/* * TI OMAP processors emulation. * * Copyright (C) 2006-2007 Andrzej Zaborowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include "vl.h" #include "arm_pic.h" /* Should signal the TCMI */ uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr) { uint8_t ret; OMAP_8B_REG(addr); cpu_physical_memory_read(addr, (void *) &ret, 1); return ret; } void omap_badwidth_write8(void *opaque, target_phys_addr_t addr, uint32_t value) { uint8_t val8 = value; OMAP_8B_REG(addr); cpu_physical_memory_write(addr, (void *) &val8, 1); } uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr) { uint16_t ret; OMAP_16B_REG(addr); cpu_physical_memory_read(addr, (void *) &ret, 2); return ret; } void omap_badwidth_write16(void *opaque, target_phys_addr_t addr, uint32_t value) { uint16_t val16 = value; OMAP_16B_REG(addr); cpu_physical_memory_write(addr, (void *) &val16, 2); } uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr) { uint32_t ret; OMAP_32B_REG(addr); cpu_physical_memory_read(addr, (void *) &ret, 4); return ret; } void omap_badwidth_write32(void *opaque, target_phys_addr_t addr, uint32_t value) { OMAP_32B_REG(addr); cpu_physical_memory_write(addr, (void *) &value, 4); } /* Interrupt Handlers */ struct omap_intr_handler_s { qemu_irq *pins; qemu_irq *parent_pic; target_phys_addr_t base; /* state */ uint32_t irqs; uint32_t mask; uint32_t sens_edge; uint32_t fiq; int priority[32]; uint32_t new_irq_agr; uint32_t new_fiq_agr; int sir_irq; int sir_fiq; int stats[32]; }; static void omap_inth_update(struct omap_intr_handler_s *s) { uint32_t irq = s->irqs & ~s->mask & ~s->fiq; uint32_t fiq = s->irqs & ~s->mask & s->fiq; if (s->new_irq_agr || !irq) { qemu_set_irq(s->parent_pic[ARM_PIC_CPU_IRQ], irq); if (irq) s->new_irq_agr = 0; } if (s->new_fiq_agr || !irq) { qemu_set_irq(s->parent_pic[ARM_PIC_CPU_FIQ], fiq); if (fiq) s->new_fiq_agr = 0; } } static void omap_inth_sir_update(struct omap_intr_handler_s *s) { int i, intr_irq, intr_fiq, p_irq, p_fiq, p, f; uint32_t level = s->irqs & ~s->mask; intr_irq = 0; intr_fiq = 0; p_irq = -1; p_fiq = -1; /* Find the interrupt line with the highest dynamic priority */ for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f, level >>= f) { p = s->priority[i]; if (s->fiq & (1 << i)) { if (p > p_fiq) { p_fiq = p; intr_fiq = i; } } else { if (p > p_irq) { p_irq = p; intr_irq = i; } } f = ffs(level >> 1); } s->sir_irq = intr_irq; s->sir_fiq = intr_fiq; } #define INT_FALLING_EDGE 0 #define INT_LOW_LEVEL 1 static void omap_set_intr(void *opaque, int irq, int req) { struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque; uint32_t rise; if (req) { rise = ~ih->irqs & (1 << irq); ih->irqs |= rise; ih->stats[irq] += !!rise; } else { rise = ih->sens_edge & ih->irqs & (1 << irq); ih->irqs &= ~rise; } if (rise & ~ih->mask) { omap_inth_sir_update(ih); omap_inth_update(ih); } } static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr) { struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque; int i, offset = addr - s->base; switch (offset) { case 0x00: /* ITR */ return s->irqs; case 0x04: /* MIR */ return s->mask; case 0x10: /* SIR_IRQ_CODE */ i = s->sir_irq; if (((s->sens_edge >> i) & 1) == INT_FALLING_EDGE && i) { s->irqs &= ~(1 << i); omap_inth_sir_update(s); omap_inth_update(s); } return i; case 0x14: /* SIR_FIQ_CODE */ i = s->sir_fiq; if (((s->sens_edge >> i) & 1) == INT_FALLING_EDGE && i) { s->irqs &= ~(1 << i); omap_inth_sir_update(s); omap_inth_update(s); } return i; case 0x18: /* CONTROL_REG */ return 0; case 0x1c: /* ILR0 */ case 0x20: /* ILR1 */ case 0x24: /* ILR2 */ case 0x28: /* ILR3 */ case 0x2c: /* ILR4 */ case 0x30: /* ILR5 */ case 0x34: /* ILR6 */ case 0x38: /* ILR7 */ case 0x3c: /* ILR8 */ case 0x40: /* ILR9 */ case 0x44: /* ILR10 */ case 0x48: /* ILR11 */ case 0x4c: /* ILR12 */ case 0x50: /* ILR13 */ case 0x54: /* ILR14 */ case 0x58: /* ILR15 */ case 0x5c: /* ILR16 */ case 0x60: /* ILR17 */ case 0x64: /* ILR18 */ case 0x68: /* ILR19 */ case 0x6c: /* ILR20 */ case 0x70: /* ILR21 */ case 0x74: /* ILR22 */ case 0x78: /* ILR23 */ case 0x7c: /* ILR24 */ case 0x80: /* ILR25 */ case 0x84: /* ILR26 */ case 0x88: /* ILR27 */ case 0x8c: /* ILR28 */ case 0x90: /* ILR29 */ case 0x94: /* ILR30 */ case 0x98: /* ILR31 */ i = (offset - 0x1c) >> 2; return (s->priority[i] << 2) | (((s->sens_edge >> i) & 1) << 1) | ((s->fiq >> i) & 1); case 0x9c: /* ISR */ return 0x00000000; default: OMAP_BAD_REG(addr); break; } return 0; } static void omap_inth_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque; int i, offset = addr - s->base; switch (offset) { case 0x00: /* ITR */ s->irqs &= value; omap_inth_sir_update(s); omap_inth_update(s); return; case 0x04: /* MIR */ s->mask = value; omap_inth_sir_update(s); omap_inth_update(s); return; case 0x10: /* SIR_IRQ_CODE */ case 0x14: /* SIR_FIQ_CODE */ OMAP_RO_REG(addr); break; case 0x18: /* CONTROL_REG */ if (value & 2) s->new_fiq_agr = ~0; if (value & 1) s->new_irq_agr = ~0; omap_inth_update(s); return; case 0x1c: /* ILR0 */ case 0x20: /* ILR1 */ case 0x24: /* ILR2 */ case 0x28: /* ILR3 */ case 0x2c: /* ILR4 */ case 0x30: /* ILR5 */ case 0x34: /* ILR6 */ case 0x38: /* ILR7 */ case 0x3c: /* ILR8 */ case 0x40: /* ILR9 */ case 0x44: /* ILR10 */ case 0x48: /* ILR11 */ case 0x4c: /* ILR12 */ case 0x50: /* ILR13 */ case 0x54: /* ILR14 */ case 0x58: /* ILR15 */ case 0x5c: /* ILR16 */ case 0x60: /* ILR17 */ case 0x64: /* ILR18 */ case 0x68: /* ILR19 */ case 0x6c: /* ILR20 */ case 0x70: /* ILR21 */ case 0x74: /* ILR22 */ case 0x78: /* ILR23 */ case 0x7c: /* ILR24 */ case 0x80: /* ILR25 */ case 0x84: /* ILR26 */ case 0x88: /* ILR27 */ case 0x8c: /* ILR28 */ case 0x90: /* ILR29 */ case 0x94: /* ILR30 */ case 0x98: /* ILR31 */ i = (offset - 0x1c) >> 2; s->priority[i] = (value >> 2) & 0x1f; s->sens_edge &= ~(1 << i); s->sens_edge |= ((value >> 1) & 1) << i; s->fiq &= ~(1 << i); s->fiq |= (value & 1) << i; return; case 0x9c: /* ISR */ for (i = 0; i < 32; i ++) if (value & (1 << i)) { omap_set_intr(s, i, 1); return; } return; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_inth_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_inth_read, }; static CPUWriteMemoryFunc *omap_inth_writefn[] = { omap_inth_write, omap_inth_write, omap_inth_write, }; static void omap_inth_reset(struct omap_intr_handler_s *s) { s->irqs = 0x00000000; s->mask = 0xffffffff; s->sens_edge = 0x00000000; s->fiq = 0x00000000; memset(s->priority, 0, sizeof(s->priority)); s->new_irq_agr = ~0; s->new_fiq_agr = ~0; s->sir_irq = 0; s->sir_fiq = 0; omap_inth_update(s); } struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base, unsigned long size, qemu_irq parent[2], omap_clk clk) { int iomemtype; struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) qemu_mallocz(sizeof(struct omap_intr_handler_s)); s->parent_pic = parent; s->base = base; s->pins = qemu_allocate_irqs(omap_set_intr, s, 32); omap_inth_reset(s); iomemtype = cpu_register_io_memory(0, omap_inth_readfn, omap_inth_writefn, s); cpu_register_physical_memory(s->base, size, iomemtype); return s; } /* OMAP1 DMA module */ typedef enum { constant = 0, post_incremented, single_index, double_index, } omap_dma_addressing_t; struct omap_dma_channel_s { int burst[2]; int pack[2]; enum omap_dma_port port[2]; target_phys_addr_t addr[2]; omap_dma_addressing_t mode[2]; int data_type; int end_prog; int repeat; int auto_init; int priority; int fs; int sync; int running; int interrupts; int status; int signalled; int post_sync; int transfer; uint16_t elements; uint16_t frames; uint16_t frame_index; uint16_t element_index; uint16_t cpc; struct omap_dma_reg_set_s { target_phys_addr_t src, dest; int frame; int element; int frame_delta[2]; int elem_delta[2]; int frames; int elements; } active_set; }; struct omap_dma_s { qemu_irq *ih; QEMUTimer *tm; struct omap_mpu_state_s *mpu; target_phys_addr_t base; omap_clk clk; int64_t delay; uint32_t drq; uint16_t gcr; int run_count; int chans; struct omap_dma_channel_s ch[16]; struct omap_dma_lcd_channel_s lcd_ch; }; static void omap_dma_interrupts_update(struct omap_dma_s *s) { /* First three interrupts are shared between two channels each. */ qemu_set_irq(s->ih[OMAP_INT_DMA_CH0_6], (s->ch[0].status | s->ch[6].status) & 0x3f); qemu_set_irq(s->ih[OMAP_INT_DMA_CH1_7], (s->ch[1].status | s->ch[7].status) & 0x3f); qemu_set_irq(s->ih[OMAP_INT_DMA_CH2_8], (s->ch[2].status | s->ch[8].status) & 0x3f); qemu_set_irq(s->ih[OMAP_INT_DMA_CH3], (s->ch[3].status) & 0x3f); qemu_set_irq(s->ih[OMAP_INT_DMA_CH4], (s->ch[4].status) & 0x3f); qemu_set_irq(s->ih[OMAP_INT_DMA_CH5], (s->ch[5].status) & 0x3f); } static void omap_dma_channel_load(struct omap_dma_s *s, int ch) { struct omap_dma_reg_set_s *a = &s->ch[ch].active_set; int i; /* * TODO: verify address ranges and alignment * TODO: port endianness */ a->src = s->ch[ch].addr[0]; a->dest = s->ch[ch].addr[1]; a->frames = s->ch[ch].frames; a->elements = s->ch[ch].elements; a->frame = 0; a->element = 0; if (unlikely(!s->ch[ch].elements || !s->ch[ch].frames)) { printf("%s: bad DMA request\n", __FUNCTION__); return; } for (i = 0; i < 2; i ++) switch (s->ch[ch].mode[i]) { case constant: a->elem_delta[i] = 0; a->frame_delta[i] = 0; break; case post_incremented: a->elem_delta[i] = s->ch[ch].data_type; a->frame_delta[i] = 0; break; case single_index: a->elem_delta[i] = s->ch[ch].data_type + s->ch[ch].element_index - 1; if (s->ch[ch].element_index > 0x7fff) a->elem_delta[i] -= 0x10000; a->frame_delta[i] = 0; break; case double_index: a->elem_delta[i] = s->ch[ch].data_type + s->ch[ch].element_index - 1; if (s->ch[ch].element_index > 0x7fff) a->elem_delta[i] -= 0x10000; a->frame_delta[i] = s->ch[ch].frame_index - s->ch[ch].element_index; if (s->ch[ch].frame_index > 0x7fff) a->frame_delta[i] -= 0x10000; break; default: break; } } static inline void omap_dma_request_run(struct omap_dma_s *s, int channel, int request) { next_channel: if (request > 0) for (; channel < 9; channel ++) if (s->ch[channel].sync == request && s->ch[channel].running) break; if (channel >= 9) return; if (s->ch[channel].transfer) { if (request > 0) { s->ch[channel ++].post_sync = request; goto next_channel; } s->ch[channel].status |= 0x02; /* Synchronisation drop */ omap_dma_interrupts_update(s); return; } if (!s->ch[channel].signalled) s->run_count ++; s->ch[channel].signalled = 1; if (request > 0) s->ch[channel].status |= 0x40; /* External request */ if (s->delay && !qemu_timer_pending(s->tm)) qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay); if (request > 0) { channel ++; goto next_channel; } } static inline void omap_dma_request_stop(struct omap_dma_s *s, int channel) { if (s->ch[channel].signalled) s->run_count --; s->ch[channel].signalled = 0; if (!s->run_count) qemu_del_timer(s->tm); } static void omap_dma_channel_run(struct omap_dma_s *s) { int ch; uint16_t status; uint8_t value[4]; struct omap_dma_port_if_s *src_p, *dest_p; struct omap_dma_reg_set_s *a; for (ch = 0; ch < 9; ch ++) { a = &s->ch[ch].active_set; src_p = &s->mpu->port[s->ch[ch].port[0]]; dest_p = &s->mpu->port[s->ch[ch].port[1]]; if (s->ch[ch].signalled && (!src_p->addr_valid(s->mpu, a->src) || !dest_p->addr_valid(s->mpu, a->dest))) { #if 0 /* Bus time-out */ if (s->ch[ch].interrupts & 0x01) s->ch[ch].status |= 0x01; omap_dma_request_stop(s, ch); continue; #endif printf("%s: Bus time-out in DMA%i operation\n", __FUNCTION__, ch); } status = s->ch[ch].status; while (status == s->ch[ch].status && s->ch[ch].signalled) { /* Transfer a single element */ s->ch[ch].transfer = 1; cpu_physical_memory_read(a->src, value, s->ch[ch].data_type); cpu_physical_memory_write(a->dest, value, s->ch[ch].data_type); s->ch[ch].transfer = 0; a->src += a->elem_delta[0]; a->dest += a->elem_delta[1]; a->element ++; /* Check interrupt conditions */ if (a->element == a->elements) { a->element = 0; a->src += a->frame_delta[0]; a->dest += a->frame_delta[1]; a->frame ++; if (a->frame == a->frames) { if (!s->ch[ch].repeat || !s->ch[ch].auto_init) s->ch[ch].running = 0; if (s->ch[ch].auto_init && (s->ch[ch].repeat || s->ch[ch].end_prog)) omap_dma_channel_load(s, ch); if (s->ch[ch].interrupts & 0x20) s->ch[ch].status |= 0x20; if (!s->ch[ch].sync) omap_dma_request_stop(s, ch); } if (s->ch[ch].interrupts & 0x08) s->ch[ch].status |= 0x08; if (s->ch[ch].sync && s->ch[ch].fs && !(s->drq & (1 << s->ch[ch].sync))) { s->ch[ch].status &= ~0x40; omap_dma_request_stop(s, ch); } } if (a->element == 1 && a->frame == a->frames - 1) if (s->ch[ch].interrupts & 0x10) s->ch[ch].status |= 0x10; if (a->element == (a->elements >> 1)) if (s->ch[ch].interrupts & 0x04) s->ch[ch].status |= 0x04; if (s->ch[ch].sync && !s->ch[ch].fs && !(s->drq & (1 << s->ch[ch].sync))) { s->ch[ch].status &= ~0x40; omap_dma_request_stop(s, ch); } /* * Process requests made while the element was * being transferred. */ if (s->ch[ch].post_sync) { omap_dma_request_run(s, 0, s->ch[ch].post_sync); s->ch[ch].post_sync = 0; } #if 0 break; #endif } s->ch[ch].cpc = a->dest & 0x0000ffff; } omap_dma_interrupts_update(s); if (s->run_count && s->delay) qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay); } static int omap_dma_ch_reg_read(struct omap_dma_s *s, int ch, int reg, uint16_t *value) { switch (reg) { case 0x00: /* SYS_DMA_CSDP_CH0 */ *value = (s->ch[ch].burst[1] << 14) | (s->ch[ch].pack[1] << 13) | (s->ch[ch].port[1] << 9) | (s->ch[ch].burst[0] << 7) | (s->ch[ch].pack[0] << 6) | (s->ch[ch].port[0] << 2) | (s->ch[ch].data_type >> 1); break; case 0x02: /* SYS_DMA_CCR_CH0 */ *value = (s->ch[ch].mode[1] << 14) | (s->ch[ch].mode[0] << 12) | (s->ch[ch].end_prog << 11) | (s->ch[ch].repeat << 9) | (s->ch[ch].auto_init << 8) | (s->ch[ch].running << 7) | (s->ch[ch].priority << 6) | (s->ch[ch].fs << 5) | s->ch[ch].sync; break; case 0x04: /* SYS_DMA_CICR_CH0 */ *value = s->ch[ch].interrupts; break; case 0x06: /* SYS_DMA_CSR_CH0 */ /* FIXME: shared CSR for channels sharing the interrupts */ *value = s->ch[ch].status; s->ch[ch].status &= 0x40; omap_dma_interrupts_update(s); break; case 0x08: /* SYS_DMA_CSSA_L_CH0 */ *value = s->ch[ch].addr[0] & 0x0000ffff; break; case 0x0a: /* SYS_DMA_CSSA_U_CH0 */ *value = s->ch[ch].addr[0] >> 16; break; case 0x0c: /* SYS_DMA_CDSA_L_CH0 */ *value = s->ch[ch].addr[1] & 0x0000ffff; break; case 0x0e: /* SYS_DMA_CDSA_U_CH0 */ *value = s->ch[ch].addr[1] >> 16; break; case 0x10: /* SYS_DMA_CEN_CH0 */ *value = s->ch[ch].elements; break; case 0x12: /* SYS_DMA_CFN_CH0 */ *value = s->ch[ch].frames; break; case 0x14: /* SYS_DMA_CFI_CH0 */ *value = s->ch[ch].frame_index; break; case 0x16: /* SYS_DMA_CEI_CH0 */ *value = s->ch[ch].element_index; break; case 0x18: /* SYS_DMA_CPC_CH0 */ *value = s->ch[ch].cpc; break; default: return 1; } return 0; } static int omap_dma_ch_reg_write(struct omap_dma_s *s, int ch, int reg, uint16_t value) { switch (reg) { case 0x00: /* SYS_DMA_CSDP_CH0 */ s->ch[ch].burst[1] = (value & 0xc000) >> 14; s->ch[ch].pack[1] = (value & 0x2000) >> 13; s->ch[ch].port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9); s->ch[ch].burst[0] = (value & 0x0180) >> 7; s->ch[ch].pack[0] = (value & 0x0040) >> 6; s->ch[ch].port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2); s->ch[ch].data_type = (1 << (value & 3)); if (s->ch[ch].port[0] >= omap_dma_port_last) printf("%s: invalid DMA port %i\n", __FUNCTION__, s->ch[ch].port[0]); if (s->ch[ch].port[1] >= omap_dma_port_last) printf("%s: invalid DMA port %i\n", __FUNCTION__, s->ch[ch].port[1]); if ((value & 3) == 3) printf("%s: bad data_type for DMA channel %i\n", __FUNCTION__, ch); break; case 0x02: /* SYS_DMA_CCR_CH0 */ s->ch[ch].mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14); s->ch[ch].mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12); s->ch[ch].end_prog = (value & 0x0800) >> 11; s->ch[ch].repeat = (value & 0x0200) >> 9; s->ch[ch].auto_init = (value & 0x0100) >> 8; s->ch[ch].priority = (value & 0x0040) >> 6; s->ch[ch].fs = (value & 0x0020) >> 5; s->ch[ch].sync = value & 0x001f; if (value & 0x0080) { if (s->ch[ch].running) { if (!s->ch[ch].signalled && s->ch[ch].auto_init && s->ch[ch].end_prog) omap_dma_channel_load(s, ch); } else { s->ch[ch].running = 1; omap_dma_channel_load(s, ch); } if (!s->ch[ch].sync || (s->drq & (1 << s->ch[ch].sync))) omap_dma_request_run(s, ch, 0); } else { s->ch[ch].running = 0; omap_dma_request_stop(s, ch); } break; case 0x04: /* SYS_DMA_CICR_CH0 */ s->ch[ch].interrupts = value & 0x003f; break; case 0x06: /* SYS_DMA_CSR_CH0 */ return 1; case 0x08: /* SYS_DMA_CSSA_L_CH0 */ s->ch[ch].addr[0] &= 0xffff0000; s->ch[ch].addr[0] |= value; break; case 0x0a: /* SYS_DMA_CSSA_U_CH0 */ s->ch[ch].addr[0] &= 0x0000ffff; s->ch[ch].addr[0] |= (uint32_t) value << 16; break; case 0x0c: /* SYS_DMA_CDSA_L_CH0 */ s->ch[ch].addr[1] &= 0xffff0000; s->ch[ch].addr[1] |= value; break; case 0x0e: /* SYS_DMA_CDSA_U_CH0 */ s->ch[ch].addr[1] &= 0x0000ffff; s->ch[ch].addr[1] |= (uint32_t) value << 16; break; case 0x10: /* SYS_DMA_CEN_CH0 */ s->ch[ch].elements = value & 0xffff; break; case 0x12: /* SYS_DMA_CFN_CH0 */ s->ch[ch].frames = value & 0xffff; break; case 0x14: /* SYS_DMA_CFI_CH0 */ s->ch[ch].frame_index = value & 0xffff; break; case 0x16: /* SYS_DMA_CEI_CH0 */ s->ch[ch].element_index = value & 0xffff; break; case 0x18: /* SYS_DMA_CPC_CH0 */ return 1; default: OMAP_BAD_REG((unsigned long) reg); } return 0; } static uint32_t omap_dma_read(void *opaque, target_phys_addr_t addr) { struct omap_dma_s *s = (struct omap_dma_s *) opaque; int i, reg, ch, offset = addr - s->base; uint16_t ret; switch (offset) { case 0x000 ... 