap_gpio_reset(struct omap_gpio_s *s) { s->inputs = 0; s->outputs = ~0; s->dir = ~0; s->edge = ~0; s->mask = ~0; s->ints = 0; s->pins = ~0; } struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base, qemu_irq irq, omap_clk clk) { int iomemtype; struct omap_gpio_s *s = (struct omap_gpio_s *) qemu_mallocz(sizeof(struct omap_gpio_s)); s->irq = irq; s->in = qemu_allocate_irqs(omap_gpio_set, s, 16); omap_gpio_reset(s); iomemtype = cpu_register_io_memory(0, omap_gpio_readfn, omap_gpio_writefn, s); cpu_register_physical_memory(base, 0x1000, iomemtype); return s; } qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s) { return s->in; } void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler) { if (line >= 16 || line < 0) cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line); s->handler[line] = handler; } /* MicroWire Interface */ struct omap_uwire_s { qemu_irq txirq; qemu_irq rxirq; qemu_irq txdrq; uint16_t txbuf; uint16_t rxbuf; uint16_t control; uint16_t setup[5]; struct uwire_slave_s *chip[4]; }; static void omap_uwire_transfer_start(struct omap_uwire_s *s) { int chipselect = (s->control >> 10) & 3; /* INDEX */ struct uwire_slave_s *slave = s->chip[chipselect]; if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */ if (s->control & (1 << 12)) /* CS_CMD */ if (slave && slave->send) slave->send(slave->opaque, s->txbuf >> (16 - ((s->control >> 5) & 0x1f))); s->control &= ~(1 << 14); /* CSRB */ /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or * a DRQ. When is the level IRQ supposed to be reset? */ } if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */ if (s->control & (1 << 12)) /* CS_CMD */ if (slave && slave->receive) s->rxbuf = slave->receive(slave->opaque); s->control |= 1 << 15; /* RDRB */ /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or * a DRQ. When is the level IRQ supposed to be reset? */ } } static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr) { struct omap_uwire_s *s = (struct omap_uwire_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* RDR */ s->control &= ~(1 << 15); /* RDRB */ return s->rxbuf; case 0x04: /* CSR */ return s->control; case 0x08: /* SR1 */ return s->setup[0]; case 0x0c: /* SR2 */ return s->setup[1]; case 0x10: /* SR3 */ return s->setup[2]; case 0x14: /* SR4 */ return s->setup[3]; case 0x18: /* SR5 */ return s->setup[4]; } OMAP_BAD_REG(addr); return 0; } static void omap_uwire_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_uwire_s *s = (struct omap_uwire_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* TDR */ s->txbuf = value; /* TD */ if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */ ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */ (s->control & (1 << 12)))) { /* CS_CMD */ s->control |= 1 << 14; /* CSRB */ omap_uwire_transfer_start(s); } break; case 0x04: /* CSR */ s->control = value & 0x1fff; if (value & (1 << 13)) /* START */ omap_uwire_transfer_start(s); break; case 0x08: /* SR1 */ s->setup[0] = value & 0x003f; break; case 0x0c: /* SR2 */ s->setup[1] = value & 0x0fc0; break; case 0x10: /* SR3 */ s->setup[2] = value & 0x0003; break; case 0x14: /* SR4 */ s->setup[3] = value & 0x0001; break; case 0x18: /* SR5 */ s->setup[4] = value & 0x000f; break; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_uwire_readfn[] = { omap_badwidth_read16, omap_uwire_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_uwire_writefn[] = { omap_badwidth_write16, omap_uwire_write, omap_badwidth_write16, }; static void omap_uwire_reset(struct omap_uwire_s *s) { s->control = 0; s->setup[0] = 0; s->setup[1] = 0; s->setup[2] = 0; s->setup[3] = 0; s->setup[4] = 0; } struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base, qemu_irq *irq, qemu_irq dma, omap_clk clk) { int iomemtype; struct omap_uwire_s *s = (struct omap_uwire_s *) qemu_mallocz(sizeof(struct omap_uwire_s)); s->txirq = irq[0]; s->rxirq = irq[1]; s->txdrq = dma; omap_uwire_reset(s); iomemtype = cpu_register_io_memory(0, omap_uwire_readfn, omap_uwire_writefn, s); cpu_register_physical_memory(base, 0x800, iomemtype); return s; } void omap_uwire_attach(struct omap_uwire_s *s, struct uwire_slave_s *slave, int chipselect) { if (chipselect < 0 || chipselect > 3) { fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect); exit(-1); } s->chip[chipselect] = slave; } /* Pseudonoise Pulse-Width Light Modulator */ static void omap_pwl_update(struct omap_mpu_state_s *s) { int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0; if (output != s->pwl.output) { s->pwl.output = output; printf("%s: Backlight now at %i/256\n", __FUNCTION__, output); } } static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* PWL_LEVEL */ return s->pwl.level; case 0x04: /* PWL_CTRL */ return s->pwl.enable; } OMAP_BAD_REG(addr); return 0; } static void omap_pwl_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* PWL_LEVEL */ s->pwl.level = value; omap_pwl_update(s); break; case 0x04: /* PWL_CTRL */ s->pwl.enable = value & 1; omap_pwl_update(s); break; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_pwl_readfn[] = { omap_pwl_read, omap_badwidth_read8, omap_badwidth_read8, }; static CPUWriteMemoryFunc *omap_pwl_writefn[] = { omap_pwl_write, omap_badwidth_write8, omap_badwidth_write8, }; static void omap_pwl_reset(struct omap_mpu_state_s *s) { s->pwl.output = 0; s->pwl.level = 0; s->pwl.enable = 0; s->pwl.clk = 1; omap_pwl_update(s); } static void omap_pwl_clk_update(void *opaque, int line, int on) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; s->pwl.clk = on; omap_pwl_update(s); } static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s, omap_clk clk) { int iomemtype; omap_pwl_reset(s); iomemtype = cpu_register_io_memory(0, omap_pwl_readfn, omap_pwl_writefn, s); cpu_register_physical_memory(base, 0x800, iomemtype); omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]); } /* Pulse-Width Tone module */ static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* FRC */ return s->pwt.frc; case 0x04: /* VCR */ return s->pwt.vrc; case 0x08: /* GCR */ return s->pwt.gcr; } OMAP_BAD_REG(addr); return 0; } static void omap_pwt_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* FRC */ s->pwt.frc = value & 0x3f; break; case 0x04: /* VRC */ if ((value ^ s->pwt.vrc) & 1) { if (value & 1) printf("%s: %iHz buzz on\n", __FUNCTION__, (int) /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */ ((omap_clk_getrate(s->pwt.clk) >> 3) / /* Pre-multiplexer divider */ ((s->pwt.gcr & 2) ? 1 : 154) / /* Octave multiplexer */ (2 << (value & 3)) * /* 101/107 divider */ ((value & (1 << 2)) ? 101 : 107) * /* 49/55 divider */ ((value & (1 << 3)) ? 49 : 55) * /* 50/63 divider */ ((value & (1 << 4)) ? 50 : 63) * /* 80/127 divider */ ((value & (1 << 5)) ? 80 : 127) / (107 * 55 * 63 * 127))); else printf("%s: silence!\n", __FUNCTION__); } s->pwt.vrc = value & 0x7f; break; case 0x08: /* GCR */ s->pwt.gcr = value & 3; break; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_pwt_readfn[] = { omap_pwt_read, omap_badwidth_read8, omap_badwidth_read8, }; static CPUWriteMemoryFunc *omap_pwt_writefn[] = { omap_pwt_write, omap_badwidth_write8, omap_badwidth_write8, }; static void omap_pwt_reset(struct omap_mpu_state_s *s) { s->pwt.frc = 0; s->pwt.vrc = 0; s->pwt.gcr = 0; } static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s, omap_clk clk) { int iomemtype; s->pwt.clk = clk; omap_pwt_reset(s); iomemtype = cpu_register_io_memory(0, omap_pwt_readfn, omap_pwt_writefn, s); cpu_register_physical_memory(base, 0x800, iomemtype); } /* Real-time Clock module */ struct omap_rtc_s { qemu_irq irq; qemu_irq alarm; QEMUTimer *clk; uint8_t interrupts; uint8_t status; int16_t comp_reg; int running; int pm_am; int auto_comp; int round; struct tm alarm_tm; time_t alarm_ti; struct tm current_tm; time_t ti; uint64_t tick; }; static void omap_rtc_interrupts_update(struct omap_rtc_s *s) { /* s->alarm is level-triggered */ qemu_set_irq(s->alarm, (s->status >> 6) & 1); } static void omap_rtc_alarm_update(struct omap_rtc_s *s) { s->alarm_ti = mktimegm(&s->alarm_tm); if (s->alarm_ti == -1) printf("%s: conversion failed\n", __FUNCTION__); } static inline uint8_t omap_rtc_bcd(int num) { return ((num / 10) << 4) | (num % 10); } static inline int omap_rtc_bin(uint8_t num) { return (num & 15) + 10 * (num >> 4); } static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr) { struct omap_rtc_s *s = (struct omap_rtc_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; uint8_t i; switch (offset) { case 0x00: /* SECONDS_REG */ return omap_rtc_bcd(s->current_tm.tm_sec); case 0x04: /* MINUTES_REG */ return omap_rtc_bcd(s->current_tm.tm_min); case 0x08: /* HOURS_REG */ if (s->pm_am) return ((s->current_tm.tm_hour > 11) << 7) | omap_rtc_bcd(((s->current_tm.tm_hour - 1) % 12) + 1); else return omap_rtc_bcd(s->current_tm.tm_hour); case 0x0c: /* DAYS_REG */ return omap_rtc_bcd(s->current_tm.tm_mday); case 0x10: /* MONTHS_REG */ return omap_rtc_bcd(s->current_tm.tm_mon + 1); case 0x14: /* YEARS_REG */ return omap_rtc_bcd(s->current_tm.tm_year % 100); case 0x18: /* WEEK_REG */ return s->current_tm.tm_wday; case 0x20: /* ALARM_SECONDS_REG */ return omap_rtc_bcd(s->alarm_tm.tm_sec); case 0x24: /* ALARM_MINUTES_REG */ return omap_rtc_bcd(s->alarm_tm.tm_min); case 0x28: /* ALARM_HOURS_REG */ if (s->pm_am) return ((s->alarm_tm.tm_hour > 11) << 7) | omap_rtc_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1); else return omap_rtc_bcd(s->alarm_tm.tm_hour); case 0x2c: /* ALARM_DAYS_REG */ return omap_rtc_bcd(s->alarm_tm.tm_mday); case 0x30: /* ALARM_MONTHS_REG */ return omap_rtc_bcd(s->alarm_tm.tm_mon + 1); case 0x34: /* ALARM_YEARS_REG */ return omap_rtc_bcd(s->alarm_tm.tm_year % 100); case 0x40: /* RTC_CTRL_REG */ return (s->pm_am << 3) | (s->auto_comp << 2) | (s->round << 1) | s->running; case 0x44: /* RTC_STATUS_REG */ i = s->status; s->status &= ~0x3d; return i; case 0x48: /* RTC_INTERRUPTS_REG */ return s->interrupts; case 0x4c: /* RTC_COMP_LSB_REG */ return ((uint16_t) s->comp_reg) & 0xff; case 0x50: /* RTC_COMP_MSB_REG */ return ((uint16_t) s->comp_reg) >> 8; } OMAP_BAD_REG(addr); return 0; } static void omap_rtc_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_rtc_s *s = (struct omap_rtc_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; struct tm new_tm; time_t ti[2]; switch (offset) { case 0x00: /* SECONDS_REG */ #ifdef ALMDEBUG printf("RTC SEC_REG <-- %02x\n", value); #endif s->ti -= s->current_tm.tm_sec; s->ti += omap_rtc_bin(value); return; case 0x04: /* MINUTES_REG */ #ifdef ALMDEBUG printf("RTC MIN_REG <-- %02x\n", value); #endif s->ti -= s->current_tm.tm_min * 60; s->ti += omap_rtc_bin(value) * 60; return; case 0x08: /* HOURS_REG */ #ifdef ALMDEBUG printf("RTC HRS_REG <-- %02x\n", value); #endif s->ti -= s->current_tm.tm_hour * 3600; if (s->pm_am) { s->ti += (omap_rtc_bin(value & 0x3f) & 12) * 3600; s->ti += ((value >> 7) & 1) * 43200; } else s->ti += omap_rtc_bin(value & 0x3f) * 3600; return; case 0x0c: /* DAYS_REG */ #ifdef ALMDEBUG printf("RTC DAY_REG <-- %02x\n", value); #endif s->ti -= s->current_tm.tm_mday * 86400; s->ti += omap_rtc_bin(value) * 86400; return; case 0x10: /* MONTHS_REG */ #ifdef ALMDEBUG printf("RTC MTH_REG <-- %02x\n", value); #endif memcpy(&new_tm, &s->current_tm, sizeof(new_tm)); new_tm.tm_mon = omap_rtc_bin(value); ti[0] = mktimegm(&s->current_tm); ti[1] = mktimegm(&new_tm); if (ti[0] != -1 && ti[1] != -1) { s->ti -= ti[0]; s->ti += ti[1]; } else { /* A less accurate version */ s->ti -= s->current_tm.tm_mon * 2592000; s->ti += omap_rtc_bin(value) * 2592000; } return; case 0x14: /* YEARS_REG */ #ifdef ALMDEBUG printf("RTC YRS_REG <-- %02x\n", value); #endif memcpy(&new_tm, &s->current_tm, sizeof(new_tm)); new_tm.tm_year += omap_rtc_bin(value) - (new_tm.tm_year % 100); ti[0] = mktimegm(&s->current_tm); ti[1] = mktimegm(&new_tm); if (ti[0] != -1 && ti[1] != -1) { s->ti -= ti[0]; s->ti += ti[1]; } else { /* A less accurate version */ s->ti -= (s->current_tm.tm_year % 100) * 31536000; s->ti += omap_rtc_bin(value) * 31536000; } return; case 0x18: /* WEEK_REG */ return; /* Ignored */ case 0x20: /* ALARM_SECONDS_REG */ #ifdef ALMDEBUG printf("ALM SEC_REG <-- %02x\n", value); #endif s->alarm_tm.tm_sec = omap_rtc_bin(value); omap_rtc_alarm_update(s); return; case 0x24: /* ALARM_MINUTES_REG */ #ifdef ALMDEBUG printf("ALM MIN_REG <-- %02x\n", value); #endif s->alarm_tm.tm_min = omap_rtc_bin(value); omap_rtc_alarm_update(s); return; case 0x28: /* ALARM_HOURS_REG */ #ifdef ALMDEBUG printf("ALM HRS_REG <-- %02x\n", value); #endif if (s->pm_am) s->alarm_tm.tm_hour = ((omap_rtc_bin(value & 0x3f)) % 12) + ((value >> 7) & 1) * 12; else s->alarm_tm.tm_hour = omap_rtc_bin(value); omap_rtc_alarm_update(s); return; case 0x2c: /* ALARM_DAYS_REG */ #ifdef ALMDEBUG printf("ALM DAY_REG <-- %02x\n", value); #endif s->alarm_tm.tm_mday = omap_rtc_bin(value); omap_rtc_alarm_update(s); return; case 0x30: /* ALARM_MONTHS_REG */ #ifdef ALMDEBUG printf("ALM MON_REG <-- %02x\n", value); #endif s->alarm_tm.tm_mon = omap_rtc_bin(value); omap_rtc_alarm_update(s); return; case 0x34: /* ALARM_YEARS_REG */ #ifdef ALMDEBUG printf("ALM YRS_REG <-- %02x\n", value); #endif s->alarm_tm.tm_year = omap_rtc_bin(value); omap_rtc_alarm_update(s); return; case 0x40: /* RTC_CTRL_REG */ #ifdef ALMDEBUG printf("RTC CONTROL <-- %02x\n", value); #endif s->pm_am = (value >> 3) & 1; s->auto_comp = (value >> 2) & 1; s->round = (value >> 1) & 1; s->running = value & 1; s->status &= 0xfd; s->status |= s->running << 1; return; case 0x44: /* RTC_STATUS_REG */ #ifdef ALMDEBUG printf("RTC STATUSL <-- %02x\n", value); #endif s->status &= ~((value & 0xc0) ^ 0x80); omap_rtc_interrupts_update(s); return; case 0x48: /* RTC_INTERRUPTS_REG */ #ifdef ALMDEBUG printf("RTC INTRS <-- %02x\n", value); #endif s->interrupts = value; return; case 0x4c: /* RTC_COMP_LSB_REG */ #ifdef ALMDEBUG printf("RTC COMPLSB <-- %02x\n", value); #endif s->comp_reg &= 0xff00; s->comp_reg |= 0x00ff & value; return; case 0x50: /* RTC_COMP_MSB_REG */ #ifdef ALMDEBUG printf("RTC COMPMSB <-- %02x\n", value); #endif s->comp_reg &= 0x00ff; s->comp_reg |= 0xff00 & (value << 8); return; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_rtc_readfn[] = { omap_rtc_read, omap_badwidth_read8, omap_badwidth_read8, }; static CPUWriteMemoryFunc *omap_rtc_writefn[] = { omap_rtc_write, omap_badwidth_write8, omap_badwidth_write8, }; static void omap_rtc_tick(void *opaque) { struct omap_rtc_s *s = opaque; if (s->round) { /* Round to nearest full minute. */ if (s->current_tm.tm_sec < 30) s->ti -= s->current_tm.tm_sec; else s->ti += 60 - s->current_tm.tm_sec; s->round = 0; } memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm)); if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) { s->status |= 0x40; omap_rtc_interrupts_update(s); } if (s->interrupts & 0x04) switch (s->interrupts & 3) { case 0: s->status |= 0x04; qemu_irq_pulse(s->irq); break; case 1: if (s->current_tm.tm_sec) break; s->status |= 0x08; qemu_irq_pulse(s->irq); break; case 2: if (s->current_tm.tm_sec || s->current_tm.tm_min) break; s->status |= 0x10; qemu_irq_pulse(s->irq); break; case 3: if (s->current_tm.tm_sec || s->current_tm.tm_min || s->current_tm.tm_hour) break; s->status |= 0x20; qemu_irq_pulse(s->irq); break; } /* Move on */ if (s->running) s->ti ++; s->tick += 1000; /* * Every full hour add a rough approximation of the compensation * register to the 32kHz Timer (which drives the RTC) value. */ if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min) s->tick += s->comp_reg * 1000 / 32768; qemu_mod_timer(s->clk, s->tick); } static void omap_rtc_reset(struct omap_rtc_s *s) { struct tm tm; s->interrupts = 0; s->comp_reg = 0; s->running = 0; s->pm_am = 0; s->auto_comp = 0; s->round = 0; s->tick = qemu_get_clock(rt_clock); memset(&s->alarm_tm, 0, sizeof(s->alarm_tm)); s->alarm_tm.tm_mday = 0x01; s->status = 1 << 7; qemu_get_timedate(&tm, 0); s->ti = mktimegm(&tm); omap_rtc_alarm_update(s); omap_rtc_tick(s); } struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base, qemu_irq *irq, omap_clk clk) { int iomemtype; struct omap_rtc_s *s = (struct omap_rtc_s *) qemu_mallocz(sizeof(struct omap_rtc_s)); s->irq = irq[0]; s->alarm = irq[1]; s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s); omap_rtc_reset(s); iomemtype = cpu_register_io_memory(0, omap_rtc_readfn, omap_rtc_writefn, s); cpu_register_physical_memory(base, 0x800, iomemtype); return s; } /* Multi-channel Buffered Serial Port interfaces */ struct omap_mcbsp_s { qemu_irq txirq; qemu_irq rxirq; qemu_irq txdrq; qemu_irq rxdrq; uint16_t spcr[2]; uint16_t rcr[2]; uint16_t xcr[2]; uint16_t srgr[2]; uint16_t mcr[2]; uint16_t pcr; uint16_t rcer[8]; uint16_t xcer[8]; int tx_rate; int rx_rate; int tx_req; int rx_req; struct i2s_codec_s *codec; QEMUTimer *source_timer; QEMUTimer *sink_timer; }; static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s) { int irq; switch ((s->spcr[0] >> 4) & 3) { /* RINTM */ case 0: irq = (s->spcr[0] >> 1) & 1; /* RRDY */ break; case 3: irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */ break; default: irq = 0; break; } if (irq) qemu_irq_pulse(s->rxirq); switch ((s->spcr[1] >> 4) & 3) { /* XINTM */ case 0: irq = (s->spcr[1] >> 1) & 1; /* XRDY */ break; case 3: irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */ break; default: irq = 0; break; } if (irq) qemu_irq_pulse(s->txirq); } static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s) { if ((s->spcr[0] >> 1) & 1) /* RRDY */ s->spcr[0] |= 1 << 2; /* RFULL */ s->spcr[0] |= 1 << 1; /* RRDY */ qemu_irq_raise(s->rxdrq); omap_mcbsp_intr_update(s); } static void omap_mcbsp_source_tick(void *opaque) { struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 }; if (!s->rx_rate) return; if (s->rx_req) printf("%s: Rx FIFO overrun\n", __FUNCTION__); s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7]; omap_mcbsp_rx_newdata(s); qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) + ticks_per_sec); } static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s) { if (!s->codec || !s->codec->rts) omap_mcbsp_source_tick(s); else if (s->codec->in.len) { s->rx_req = s->codec->in.len; omap_mcbsp_rx_newdata(s); } } static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s) { qemu_del_timer(s->source_timer); } static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s) { s->spcr[0] &= ~(1 << 1); /* RRDY */ qemu_irq_lower(s->rxdrq); omap_mcbsp_intr_update(s); } static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s) { s->spcr[1] |= 1 << 1; /* XRDY */ qemu_irq_raise(s->txdrq); omap_mcbsp_intr_update(s); } static void omap_mcbsp_sink_tick(void *opaque) { struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 }; if (!s->tx_rate) return; if (s->tx_req) printf("%s: Tx FIFO underrun\n", __FUNCTION__); s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7]; omap_mcbsp_tx_newdata(s); qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) + ticks_per_sec); } static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s) { if (!s->codec || !s->codec->cts) omap_mcbsp_sink_tick(s); else if (s->codec->out.size) { s->tx_req = s->codec->out.size; omap_mcbsp_tx_newdata(s); } } static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s) { s->spcr[1] &= ~(1 << 1); /* XRDY */ qemu_irq_lower(s->txdrq); omap_mcbsp_intr_update(s); if (s->codec && s->codec->cts) s->codec->tx_swallow(s->codec->opaque); } static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s) { s->tx_req = 0; omap_mcbsp_tx_done(s); qemu_del_timer(s->sink_timer); } static void omap_mcbsp_req_update(struct omap_mcbsp_s *s) { int prev_rx_rate, prev_tx_rate; int rx_rate = 0, tx_rate = 0; int cpu_rate = 1500000; /* XXX */ /* TODO: check CLKSTP bit */ if (s->spcr[1] & (1 << 6)) { /* GRST */ if (s->spcr[0] & (1 << 0)) { /* RRST */ if ((s->srgr[1] & (1 << 13)) && /* CLKSM */ (s->pcr & (1 << 8))) { /* CLKRM */ if (~s->pcr & (1 << 7)) /* SCLKME */ rx_rate = cpu_rate / ((s->srgr[0] & 0xff) + 1); /* CLKGDV */ } else if (s->codec) rx_rate = s->codec->rx_rate; } if (s->spcr[1] & (1 << 0)) { /* XRST */ if ((s->srgr[1] & (1 << 13)) && /* CLKSM */ (s->pcr & (1 << 9))) { /* CLKXM */ if (~s->pcr & (1 << 7)) /* SCLKME */ tx_rate = cpu_rate / ((s->srgr[0] & 0xff) + 1); /* CLKGDV */ } else if (s->codec) tx_rate = s->codec->tx_rate; } } prev_tx_rate = s->tx_rate; prev_rx_rate = s->rx_rate; s->tx_rate = tx_rate; s->rx_rate = rx_rate; if (s->codec) s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate); if (!prev_tx_rate && tx_rate) omap_mcbsp_tx_start(s); else if (s->tx_rate && !tx_rate) omap_mcbsp_tx_stop(s); if (!prev_rx_rate && rx_rate) omap_mcbsp_rx_start(s); else if (prev_tx_rate && !tx_rate) omap_mcbsp_rx_stop(s); } static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr) { struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; uint16_t ret; switch (offset) { case 0x00: /* DRR2 */ if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */ return 0x0000; /* Fall through. */ case 0x02: /* DRR1 */ if (s->rx_req < 2) { printf("%s: Rx FIFO underrun\n", __FUNCTION__); omap_mcbsp_rx_done(s); } else { s->tx_req -= 2; if (s->codec && s->codec->in.len >= 2) { ret = s->codec->in.fifo[s->codec->in.start ++] << 8; ret |= s->codec->in.fifo[s->codec->in.start ++]; s->codec->in.len -= 2; } else ret = 0x0000; if (!s->tx_req) omap_mcbsp_rx_done(s); return ret; } return 0x0000; case 0x04: /* DXR2 */ case 0x06: /* DXR1 */ return 0x0000; case 0x08: /* SPCR2 */ return s->spcr[1]; case 0x0a: /* SPCR1 */ return s->spcr[0]; case 0x0c: /* RCR2 */ return s->rcr[1]; case 0x0e: /* RCR1 */ return s->rcr[0]; case 0x10: /* XCR2 */ return s->xcr[1]; case 0x12: /* XCR1 */ return s->xcr[0]; case 0x14: /* SRGR2 */ return s->srgr[1]; case 0x16: /* SRGR1 */ return s->srgr[0]; case 0x18: /* MCR2 */ return s->mcr[1]; case 0x1a: /* MCR1 */ return s->mcr[0]; case 0x1c: /* RCERA */ return s->rcer[0]; case 0x1e: /* RCERB */ return s->rcer[1]; case 0x20: /* XCERA */ return s->xcer[0]; case 0x22: /* XCERB */ return s->xcer[1]; case 0x24: /* PCR0 */ return s->pcr; case 0x26: /* RCERC */ return s->rcer[2]; case 0x28: /* RCERD */ return s->rcer[3]; case 0x2a: /* XCERC */ return s->xcer[2]; case 0x2c: /* XCERD */ return s->xcer[3]; case 0x2e: /* RCERE */ return s->rcer[4]; case 0x30: /* RCERF */ return s->rcer[5]; case 0x32: /* XCERE */ return s->xcer[4]; case 0x34: /* XCERF */ return s->xcer[5]; case 0x36: /* RCERG */ return s->rcer[6]; case 0x38: /* RCERH */ return s->rcer[7]; case 0x3a: /* XCERG */ return s->xcer[6]; case 0x3c: /* XCERH */ return s->xcer[7]; } OMAP_BAD_REG(addr); return 0; } static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* DRR2 */ case 0x02: /* DRR1 */ OMAP_RO_REG(addr); return; case 0x04: /* DXR2 */ if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */ return; /* Fall through. */ case 0x06: /* DXR1 */ if (s->tx_req > 1) { s->tx_req -= 2; if (s->codec && s->codec->cts) { s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff; s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff; } if (s->tx_req < 2) omap_mcbsp_tx_done(s); } else printf("%s: Tx FIFO overrun\n", __FUNCTION__); return; case 0x08: /* SPCR2 */ s->spcr[1] &= 0x0002; s->spcr[1] |= 0x03f9 & value; s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */ if (~value & 1) /* XRST */ s->spcr[1] &= ~6; omap_mcbsp_req_update(s); return; case 0x0a: /* SPCR1 */ s->spcr[0] &= 0x0006; s->spcr[0] |= 0xf8f9 & value; if (value & (1 << 15)) /* DLB */ printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__); if (~value & 1) { /* RRST */ s->spcr[0] &= ~6; s->rx_req = 0; omap_mcbsp_rx_done(s); } omap_mcbsp_req_update(s); return; case 0x0c: /* RCR2 */ s->rcr[1] = value & 0xffff; return; case 0x0e: /* RCR1 */ s->rcr[0] = value & 0x7fe0; return; case 0x10: /* XCR2 */ s->xcr[1] = value & 0xffff; return; case 0x12: /* XCR1 */ s->xcr[0] = value & 0x7fe0; return; case 0x14: /* SRGR2 */ s->srgr[1] = value & 0xffff; omap_mcbsp_req_update(s); return; case 0x16: /* SRGR1 */ s->srgr[0] = value & 0xffff; omap_mcbsp_req_update(s); return; case 0x18: /* MCR2 */ s->mcr[1] = value & 0x03e3; if (value & 3) /* XMCM */ printf("%s: Tx channel selection mode enable attempt\n", __FUNCTION__); return; case 0x1a: /* MCR1 */ s->mcr[0] = value & 0x03e1; if (value & 1) /* RMCM */ printf("%s: Rx channel selection mode enable attempt\n", __FUNCTION__); return; case 0x1c: /* RCERA */ s->rcer[0] = value & 0xffff; return; case 0x1e: /* RCERB */ s->rcer[1] = value & 0xffff; return; case 0x20: /* XCERA */ s->xcer[0] = value & 0xffff; return; case 0x22: /* XCERB */ s->xcer[1] = value & 0xffff; return; case 0x24: /* PCR0 */ s->pcr = value & 0x7faf; return; case 0x26: /* RCERC */ s->rcer[2] = value & 0xffff; return; case 0x28: /* RCERD */ s->rcer[3] = value & 0xffff; return; case 0x2a: /* XCERC */ s->xcer[2] = value & 0xffff; return; case 0x2c: /* XCERD */ s->xcer[3] = value & 0xffff; return; case 0x2e: /* RCERE */ s->rcer[4] = value & 0xffff; return; case 0x30: /* RCERF */ s->rcer[5] = value & 0xffff; return; case 0x32: /* XCERE */ s->xcer[4] = value & 0xffff; return; case 0x34: /* XCERF */ s->xcer[5] = value & 0xffff; return; case 0x36: /* RCERG */ s->rcer[6] = value & 0xffff; return; case 0x38: /* RCERH */ s->rcer[7] = value & 0xffff; return; case 0x3a: /* XCERG */ s->xcer[6] = value & 0xffff; return; case 0x3c: /* XCERH */ s->xcer[7] = value & 0xffff; return; } OMAP_BAD_REG(addr); } static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; if (offset == 0x04) { /* DXR */ if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */ return; if (s->tx_req > 3) { s->tx_req -= 4; if (s->codec && s->codec->cts) { s->codec->out.fifo[s->codec->out.len ++] = (value >> 24) & 0xff; s->codec->out.fifo[s->codec->out.len ++] = (value >> 16) & 0xff; s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff; s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff; } if (s->tx_req < 4) omap_mcbsp_tx_done(s); } else printf("%s: Tx FIFO overrun\n", __FUNCTION__); return; } omap_badwidth_write16(opaque, addr, value); } static CPUReadMemoryFunc *omap_mcbsp_readfn[] = { omap_badwidth_read16, omap_mcbsp_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_mcbsp_writefn[] = { omap_badwidth_write16, omap_mcbsp_writeh, omap_mcbsp_writew, }; static void omap_mcbsp_reset(struct omap_mcbsp_s *s) { memset(&s->spcr, 0, sizeof(s->spcr)); memset(&s->rcr, 0, sizeof(s->rcr)); memset(&s->xcr, 0, sizeof(s->xcr)); s->srgr[0] = 0x0001; s->srgr[1] = 0x2000; memset(&s->mcr, 0, sizeof(s->mcr)); memset(&s->pcr, 0, sizeof(s->pcr)); memset(&s->rcer, 0, sizeof(s->rcer)); memset(&s->xcer, 0, sizeof(s->xcer)); s->tx_req = 0; s->rx_req = 0; s->tx_rate = 0; s->rx_rate = 0; qemu_del_timer(s->source_timer); qemu_del_timer(s->sink_timer); } struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base, qemu_irq *irq, qemu_irq *dma, omap_clk clk) { int iomemtype; struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) qemu_mallocz(sizeof(struct omap_mcbsp_s)); s->txirq = irq[0]; s->rxirq = irq[1]; s->txdrq = dma[0]; s->rxdrq = dma[1]; s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s); s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s); omap_mcbsp_reset(s); iomemtype = cpu_register_io_memory(0, omap_mcbsp_readfn, omap_mcbsp_writefn, s); cpu_register_physical_memory(base, 0x800, iomemtype); return s; } static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level) { struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; if (s->rx_rate) { s->rx_req = s->codec->in.len; omap_mcbsp_rx_newdata(s); } } static void omap_mcbsp_i2s_start(void *opaque, int line, int level) { struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; if (s->tx_rate) { s->tx_req = s->codec->out.size; omap_mcbsp_tx_newdata(s); } } void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, struct i2s_codec_s *slave) { s->codec = slave; slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0]; slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0]; } /* LED Pulse Generators */ struct omap_lpg_s { QEMUTimer *tm; uint8_t control; uint8_t power; int64_t on; int64_t period; int clk; int cycle; }; static void omap_lpg_tick(void *opaque) { struct omap_lpg_s *s = opaque; if (s->cycle) qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on); else qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on); s->cycle = !s->cycle; printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off"); } static void omap_lpg_update(struct omap_lpg_s *s) { int64_t on, period = 1, ticks = 1000; static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 }; if (~s->control & (1 << 6)) /* LPGRES */ on = 0; else if (s->control & (1 << 7)) /* PERM_ON */ on = period; else { period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */ 256 / 32); on = (s->clk && s->power) ? muldiv64(ticks, per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */ } qemu_del_timer(s->tm); if (on == period && s->on < s->period) printf("%s: LED is on\n", __FUNCTION__); else if (on == 0 && s->on) printf("%s: LED is off\n", __FUNCTION__); else if (on && (on != s->on || period != s->period)) { s->cycle = 0; s->on = on; s->period = period; omap_lpg_tick(s); return; } s->on = on; s->period = period; } static void omap_lpg_reset(struct omap_lpg_s *s) { s->control = 0x00; s->power = 0x00; s->clk = 1; omap_lpg_update(s); } static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr) { struct omap_lpg_s *s = (struct omap_lpg_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* LCR */ return s->control; case 0x04: /* PMR */ return s->power; } OMAP_BAD_REG(addr); return 0; } static void omap_lpg_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_lpg_s *s = (struct omap_lpg_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* LCR */ if (~value & (1 << 6)) /* LPGRES */ omap_lpg_reset(s); s->control = value & 0xff; omap_lpg_update(s); return; case 0x04: /* PMR */ s->power = value & 0x01; omap_lpg_update(s); return; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_lpg_readfn[] = { omap_lpg_read, omap_badwidth_read8, omap_badwidth_read8, }; static CPUWriteMemoryFunc *omap_lpg_writefn[] = { omap_lpg_write, omap_badwidth_write8, omap_badwidth_write8, }; static void omap_lpg_clk_update(void *opaque, int line, int on) { struct omap_lpg_s *s = (struct omap_lpg_s *) opaque; s->clk = on; omap_lpg_update(s); } struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk) { int iomemtype; struct omap_lpg_s *s = (struct omap_lpg_s *) qemu_mallocz(sizeof(struct omap_lpg_s)); s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s); omap_lpg_reset(s); iomemtype = cpu_register_io_memory(0, omap_lpg_readfn, omap_lpg_writefn, s); cpu_register_physical_memory(base, 0x800, iomemtype); omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]); return s; } /* MPUI Peripheral Bridge configuration */ static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr) { if (addr == OMAP_MPUI_BASE) /* CMR */ return 0xfe4d; OMAP_BAD_REG(addr); return 0; } static CPUReadMemoryFunc *omap_mpui_io_readfn[] = { omap_badwidth_read16, omap_mpui_io_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_mpui_io_writefn[] = { omap_badwidth_write16, omap_badwidth_write16, omap_badwidth_write16, }; static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu) { int iomemtype = cpu_register_io_memory(0, omap_mpui_io_readfn, omap_mpui_io_writefn, mpu); cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype); } /* General chip reset */ static void omap1_mpu_reset(void *opaque) { struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque; omap_inth_reset(mpu->ih[0]); omap_inth_reset(mpu->ih[1]); omap_dma_reset(mpu->dma); omap_mpu_timer_reset(mpu->timer[0]); omap_mpu_timer_reset(mpu->timer[1]); omap_mpu_timer_reset(mpu->timer[2]); omap_wd_timer_reset(mpu->wdt); omap_os_timer_reset(mpu->os_timer); omap_lcdc_reset(mpu->lcd); omap_ulpd_pm_reset(mpu); omap_pin_cfg_reset(mpu); omap_mpui_reset(mpu); omap_tipb_bridge_reset(mpu->private_tipb); omap_tipb_bridge_reset(mpu->public_tipb); omap_dpll_reset(&mpu->dpll[0]); omap_dpll_reset(&mpu->dpll[1]); omap_dpll_reset(&mpu->dpll[2]); omap_uart_reset(mpu->uart[0]); omap_uart_reset(mpu->uart[1]); omap_uart_reset(mpu->uart[2]); omap_mmc_reset(mpu->mmc); omap_mpuio_reset(mpu->mpuio); omap_gpio_reset(mpu->gpio); omap_uwire_reset(mpu->microwire); omap_pwl_reset(mpu); omap_pwt_reset(mpu); omap_i2c_reset(mpu->i2c[0]); omap_rtc_reset(mpu->rtc); omap_mcbsp_reset(mpu->mcbsp1); omap_mcbsp_reset(mpu->mcbsp2); omap_mcbsp_reset(mpu->mcbsp3); omap_lpg_reset(mpu->led[0]); omap_lpg_reset(mpu->led[1]); omap_clkm_reset(mpu); cpu_reset(mpu->env); } static const struct omap_map_s { target_phys_addr_t phys_dsp; target_phys_addr_t phys_mpu; uint32_t size; const char *name; } omap15xx_dsp_mm[] = { /* Strobe 0 */ { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */ { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */ { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */ { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */ { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */ { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */ { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */ { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */ { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */ { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */ { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */ { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */ { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */ { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */ { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */ { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */ { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */ /* Strobe 1 */ { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */ { 0 } }; static void omap_setup_dsp_mapping(const struct omap_map_s *map) { int io; for (; map->phys_dsp; map ++) { io = cpu_get_physical_page_desc(map->phys_mpu); cpu_register_physical_memory(map->phys_dsp, map->size, io); } } void omap_mpu_wakeup(void *opaque, int irq, int req) { struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque; if (mpu->env->halted) cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB); } static const struct dma_irq_map omap1_dma_irq_map[] = { { 0, OMAP_INT_DMA_CH0_6 }, { 0, OMAP_INT_DMA_CH1_7 }, { 0, OMAP_INT_DMA_CH2_8 }, { 0, OMAP_INT_DMA_CH3 }, { 0, OMAP_INT_DMA_CH4 }, { 0, OMAP_INT_DMA_CH5 }, { 1, OMAP_INT_1610_DMA_CH6 }, { 1, OMAP_INT_1610_DMA_CH7 }, { 1, OMAP_INT_1610_DMA_CH8 }, { 1, OMAP_INT_1610_DMA_CH9 }, { 1, OMAP_INT_1610_DMA_CH10 }, { 1, OMAP_INT_1610_DMA_CH11 }, { 1, OMAP_INT_1610_DMA_CH12 }, { 1, OMAP_INT_1610_DMA_CH13 }, { 1, OMAP_INT_1610_DMA_CH14 }, { 1, OMAP_INT_1610_DMA_CH15 } }; /* DMA ports for OMAP1 */ static int omap_validate_emiff_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size; } static int omap_validate_emifs_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE; } static int omap_validate_imif_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size; } static int omap_validate_tipb_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return addr >= 0xfffb0000 && addr < 0xffff0000; } static int omap_validate_local_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000; } static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return addr >= 0xe1010000 && addr < 0xe1020004; } struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size, const char *core) { int i; struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) qemu_mallocz(sizeof(struct omap_mpu_state_s)); ram_addr_t imif_base, emiff_base; qemu_irq *cpu_irq; qemu_irq dma_irqs[6]; int sdindex; if (!core) core = "ti925t"; /* Core */ s->mpu_model = omap310; s->env = cpu_init(core); if (!s->env) { fprintf(stderr, "Unable to find CPU definition\n"); exit(1); } s->sdram_size = sdram_size; s->sram_size = OMAP15XX_SRAM_SIZE; s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0]; /* Clocks */ omap_clk_init(s); /* Memory-mapped stuff */ cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size, (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM); cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size, (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM); omap_clkm_init(0xfffece00, 0xe1008000, s); cpu_irq = arm_pic_init_cpu(s->env); s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0], cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ], omap_findclk(s, "arminth_ck")); s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1], s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], NULL, omap_findclk(s, "arminth_ck")); for (i = 0; i < 6; i ++) dma_irqs[i] = s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr]; s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD], s, omap_findclk(s, "dma_ck"), omap_dma_3_1); s->port[emiff ].addr_valid = omap_validate_emiff_addr; s->port[emifs ].addr_valid = omap_validate_emifs_addr; s->port[imif ].addr_valid = omap_validate_imif_addr; s->port[tipb ].addr_valid = omap_validate_tipb_addr; s->port[local ].addr_valid = omap_validate_local_addr; s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr; /* Register SDRAM and SRAM DMA ports for fast transfers. */ soc_dma_port_add_mem_ram(s->dma, emiff_base, OMAP_EMIFF_BASE, s->sdram_size); soc_dma_port_add_mem_ram(s->dma, imif_base, OMAP_IMIF_BASE, s->sram_size); s->timer[0] = omap_mpu_timer_init(0xfffec500, s->irq[0][OMAP_INT_TIMER1], omap_findclk(s, "mputim_ck")); s->timer[1] = omap_mpu_timer_init(0xfffec600, s->irq[0][OMAP_INT_TIMER2], omap_findclk(s, "mputim_ck")); s->timer[2] = omap_mpu_timer_init(0xfffec700, s->irq[0][OMAP_INT_TIMER3], omap_findclk(s, "mputim_ck")); s->wdt = omap_wd_timer_init(0xfffec800, s->irq[0][OMAP_INT_WD_TIMER], omap_findclk(s, "armwdt_ck")); s->os_timer = omap_os_timer_init(0xfffb9000, s->irq[1][OMAP_INT_OS_TIMER], omap_findclk(s, "clk32-kHz")); s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL], omap_dma_get_lcdch(s->dma), imif_base, emiff_base, omap_findclk(s, "lcd_ck")); omap_ulpd_pm_init(0xfffe0800, s); omap_pin_cfg_init(0xfffe1000, s); omap_id_init(s); omap_mpui_init(0xfffec900, s); s->private_tipb = omap_tipb_bridge_init(0xfffeca00, s->irq[0][OMAP_INT_BRIDGE_PRIV], omap_findclk(s, "tipb_ck")); s->public_tipb = omap_tipb_bridge_init(0xfffed300, s->irq[0][OMAP_INT_BRIDGE_PUB], omap_findclk(s, "tipb_ck")); omap_tcmi_init(0xfffecc00, s); s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1], omap_findclk(s, "uart1_ck"), omap_findclk(s, "uart1_ck"), s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX], serial_hds[0]); s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2], omap_findclk(s, "uart2_ck"), omap_findclk(s, "uart2_ck"), s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX], serial_hds[0] ? serial_hds[1] : 0); s->uart[2] = omap_uart_init(0xfffb9800, s->irq[0][OMAP_INT_UART3], omap_findclk(s, "uart3_ck"), omap_findclk(s, "uart3_ck"), s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX], serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0); omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1")); omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2")); omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3")); sdindex = drive_get_index(IF_SD, 0, 0); if (sdindex == -1) { fprintf(stderr, "qemu: missing SecureDigital device\n"); exit(1); } s->mmc = omap_mmc_init(0xfffb7800, drives_table[sdindex].bdrv, s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX], omap_findclk(s, "mmc_ck")); s->mpuio = omap_mpuio_init(0xfffb5000, s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO], s->wakeup, omap_findclk(s, "clk32-kHz")); s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1], omap_findclk(s, "arm_gpio_ck")); s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX], s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck")); omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck")); omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck")); s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C], &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck")); s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER], omap_findclk(s, "clk32-kHz")); s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX], &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck")); s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX], &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck")); s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX], &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck")); s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz")); s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz")); /* Register mappings not currenlty implemented: * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310) * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310) * USB W2FC fffb4000 - fffb47ff * Camera Interface fffb6800 - fffb6fff * USB Host fffba000 - fffba7ff * FAC fffba800 - fffbafff * HDQ/1-Wire fffbc000 - fffbc7ff * TIPB switches fffbc800 - fffbcfff * Mailbox fffcf000 - fffcf7ff * Local bus IF fffec100 - fffec1ff * Local bus MMU fffec200 - fffec2ff * DSP MMU fffed200 - fffed2ff */ omap_setup_dsp_mapping(omap15xx_dsp_mm); omap_setup_mpui_io(s); qemu_register_reset(omap1_mpu_reset, s); return s; }