0x2fe: reg = offset & 0x3f; ch = (offset >> 6) & 0x0f; if (omap_dma_ch_reg_read(s, ch, reg, &ret)) break; return ret; case 0x300: /* SYS_DMA_LCD_CTRL */ i = s->lcd_ch.condition; s->lcd_ch.condition = 0; qemu_irq_lower(s->lcd_ch.irq); return ((s->lcd_ch.src == imif) << 6) | (i << 3) | (s->lcd_ch.interrupts << 1) | s->lcd_ch.dual; case 0x302: /* SYS_DMA_LCD_TOP_F1_L */ return s->lcd_ch.src_f1_top & 0xffff; case 0x304: /* SYS_DMA_LCD_TOP_F1_U */ return s->lcd_ch.src_f1_top >> 16; case 0x306: /* SYS_DMA_LCD_BOT_F1_L */ return s->lcd_ch.src_f1_bottom & 0xffff; case 0x308: /* SYS_DMA_LCD_BOT_F1_U */ return s->lcd_ch.src_f1_bottom >> 16; case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */ return s->lcd_ch.src_f2_top & 0xffff; case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */ return s->lcd_ch.src_f2_top >> 16; case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */ return s->lcd_ch.src_f2_bottom & 0xffff; case 0x310: /* SYS_DMA_LCD_BOT_F2_U */ return s->lcd_ch.src_f2_bottom >> 16; case 0x400: /* SYS_DMA_GCR */ return s->gcr; } OMAP_BAD_REG(addr); return 0; } static void omap_dma_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_dma_s *s = (struct omap_dma_s *) opaque; int reg, ch, offset = addr - s->base; switch (offset) { case 0x000 ... 0x2fe: reg = offset & 0x3f; ch = (offset >> 6) & 0x0f; if (omap_dma_ch_reg_write(s, ch, reg, value)) OMAP_RO_REG(addr); break; case 0x300: /* SYS_DMA_LCD_CTRL */ s->lcd_ch.src = (value & 0x40) ? imif : emiff; s->lcd_ch.condition = 0; /* Assume no bus errors and thus no BUS_ERROR irq bits. */ s->lcd_ch.interrupts = (value >> 1) & 1; s->lcd_ch.dual = value & 1; break; case 0x302: /* SYS_DMA_LCD_TOP_F1_L */ s->lcd_ch.src_f1_top &= 0xffff0000; s->lcd_ch.src_f1_top |= 0x0000ffff & value; break; case 0x304: /* SYS_DMA_LCD_TOP_F1_U */ s->lcd_ch.src_f1_top &= 0x0000ffff; s->lcd_ch.src_f1_top |= value << 16; break; case 0x306: /* SYS_DMA_LCD_BOT_F1_L */ s->lcd_ch.src_f1_bottom &= 0xffff0000; s->lcd_ch.src_f1_bottom |= 0x0000ffff & value; break; case 0x308: /* SYS_DMA_LCD_BOT_F1_U */ s->lcd_ch.src_f1_bottom &= 0x0000ffff; s->lcd_ch.src_f1_bottom |= value << 16; break; case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */ s->lcd_ch.src_f2_top &= 0xffff0000; s->lcd_ch.src_f2_top |= 0x0000ffff & value; break; case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */ s->lcd_ch.src_f2_top &= 0x0000ffff; s->lcd_ch.src_f2_top |= value << 16; break; case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */ s->lcd_ch.src_f2_bottom &= 0xffff0000; s->lcd_ch.src_f2_bottom |= 0x0000ffff & value; break; case 0x310: /* SYS_DMA_LCD_BOT_F2_U */ s->lcd_ch.src_f2_bottom &= 0x0000ffff; s->lcd_ch.src_f2_bottom |= value << 16; break; case 0x400: /* SYS_DMA_GCR */ s->gcr = value & 0x000c; break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_dma_readfn[] = { omap_badwidth_read16, omap_dma_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_dma_writefn[] = { omap_badwidth_write16, omap_dma_write, omap_badwidth_write16, }; static void omap_dma_request(void *opaque, int drq, int req) { struct omap_dma_s *s = (struct omap_dma_s *) opaque; /* The request pins are level triggered. */ if (req) { if (~s->drq & (1 << drq)) { s->drq |= 1 << drq; omap_dma_request_run(s, 0, drq); } } else s->drq &= ~(1 << drq); } static void omap_dma_clk_update(void *opaque, int line, int on) { struct omap_dma_s *s = (struct omap_dma_s *) opaque; if (on) { s->delay = ticks_per_sec >> 5; if (s->run_count) qemu_mod_timer(s->tm, qemu_get_clock(vm_clock) + s->delay); } else { s->delay = 0; qemu_del_timer(s->tm); } } static void omap_dma_reset(struct omap_dma_s *s) { int i; qemu_del_timer(s->tm); s->gcr = 0x0004; s->drq = 0x00000000; s->run_count = 0; s->lcd_ch.src = emiff; s->lcd_ch.condition = 0; s->lcd_ch.interrupts = 0; s->lcd_ch.dual = 0; memset(s->ch, 0, sizeof(s->ch)); for (i = 0; i < s->chans; i ++) s->ch[i].interrupts = 0x0003; } struct omap_dma_s *omap_dma_init(target_phys_addr_t base, qemu_irq pic[], struct omap_mpu_state_s *mpu, omap_clk clk) { int iomemtype; struct omap_dma_s *s = (struct omap_dma_s *) qemu_mallocz(sizeof(struct omap_dma_s)); s->ih = pic; s->base = base; s->chans = 9; s->mpu = mpu; s->clk = clk; s->lcd_ch.irq = pic[OMAP_INT_DMA_LCD]; s->lcd_ch.mpu = mpu; s->tm = qemu_new_timer(vm_clock, (QEMUTimerCB *) omap_dma_channel_run, s); omap_clk_adduser(s->clk, qemu_allocate_irqs(omap_dma_clk_update, s, 1)[0]); mpu->drq = qemu_allocate_irqs(omap_dma_request, s, 32); omap_dma_reset(s); omap_dma_clk_update(s, 0, 1); iomemtype = cpu_register_io_memory(0, omap_dma_readfn, omap_dma_writefn, s); cpu_register_physical_memory(s->base, 0x800, iomemtype); return s; } /* DMA ports */ static int omap_validate_emiff_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size; } static int omap_validate_emifs_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE; } static int omap_validate_imif_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size; } static int omap_validate_tipb_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return addr >= 0xfffb0000 && addr < 0xffff0000; } static int omap_validate_local_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000; } static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return addr >= 0xe1010000 && addr < 0xe1020004; } /* MPU OS timers */ struct omap_mpu_timer_s { qemu_irq irq; omap_clk clk; target_phys_addr_t base; uint32_t val; int64_t time; QEMUTimer *timer; int64_t rate; int it_ena; int enable; int ptv; int ar; int st; uint32_t reset_val; }; static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer) { uint64_t distance = qemu_get_clock(vm_clock) - timer->time; if (timer->st && timer->enable && timer->rate) return timer->val - muldiv64(distance >> (timer->ptv + 1), timer->rate, ticks_per_sec); else return timer->val; } static inline void omap_timer_sync(struct omap_mpu_timer_s *timer) { timer->val = omap_timer_read(timer); timer->time = qemu_get_clock(vm_clock); } static inline void omap_timer_update(struct omap_mpu_timer_s *timer) { int64_t expires; if (timer->enable && timer->st && timer->rate) { timer->val = timer->reset_val; /* Should skip this on clk enable */ expires = muldiv64(timer->val << (timer->ptv + 1), ticks_per_sec, timer->rate); /* If timer expiry would be sooner than in about 1 ms and * auto-reload isn't set, then fire immediately. This is a hack * to make systems like PalmOS run in acceptable time. PalmOS * sets the interval to a very low value and polls the status bit * in a busy loop when it wants to sleep just a couple of CPU * ticks. */ if (expires > (ticks_per_sec >> 10) || timer->ar) qemu_mod_timer(timer->timer, timer->time + expires); else { timer->val = 0; timer->st = 0; if (timer->it_ena) qemu_irq_raise(timer->irq); } } else qemu_del_timer(timer->timer); } static void omap_timer_tick(void *opaque) { struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque; omap_timer_sync(timer); if (!timer->ar) { timer->val = 0; timer->st = 0; } if (timer->it_ena) qemu_irq_raise(timer->irq); omap_timer_update(timer); } static void omap_timer_clk_update(void *opaque, int line, int on) { struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque; omap_timer_sync(timer); timer->rate = on ? omap_clk_getrate(timer->clk) : 0; omap_timer_update(timer); } static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer) { omap_clk_adduser(timer->clk, qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]); timer->rate = omap_clk_getrate(timer->clk); } static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque; int offset = addr - s->base; switch (offset) { case 0x00: /* CNTL_TIMER */ return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st; case 0x04: /* LOAD_TIM */ break; case 0x08: /* READ_TIM */ return omap_timer_read(s); } OMAP_BAD_REG(addr); return 0; } static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque; int offset = addr - s->base; switch (offset) { case 0x00: /* CNTL_TIMER */ omap_timer_sync(s); s->enable = (value >> 5) & 1; s->ptv = (value >> 2) & 7; s->ar = (value >> 1) & 1; s->st = value & 1; omap_timer_update(s); return; case 0x04: /* LOAD_TIM */ s->reset_val = value; return; case 0x08: /* READ_TIM */ OMAP_RO_REG(addr); break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_mpu_timer_read, }; static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_mpu_timer_write, }; static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s) { qemu_del_timer(s->timer); s->enable = 0; s->reset_val = 31337; s->val = 0; s->ptv = 0; s->ar = 0; s->st = 0; s->it_ena = 1; } struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base, qemu_irq irq, omap_clk clk) { int iomemtype; struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) qemu_mallocz(sizeof(struct omap_mpu_timer_s)); s->irq = irq; s->clk = clk; s->base = base; s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s); omap_mpu_timer_reset(s); omap_timer_clk_setup(s); iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn, omap_mpu_timer_writefn, s); cpu_register_physical_memory(s->base, 0x100, iomemtype); return s; } /* Watchdog timer */ struct omap_watchdog_timer_s { struct omap_mpu_timer_s timer; uint8_t last_wr; int mode; int free; int reset; }; static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr) { struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque; int offset = addr - s->timer.base; switch (offset) { case 0x00: /* CNTL_TIMER */ return (s->timer.ptv << 9) | (s->timer.ar << 8) | (s->timer.st << 7) | (s->free << 1); case 0x04: /* READ_TIMER */ return omap_timer_read(&s->timer); case 0x08: /* TIMER_MODE */ return s->mode << 15; } OMAP_BAD_REG(addr); return 0; } static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque; int offset = addr - s->timer.base; switch (offset) { case 0x00: /* CNTL_TIMER */ omap_timer_sync(&s->timer); s->timer.ptv = (value >> 9) & 7; s->timer.ar = (value >> 8) & 1; s->timer.st = (value >> 7) & 1; s->free = (value >> 1) & 1; omap_timer_update(&s->timer); break; case 0x04: /* LOAD_TIMER */ s->timer.reset_val = value & 0xffff; break; case 0x08: /* TIMER_MODE */ if (!s->mode && ((value >> 15) & 1)) omap_clk_get(s->timer.clk); s->mode |= (value >> 15) & 1; if (s->last_wr == 0xf5) { if ((value & 0xff) == 0xa0) { s->mode = 0; omap_clk_put(s->timer.clk); } else { /* XXX: on T|E hardware somehow this has no effect, * on Zire 71 it works as specified. */ s->reset = 1; qemu_system_reset_request(); } } s->last_wr = value & 0xff; break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_wd_timer_readfn[] = { omap_badwidth_read16, omap_wd_timer_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = { omap_badwidth_write16, omap_wd_timer_write, omap_badwidth_write16, }; static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s) { qemu_del_timer(s->timer.timer); if (!s->mode) omap_clk_get(s->timer.clk); s->mode = 1; s->free = 1; s->reset = 0; s->timer.enable = 1; s->timer.it_ena = 1; s->timer.reset_val = 0xffff; s->timer.val = 0; s->timer.st = 0; s->timer.ptv = 0; s->timer.ar = 0; omap_timer_update(&s->timer); } struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base, qemu_irq irq, omap_clk clk) { int iomemtype; struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) qemu_mallocz(sizeof(struct omap_watchdog_timer_s)); s->timer.irq = irq; s->timer.clk = clk; s->timer.base = base; s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer); omap_wd_timer_reset(s); omap_timer_clk_setup(&s->timer); iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn, omap_wd_timer_writefn, s); cpu_register_physical_memory(s->timer.base, 0x100, iomemtype); return s; } /* 32-kHz timer */ struct omap_32khz_timer_s { struct omap_mpu_timer_s timer; }; static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr) { struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* TVR */ return s->timer.reset_val; case 0x04: /* TCR */ return omap_timer_read(&s->timer); case 0x08: /* CR */ return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st; default: break; } OMAP_BAD_REG(addr); return 0; } static void omap_os_timer_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* TVR */ s->timer.reset_val = value & 0x00ffffff; break; case 0x04: /* TCR */ OMAP_RO_REG(addr); break; case 0x08: /* CR */ s->timer.ar = (value >> 3) & 1; s->timer.it_ena = (value >> 2) & 1; if (s->timer.st != (value & 1) || (value & 2)) { omap_timer_sync(&s->timer); s->timer.enable = value & 1; s->timer.st = value & 1; omap_timer_update(&s->timer); } break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_os_timer_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_os_timer_read, }; static CPUWriteMemoryFunc *omap_os_timer_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_os_timer_write, }; static void omap_os_timer_reset(struct omap_32khz_timer_s *s) { qemu_del_timer(s->timer.timer); s->timer.enable = 0; s->timer.it_ena = 0; s->timer.reset_val = 0x00ffffff; s->timer.val = 0; s->timer.st = 0; s->timer.ptv = 0; s->timer.ar = 1; } struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base, qemu_irq irq, omap_clk clk) { int iomemtype; struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) qemu_mallocz(sizeof(struct omap_32khz_timer_s)); s->timer.irq = irq; s->timer.clk = clk; s->timer.base = base; s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer); omap_os_timer_reset(s); omap_timer_clk_setup(&s->timer); iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn, omap_os_timer_writefn, s); cpu_register_physical_memory(s->timer.base, 0x800, iomemtype); return s; } /* Ultra Low-Power Device Module */ static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr - s->ulpd_pm_base; uint16_t ret; switch (offset) { case 0x14: /* IT_STATUS */ ret = s->ulpd_pm_regs[offset >> 2]; s->ulpd_pm_regs[offset >> 2] = 0; qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]); return ret; case 0x18: /* Reserved */ case 0x1c: /* Reserved */ case 0x20: /* Reserved */ case 0x28: /* Reserved */ case 0x2c: /* Reserved */ OMAP_BAD_REG(addr); case 0x00: /* COUNTER_32_LSB */ case 0x04: /* COUNTER_32_MSB */ case 0x08: /* COUNTER_HIGH_FREQ_LSB */ case 0x0c: /* COUNTER_HIGH_FREQ_MSB */ case 0x10: /* GAUGING_CTRL */ case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */ case 0x30: /* CLOCK_CTRL */ case 0x34: /* SOFT_REQ */ case 0x38: /* COUNTER_32_FIQ */ case 0x3c: /* DPLL_CTRL */ case 0x40: /* STATUS_REQ */ /* XXX: check clk::usecount state for every clock */ case 0x48: /* LOCL_TIME */ case 0x4c: /* APLL_CTRL */ case 0x50: /* POWER_CTRL */ return s->ulpd_pm_regs[offset >> 2]; } OMAP_BAD_REG(addr); return 0; } static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { if (diff & (1 << 4)) /* USB_MCLK_EN */ omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1); if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */ omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1); } static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { if (diff & (1 << 0)) /* SOFT_DPLL_REQ */ omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1); if (diff & (1 << 1)) /* SOFT_COM_REQ */ omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1); if (diff & (1 << 2)) /* SOFT_SDW_REQ */ omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1); if (diff & (1 << 3)) /* SOFT_USB_REQ */ omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1); } static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr - s->ulpd_pm_base; int64_t now, ticks; int div, mult; static const int bypass_div[4] = { 1, 2, 4, 4 }; uint16_t diff; switch (offset) { case 0x00: /* COUNTER_32_LSB */ case 0x04: /* COUNTER_32_MSB */ case 0x08: /* COUNTER_HIGH_FREQ_LSB */ case 0x0c: /* COUNTER_HIGH_FREQ_MSB */ case 0x14: /* IT_STATUS */ case 0x40: /* STATUS_REQ */ OMAP_RO_REG(addr); break; case 0x10: /* GAUGING_CTRL */ /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */ if ((s->ulpd_pm_regs[offset >> 2] ^ value) & 1) { now = qemu_get_clock(vm_clock); if (value & 1) s->ulpd_gauge_start = now; else { now -= s->ulpd_gauge_start; /* 32-kHz ticks */ ticks = muldiv64(now, 32768, ticks_per_sec); s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff; s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff; if (ticks >> 32) /* OVERFLOW_32K */ s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2; /* High frequency ticks */ ticks = muldiv64(now, 12000000, ticks_per_sec); s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff; s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff; if (ticks >> 32) /* OVERFLOW_HI_FREQ */ s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1; s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */ qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]); } } s->ulpd_pm_regs[offset >> 2] = value; break; case 0x18: /* Reserved */ case 0x1c: /* Reserved */ case 0x20: /* Reserved */ case 0x28: /* Reserved */ case 0x2c: /* Reserved */ OMAP_BAD_REG(addr); case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */ case 0x38: /* COUNTER_32_FIQ */ case 0x48: /* LOCL_TIME */ case 0x50: /* POWER_CTRL */ s->ulpd_pm_regs[offset >> 2] = value; break; case 0x30: /* CLOCK_CTRL */ diff = s->ulpd_pm_regs[offset >> 2] ^ value; s->ulpd_pm_regs[offset >> 2] = value & 0x3f; omap_ulpd_clk_update(s, diff, value); break; case 0x34: /* SOFT_REQ */ diff = s->ulpd_pm_regs[offset >> 2] ^ value; s->ulpd_pm_regs[offset >> 2] = value & 0x1f; omap_ulpd_req_update(s, diff, value); break; case 0x3c: /* DPLL_CTRL */ /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is * omitted altogether, probably a typo. */ /* This register has identical semantics with DPLL(1:3) control * registers, see omap_dpll_write() */ diff = s->ulpd_pm_regs[offset >> 2] & value; s->ulpd_pm_regs[offset >> 2] = value & 0x2fff; if (diff & (0x3ff << 2)) { if (value & (1 << 4)) { /* PLL_ENABLE */ div = ((value >> 5) & 3) + 1; /* PLL_DIV */ mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */ } else { div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */ mult = 1; } omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult); } /* Enter the desired mode. */ s->ulpd_pm_regs[offset >> 2] = (s->ulpd_pm_regs[offset >> 2] & 0xfffe) | ((s->ulpd_pm_regs[offset >> 2] >> 4) & 1); /* Act as if the lock is restored. */ s->ulpd_pm_regs[offset >> 2] |= 2; break; case 0x4c: /* APLL_CTRL */ diff = s->ulpd_pm_regs[offset >> 2] & value; s->ulpd_pm_regs[offset >> 2] = value & 0xf; if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */ omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s, (value & (1 << 0)) ? "apll" : "dpll4")); break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = { omap_badwidth_read16, omap_ulpd_pm_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = { omap_badwidth_write16, omap_ulpd_pm_write, omap_badwidth_write16, }; static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu) { mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001; mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000; mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001; mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000; mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000; mpu->ulpd_pm_regs[0x18 >> 2] = 0x01; mpu->ulpd_pm_regs[0x1c >> 2] = 0x01; mpu->ulpd_pm_regs[0x20 >> 2] = 0x01; mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff; mpu->ulpd_pm_regs[0x28 >> 2] = 0x01; mpu->ulpd_pm_regs[0x2c >> 2] = 0x01; omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000); mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000; omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000); mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000; mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001; mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211; mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */ mpu->ulpd_pm_regs[0x48 >> 2] = 0x960; mpu->ulpd_pm_regs[0x4c >> 2] = 0x08; mpu->ulpd_pm_regs[0x50 >> 2] = 0x08; omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4); omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4")); } static void omap_ulpd_pm_init(target_phys_addr_t base, struct omap_mpu_state_s *mpu) { int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn, omap_ulpd_pm_writefn, mpu); mpu->ulpd_pm_base = base; cpu_register_physical_memory(mpu->ulpd_pm_base, 0x800, iomemtype); omap_ulpd_pm_reset(mpu); } /* OMAP Pin Configuration */ static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr - s->pin_cfg_base; switch (offset) { case 0x00: /* FUNC_MUX_CTRL_0 */ case 0x04: /* FUNC_MUX_CTRL_1 */ case 0x08: /* FUNC_MUX_CTRL_2 */ return s->func_mux_ctrl[offset >> 2]; case 0x0c: /* COMP_MODE_CTRL_0 */ return s->comp_mode_ctrl[0]; case 0x10: /* FUNC_MUX_CTRL_3 */ case 0x14: /* FUNC_MUX_CTRL_4 */ case 0x18: /* FUNC_MUX_CTRL_5 */ case 0x1c: /* FUNC_MUX_CTRL_6 */ case 0x20: /* FUNC_MUX_CTRL_7 */ case 0x24: /* FUNC_MUX_CTRL_8 */ case 0x28: /* FUNC_MUX_CTRL_9 */ case 0x2c: /* FUNC_MUX_CTRL_A */ case 0x30: /* FUNC_MUX_CTRL_B */ case 0x34: /* FUNC_MUX_CTRL_C */ case 0x38: /* FUNC_MUX_CTRL_D */ return s->func_mux_ctrl[(offset >> 2) - 1]; case 0x40: /* PULL_DWN_CTRL_0 */ case 0x44: /* PULL_DWN_CTRL_1 */ case 0x48: /* PULL_DWN_CTRL_2 */ case 0x4c: /* PULL_DWN_CTRL_3 */ return s->pull_dwn_ctrl[(offset & 0xf) >> 2]; case 0x50: /* GATE_INH_CTRL_0 */ return s->gate_inh_ctrl[0]; case 0x60: /* VOLTAGE_CTRL_0 */ return s->voltage_ctrl[0]; case 0x70: /* TEST_DBG_CTRL_0 */ return s->test_dbg_ctrl[0]; case 0x80: /* MOD_CONF_CTRL_0 */ return s->mod_conf_ctrl[0]; } OMAP_BAD_REG(addr); return 0; } static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s, uint32_t diff, uint32_t value) { if (s->compat1509) { if (diff & (1 << 9)) /* BLUETOOTH */ omap_clk_onoff(omap_findclk(s, "bt_mclk_out"), (~value >> 9) & 1); if (diff & (1 << 7)) /* USB.CLKO */ omap_clk_onoff(omap_findclk(s, "usb.clko"), (value >> 7) & 1); } } static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s, uint32_t diff, uint32_t value) { if (s->compat1509) { if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */ omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1); if (diff & (1 << 1)) /* CLK32K */ omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1); } } static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s, uint32_t diff, uint32_t value) { if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */ omap_clk_reparent(omap_findclk(s, "uart3_ck"), omap_findclk(s, ((value >> 31) & 1) ? "ck_48m" : "armper_ck")); if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */ omap_clk_reparent(omap_findclk(s, "uart2_ck"), omap_findclk(s, ((value >> 30) & 1) ? "ck_48m" : "armper_ck")); if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */ omap_clk_reparent(omap_findclk(s, "uart1_ck"), omap_findclk(s, ((value >> 29) & 1) ? "ck_48m" : "armper_ck")); if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */ omap_clk_reparent(omap_findclk(s, "mmc_ck"), omap_findclk(s, ((value >> 23) & 1) ? "ck_48m" : "armper_ck")); if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */ omap_clk_reparent(omap_findclk(s, "com_mclk_out"), omap_findclk(s, ((value >> 12) & 1) ? "ck_48m" : "armper_ck")); if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */ omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1); } static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr - s->pin_cfg_base; uint32_t diff; switch (offset) { case 0x00: /* FUNC_MUX_CTRL_0 */ diff = s->func_mux_ctrl[offset >> 2] ^ value; s->func_mux_ctrl[offset >> 2] = value; omap_pin_funcmux0_update(s, diff, value); return; case 0x04: /* FUNC_MUX_CTRL_1 */ diff = s->func_mux_ctrl[offset >> 2] ^ value; s->func_mux_ctrl[offset >> 2] = value; omap_pin_funcmux1_update(s, diff, value); return; case 0x08: /* FUNC_MUX_CTRL_2 */ s->func_mux_ctrl[offset >> 2] = value; return; case 0x0c: /* COMP_MODE_CTRL_0 */ s->comp_mode_ctrl[0] = value; s->compat1509 = (value != 0x0000eaef); omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]); omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]); return; case 0x10: /* FUNC_MUX_CTRL_3 */ case 0x14: /* FUNC_MUX_CTRL_4 */ case 0x18: /* FUNC_MUX_CTRL_5 */ case 0x1c: /* FUNC_MUX_CTRL_6 */ case 0x20: /* FUNC_MUX_CTRL_7 */ case 0x24: /* FUNC_MUX_CTRL_8 */ case 0x28: /* FUNC_MUX_CTRL_9 */ case 0x2c: /* FUNC_MUX_CTRL_A */ case 0x30: /* FUNC_MUX_CTRL_B */ case 0x34: /* FUNC_MUX_CTRL_C */ case 0x38: /* FUNC_MUX_CTRL_D */ s->func_mux_ctrl[(offset >> 2) - 1] = value; return; case 0x40: /* PULL_DWN_CTRL_0 */ case 0x44: /* PULL_DWN_CTRL_1 */ case 0x48: /* PULL_DWN_CTRL_2 */ case 0x4c: /* PULL_DWN_CTRL_3 */ s->pull_dwn_ctrl[(offset & 0xf) >> 2] = value; return; case 0x50: /* GATE_INH_CTRL_0 */ s->gate_inh_ctrl[0] = value; return; case 0x60: /* VOLTAGE_CTRL_0 */ s->voltage_ctrl[0] = value; return; case 0x70: /* TEST_DBG_CTRL_0 */ s->test_dbg_ctrl[0] = value; return; case 0x80: /* MOD_CONF_CTRL_0 */ diff = s->mod_conf_ctrl[0] ^ value; s->mod_conf_ctrl[0] = value; omap_pin_modconf1_update(s, diff, value); return; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_pin_cfg_read, }; static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_pin_cfg_write, }; static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu) { /* Start in Compatibility Mode. */ mpu->compat1509 = 1; omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0); omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0); omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0); memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl)); memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl)); memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl)); memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl)); memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl)); memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl)); memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl)); } static void omap_pin_cfg_init(target_phys_addr_t base, struct omap_mpu_state_s *mpu) { int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn, omap_pin_cfg_writefn, mpu); mpu->pin_cfg_base = base; cpu_register_physical_memory(mpu->pin_cfg_base, 0x800, iomemtype); omap_pin_cfg_reset(mpu); } /* Device Identification, Die Identification */ static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; switch (addr) { case 0xfffe1800: /* DIE_ID_LSB */ return 0xc9581f0e; case 0xfffe1804: /* DIE_ID_MSB */ return 0xa8858bfa; case 0xfffe2000: /* PRODUCT_ID_LSB */ return 0x00aaaafc; case 0xfffe2004: /* PRODUCT_ID_MSB */ return 0xcafeb574; case 0xfffed400: /* JTAG_ID_LSB */ switch (s->mpu_model) { case omap310: return 0x03310315; case omap1510: return 0x03310115; } break; case 0xfffed404: /* JTAG_ID_MSB */ switch (s->mpu_model) { case omap310: return 0xfb57402f; case omap1510: return 0xfb47002f; } break; } OMAP_BAD_REG(addr); return 0; } static void omap_id_write(void *opaque, target_phys_addr_t addr, uint32_t value) { OMAP_BAD_REG(addr); } static CPUReadMemoryFunc *omap_id_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_id_read, }; static CPUWriteMemoryFunc *omap_id_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_id_write, }; static void omap_id_init(struct omap_mpu_state_s *mpu) { int iomemtype = cpu_register_io_memory(0, omap_id_readfn, omap_id_writefn, mpu); cpu_register_physical_memory(0xfffe1800, 0x800, iomemtype); cpu_register_physical_memory(0xfffed400, 0x100, iomemtype); if (!cpu_is_omap15xx(mpu)) cpu_register_physical_memory(0xfffe2000, 0x800, iomemtype); } /* MPUI Control (Dummy) */ static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr - s->mpui_base; switch (offset) { case 0x00: /* CTRL */ return s->mpui_ctrl; case 0x04: /* DEBUG_ADDR */ return 0x01ffffff; case 0x08: /* DEBUG_DATA */ return 0xffffffff; case 0x0c: /* DEBUG_FLAG */ return 0x00000800; case 0x10: /* STATUS */ return 0x00000000; /* Not in OMAP310 */ case 0x14: /* DSP_STATUS */ case 0x18: /* DSP_BOOT_CONFIG */ return 0x00000000; case 0x1c: /* DSP_MPUI_CONFIG */ return 0x0000ffff; } OMAP_BAD_REG(addr); return 0; } static void omap_mpui_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr - s->mpui_base; switch (offset) { case 0x00: /* CTRL */ s->mpui_ctrl = value & 0x007fffff; break; case 0x04: /* DEBUG_ADDR */ case 0x08: /* DEBUG_DATA */ case 0x0c: /* DEBUG_FLAG */ case 0x10: /* STATUS */ /* Not in OMAP310 */ case 0x14: /* DSP_STATUS */ OMAP_RO_REG(addr); case 0x18: /* DSP_BOOT_CONFIG */ case 0x1c: /* DSP_MPUI_CONFIG */ break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_mpui_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_mpui_read, }; static CPUWriteMemoryFunc *omap_mpui_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_mpui_write, }; static void omap_mpui_reset(struct omap_mpu_state_s *s) { s->mpui_ctrl = 0x0003ff1b; } static void omap_mpui_init(target_phys_addr_t base, struct omap_mpu_state_s *mpu) { int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn, omap_mpui_writefn, mpu); mpu->mpui_base = base; cpu_register_physical_memory(mpu->mpui_base, 0x100, iomemtype); omap_mpui_reset(mpu); } /* TIPB Bridges */ struct omap_tipb_bridge_s { target_phys_addr_t base; qemu_irq abort; int width_intr; uint16_t control; uint16_t alloc; uint16_t buffer; uint16_t enh_control; }; static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr) { struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque; int offset = addr - s->base; switch (offset) { case 0x00: /* TIPB_CNTL */ return s->control; case 0x04: /* TIPB_BUS_ALLOC */ return s->alloc; case 0x08: /* MPU_TIPB_CNTL */ return s->buffer; case 0x0c: /* ENHANCED_TIPB_CNTL */ return s->enh_control; case 0x10: /* ADDRESS_DBG */ case 0x14: /* DATA_DEBUG_LOW */ case 0x18: /* DATA_DEBUG_HIGH */ return 0xffff; case 0x1c: /* DEBUG_CNTR_SIG */ return 0x00f8; } OMAP_BAD_REG(addr); return 0; } static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque; int offset = addr - s->base; switch (offset) { case 0x00: /* TIPB_CNTL */ s->control = value & 0xffff; break; case 0x04: /* TIPB_BUS_ALLOC */ s->alloc = value & 0x003f; break; case 0x08: /* MPU_TIPB_CNTL */ s->buffer = value & 0x0003; break; case 0x0c: /* ENHANCED_TIPB_CNTL */ s->width_intr = !(value & 2); s->enh_control = value & 0x000f; break; case 0x10: /* ADDRESS_DBG */ case 0x14: /* DATA_DEBUG_LOW */ case 0x18: /* DATA_DEBUG_HIGH */ case 0x1c: /* DEBUG_CNTR_SIG */ OMAP_RO_REG(addr); break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = { omap_badwidth_read16, omap_tipb_bridge_read, omap_tipb_bridge_read, }; static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = { omap_badwidth_write16, omap_tipb_bridge_write, omap_tipb_bridge_write, }; static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s) { s->control = 0xffff; s->alloc = 0x0009; s->buffer = 0x0000; s->enh_control = 0x000f; } struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base, qemu_irq abort_irq, omap_clk clk) { int iomemtype; struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) qemu_mallocz(sizeof(struct omap_tipb_bridge_s)); s->abort = abort_irq; s->base = base; omap_tipb_bridge_reset(s); iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn, omap_tipb_bridge_writefn, s); cpu_register_physical_memory(s->base, 0x100, iomemtype); return s; } /* Dummy Traffic Controller's Memory Interface */ static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr - s->tcmi_base; uint32_t ret; switch (offset) { case 0xfffecc00: /* IMIF_PRIO */ case 0xfffecc04: /* EMIFS_PRIO */ case 0xfffecc08: /* EMIFF_PRIO */ case 0xfffecc0c: /* EMIFS_CONFIG */ case 0xfffecc10: /* EMIFS_CS0_CONFIG */ case 0xfffecc14: /* EMIFS_CS1_CONFIG */ case 0xfffecc18: /* EMIFS_CS2_CONFIG */ case 0xfffecc1c: /* EMIFS_CS3_CONFIG */ case 0xfffecc24: /* EMIFF_MRS */ case 0xfffecc28: /* TIMEOUT1 */ case 0xfffecc2c: /* TIMEOUT2 */ case 0xfffecc30: /* TIMEOUT3 */ case 0xfffecc3c: /* EMIFF_SDRAM_CONFIG_2 */ case 0xfffecc40: /* EMIFS_CFG_DYN_WAIT */ return s->tcmi_regs[offset >> 2]; case 0xfffecc20: /* EMIFF_SDRAM_CONFIG */ ret = s->tcmi_regs[offset >> 2]; s->tcmi_regs[offset >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */ /* XXX: We can try using the VGA_DIRTY flag for this */ return ret; } OMAP_BAD_REG(addr); return 0; } static void omap_tcmi_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr - s->tcmi_base; switch (offset) { case 0xfffecc00: /* IMIF_PRIO */ case 0xfffecc04: /* EMIFS_PRIO */ case 0xfffecc08: /* EMIFF_PRIO */ case 0xfffecc10: /* EMIFS_CS0_CONFIG */ case 0xfffecc14: /* EMIFS_CS1_CONFIG */ case 0xfffecc18: /* EMIFS_CS2_CONFIG */ case 0xfffecc1c: /* EMIFS_CS3_CONFIG */ case 0xfffecc20: /* EMIFF_SDRAM_CONFIG */ case 0xfffecc24: /* EMIFF_MRS */ case 0xfffecc28: /* TIMEOUT1 */ case 0xfffecc2c: /* TIMEOUT2 */ case 0xfffecc30: /* TIMEOUT3 */ case 0xfffecc3c: /* EMIFF_SDRAM_CONFIG_2 */ case 0xfffecc40: /* EMIFS_CFG_DYN_WAIT */ s->tcmi_regs[offset >> 2] = value; break; case 0xfffecc0c: /* EMIFS_CONFIG */ s->tcmi_regs[offset >> 2] = (value & 0xf) | (1 << 4); break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_tcmi_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_tcmi_read, }; static CPUWriteMemoryFunc *omap_tcmi_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_tcmi_write, }; static void omap_tcmi_reset(struct omap_mpu_state_s *mpu) { mpu->tcmi_regs[0x00 >> 2] = 0x00000000; mpu->tcmi_regs[0x04 >> 2] = 0x00000000; mpu->tcmi_regs[0x08 >> 2] = 0x00000000; mpu->tcmi_regs[0x0c >> 2] = 0x00000010; mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb; mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb; mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb; mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb; mpu->tcmi_regs[0x20 >> 2] = 0x00618800; mpu->tcmi_regs[0x24 >> 2] = 0x00000037; mpu->tcmi_regs[0x28 >> 2] = 0x00000000; mpu->tcmi_regs[0x2c >> 2] = 0x00000000; mpu->tcmi_regs[0x30 >> 2] = 0x00000000; mpu->tcmi_regs[0x3c >> 2] = 0x00000003; mpu->tcmi_regs[0x40 >> 2] = 0x00000000; } static void omap_tcmi_init(target_phys_addr_t base, struct omap_mpu_state_s *mpu) { int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn, omap_tcmi_writefn, mpu); mpu->tcmi_base = base; cpu_register_physical_memory(mpu->tcmi_base, 0x100, iomemtype); omap_tcmi_reset(mpu); } /* Digital phase-locked loops control */ static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr) { struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque; int offset = addr - s->base; if (offset == 0x00) /* CTL_REG */ return s->mode; OMAP_BAD_REG(addr); return 0; } static void omap_dpll_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque; uint16_t diff; int offset = addr - s->base; static const int bypass_div[4] = { 1, 2, 4, 4 }; int div, mult; if (offset == 0x00) { /* CTL_REG */ /* See omap_ulpd_pm_write() too */ diff = s->mode & value; s->mode = value & 0x2fff; if (diff & (0x3ff << 2)) { if (value & (1 << 4)) { /* PLL_ENABLE */ div = ((value >> 5) & 3) + 1; /* PLL_DIV */ mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */ } else { div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */ mult = 1; } omap_clk_setrate(s->dpll, div, mult); } /* Enter the desired mode. */ s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1); /* Act as if the lock is restored. */ s->mode |= 2; } else { OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_dpll_readfn[] = { omap_badwidth_read16, omap_dpll_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_dpll_writefn[] = { omap_badwidth_write16, omap_dpll_write, omap_badwidth_write16, }; static void omap_dpll_reset(struct dpll_ctl_s *s) { s->mode = 0x2002; omap_clk_setrate(s->dpll, 1, 1); } static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base, omap_clk clk) { int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn, omap_dpll_writefn, s); s->base = base; s->dpll = clk; omap_dpll_reset(s); cpu_register_physical_memory(s->base, 0x100, iomemtype); } /* UARTs */ struct omap_uart_s { SerialState *serial; /* TODO */ }; static void omap_uart_reset(struct omap_uart_s *s) { } struct omap_uart_s *omap_uart_init(target_phys_addr_t base, qemu_irq irq, omap_clk clk, CharDriverState *chr) { struct omap_uart_s *s = (struct omap_uart_s *) qemu_mallocz(sizeof(struct omap_uart_s)); if (chr) s->serial = serial_mm_init(base, 2, irq, chr, 1); return s; } /* MPU Clock/Reset/Power Mode Control */ static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr - s->clkm.mpu_base; switch (offset) { case 0x00: /* ARM_CKCTL */ return s->clkm.arm_ckctl; case 0x04: /* ARM_IDLECT1 */ return s->clkm.arm_idlect1; case 0x08: /* ARM_IDLECT2 */ return s->clkm.arm_idlect2; case 0x0c: /* ARM_EWUPCT */ return s->clkm.arm_ewupct; case 0x10: /* ARM_RSTCT1 */ return s->clkm.arm_rstct1; case 0x14: /* ARM_RSTCT2 */ return s->clkm.arm_rstct2; case 0x18: /* ARM_SYSST */ return (s->clkm.clocking_scheme < 11) | s->clkm.cold_start; case 0x1c: /* ARM_CKOUT1 */ return s->clkm.arm_ckout1; case 0x20: /* ARM_CKOUT2 */ break; } OMAP_BAD_REG(addr); return 0; } static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { omap_clk clk; if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */ if (value & (1 << 14)) /* Reserved */; else { clk = omap_findclk(s, "arminth_ck"); omap_clk_reparent(clk, omap_findclk(s, "tc_ck")); } } if (diff & (1 << 12)) { /* ARM_TIMXO */ clk = omap_findclk(s, "armtim_ck"); if (value & (1 << 12)) omap_clk_reparent(clk, omap_findclk(s, "clkin")); else omap_clk_reparent(clk, omap_findclk(s, "ck_gen1")); } /* XXX: en_dspck */ if (diff & (3 << 10)) { /* DSPMMUDIV */ clk = omap_findclk(s, "dspmmu_ck"); omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1); } if (diff & (3 << 8)) { /* TCDIV */ clk = omap_findclk(s, "tc_ck"); omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1); } if (diff & (3 << 6)) { /* DSPDIV */ clk = omap_findclk(s, "dsp_ck"); omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1); } if (diff & (3 << 4)) { /* ARMDIV */ clk = omap_findclk(s, "arm_ck"); omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1); } if (diff & (3 << 2)) { /* LCDDIV */ clk = omap_findclk(s, "lcd_ck"); omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1); } if (diff & (3 << 0)) { /* PERDIV */ clk = omap_findclk(s, "armper_ck"); omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1); } } static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { omap_clk clk; if (value & (1 << 11)) /* SETARM_IDLE */ cpu_interrupt(s->env, CPU_INTERRUPT_HALT); if (!(value & (1 << 10))) /* WKUP_MODE */ qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */ #define SET_CANIDLE(clock, bit) \ if (diff & (1 << bit)) { \ clk = omap_findclk(s, clock); \ omap_clk_canidle(clk, (value >> bit) & 1); \ } SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */ SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */ SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */ SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */ SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */ SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */ SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */ SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */ SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */ SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */ SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */ SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */ SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */ SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */ } static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { omap_clk clk; #define SET_ONOFF(clock, bit) \ if (diff & (1 << bit)) { \ clk = omap_findclk(s, clock); \ omap_clk_onoff(clk, (value >> bit) & 1); \ } SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */ SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */ SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */ SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */ SET_ONOFF("lb_ck", 4) /* EN_LBCK */ SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */ SET_ONOFF("mpui_ck", 6) /* EN_APICK */ SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */ SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */ SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */ SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */ } static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { omap_clk clk; if (diff & (3 << 4)) { /* TCLKOUT */ clk = omap_findclk(s, "tclk_out"); switch ((value >> 4) & 3) { case 1: omap_clk_reparent(clk, omap_findclk(s, "ck_gen3")); omap_clk_onoff(clk, 1); break; case 2: omap_clk_reparent(clk, omap_findclk(s, "tc_ck")); omap_clk_onoff(clk, 1); break; default: omap_clk_onoff(clk, 0); } } if (diff & (3 << 2)) { /* DCLKOUT */ clk = omap_findclk(s, "dclk_out"); switch ((value >> 2) & 3) { case 0: omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck")); break; case 1: omap_clk_reparent(clk, omap_findclk(s, "ck_gen2")); break; case 2: omap_clk_reparent(clk, omap_findclk(s, "dsp_ck")); break; case 3: omap_clk_reparent(clk, omap_findclk(s, "ck_ref14")); break; } } if (diff & (3 << 0)) { /* ACLKOUT */ clk = omap_findclk(s, "aclk_out"); switch ((value >> 0) & 3) { case 1: omap_clk_reparent(clk, omap_findclk(s, "ck_gen1")); omap_clk_onoff(clk, 1); break; case 2: omap_clk_reparent(clk, omap_findclk(s, "arm_ck")); omap_clk_onoff(clk, 1); break; case 3: omap_clk_reparent(clk, omap_findclk(s, "ck_ref14")); omap_clk_onoff(clk, 1); break; default: omap_clk_onoff(clk, 0); } } } static void omap_clkm_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr - s->clkm.mpu_base; uint16_t diff; omap_clk clk; static const char *clkschemename[8] = { "fully synchronous", "fully asynchronous", "synchronous scalable", "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4", }; switch (offset) { case 0x00: /* ARM_CKCTL */ diff = s->clkm.arm_ckctl ^ value; s->clkm.arm_ckctl = value & 0x7fff; omap_clkm_ckctl_update(s, diff, value); return; case 0x04: /* ARM_IDLECT1 */ diff = s->clkm.arm_idlect1 ^ value; s->clkm.arm_idlect1 = value & 0x0fff; omap_clkm_idlect1_update(s, diff, value); return; case 0x08: /* ARM_IDLECT2 */ diff = s->clkm.arm_idlect2 ^ value; s->clkm.arm_idlect2 = value & 0x07ff; omap_clkm_idlect2_update(s, diff, value); return; case 0x0c: /* ARM_EWUPCT */ diff = s->clkm.arm_ewupct ^ value; s->clkm.arm_ewupct = value & 0x003f; return; case 0x10: /* ARM_RSTCT1 */ diff = s->clkm.arm_rstct1 ^ value; s->clkm.arm_rstct1 = value & 0x0007; if (value & 9) { qemu_system_reset_request(); s->clkm.cold_start = 0xa; } if (diff & ~value & 4) { /* DSP_RST */ omap_mpui_reset(s); omap_tipb_bridge_reset(s->private_tipb); omap_tipb_bridge_reset(s->public_tipb); } if (diff & 2) { /* DSP_EN */ clk = omap_findclk(s, "dsp_ck"); omap_clk_canidle(clk, (~value >> 1) & 1); } return; case 0x14: /* ARM_RSTCT2 */ s->clkm.arm_rstct2 = value & 0x0001; return; case 0x18: /* ARM_SYSST */ if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) { s->clkm.clocking_scheme = (value >> 11) & 7; printf("%s: clocking scheme set to %s\n", __FUNCTION__, clkschemename[s->clkm.clocking_scheme]); } s->clkm.cold_start &= value & 0x3f; return; case 0x1c: /* ARM_CKOUT1 */ diff = s->clkm.arm_ckout1 ^ value; s->clkm.arm_ckout1 = value & 0x003f; omap_clkm_ckout1_update(s, diff, value); return; case 0x20: /* ARM_CKOUT2 */ default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_clkm_readfn[] = { omap_badwidth_read16, omap_clkm_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_clkm_writefn[] = { omap_badwidth_write16, omap_clkm_write, omap_badwidth_write16, }; static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr - s->clkm.dsp_base; switch (offset) { case 0x04: /* DSP_IDLECT1 */ return s->clkm.dsp_idlect1; case 0x08: /* DSP_IDLECT2 */ return s->clkm.dsp_idlect2; case 0x14: /* DSP_RSTCT2 */ return s->clkm.dsp_rstct2; case 0x18: /* DSP_SYSST */ return (s->clkm.clocking_scheme < 11) | s->clkm.cold_start | (s->env->halted << 6); /* Quite useless... */ } OMAP_BAD_REG(addr); return 0; } static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { omap_clk clk; SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */ } static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s, uint16_t diff, uint16_t value) { omap_clk clk; SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */ } static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr - s->clkm.dsp_base; uint16_t diff; switch (offset) { case 0x04: /* DSP_IDLECT1 */ diff = s->clkm.dsp_idlect1 ^ value; s->clkm.dsp_idlect1 = value & 0x01f7; omap_clkdsp_idlect1_update(s, diff, value); break; case 0x08: /* DSP_IDLECT2 */ s->clkm.dsp_idlect2 = value & 0x0037; diff = s->clkm.dsp_idlect1 ^ value; omap_clkdsp_idlect2_update(s, diff, value); break; case 0x14: /* DSP_RSTCT2 */ s->clkm.dsp_rstct2 = value & 0x0001; break; case 0x18: /* DSP_SYSST */ s->clkm.cold_start &= value & 0x3f; break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_clkdsp_readfn[] = { omap_badwidth_read16, omap_clkdsp_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = { omap_badwidth_write16, omap_clkdsp_write, omap_badwidth_write16, }; static void omap_clkm_reset(struct omap_mpu_state_s *s) { if (s->wdt && s->wdt->reset) s->clkm.cold_start = 0x6; s->clkm.clocking_scheme = 0; omap_clkm_ckctl_update(s, ~0, 0x3000); s->clkm.arm_ckctl = 0x3000; omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 & 0x0400, 0x0400); s->clkm.arm_idlect1 = 0x0400; omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 & 0x0100, 0x0100); s->clkm.arm_idlect2 = 0x0100; s->clkm.arm_ewupct = 0x003f; s->clkm.arm_rstct1 = 0x0000; s->clkm.arm_rstct2 = 0x0000; s->clkm.arm_ckout1 = 0x0015; s->clkm.dpll1_mode = 0x2002; omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040); s->clkm.dsp_idlect1 = 0x0040; omap_clkdsp_idlect2_update(s, ~0, 0x0000); s->clkm.dsp_idlect2 = 0x0000; s->clkm.dsp_rstct2 = 0x0000; } static void omap_clkm_init(target_phys_addr_t mpu_base, target_phys_addr_t dsp_base, struct omap_mpu_state_s *s) { int iomemtype[2] = { cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s), cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s), }; s->clkm.mpu_base = mpu_base; s->clkm.dsp_base = dsp_base; s->clkm.cold_start = 0x3a; omap_clkm_reset(s); cpu_register_physical_memory(s->clkm.mpu_base, 0x100, iomemtype[0]); cpu_register_physical_memory(s->clkm.dsp_base, 0x1000, iomemtype[1]); } /* MPU I/O */ struct omap_mpuio_s { target_phys_addr_t base; qemu_irq irq; qemu_irq kbd_irq; qemu_irq *in; qemu_irq handler[16]; qemu_irq wakeup; uint16_t inputs; uint16_t outputs; uint16_t dir; uint16_t edge; uint16_t mask; uint16_t ints; uint16_t debounce; uint16_t latch; uint8_t event; uint8_t buttons[5]; uint8_t row_latch; uint8_t cols; int kbd_mask; int clk; }; static void omap_mpuio_set(void *opaque, int line, int level) { struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; uint16_t prev = s->inputs; if (level) s->inputs |= 1 << line; else s->inputs &= ~(1 << line); if (((1 << line) & s->dir & ~s->mask) && s->clk) { if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) { s->ints |= 1 << line; qemu_irq_raise(s->irq); /* TODO: wakeup */ } if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */ (s->event >> 1) == line) /* PIN_SELECT */ s->latch = s->inputs; } } static void omap_mpuio_kbd_update(struct omap_mpuio_s *s) { int i; uint8_t *row, rows = 0, cols = ~s->cols; for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1) if (*row & cols) rows |= i; qemu_set_irq(s->kbd_irq, rows && ~s->kbd_mask && s->clk); s->row_latch = rows ^ 0x1f; } static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr) { struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; uint16_t ret; switch (offset) { case 0x00: /* INPUT_LATCH */ return s->inputs; case 0x04: /* OUTPUT_REG */ return s->outputs; case 0x08: /* IO_CNTL */ return s->dir; case 0x10: /* KBR_LATCH */ return s->row_latch; case 0x14: /* KBC_REG */ return s->cols; case 0x18: /* GPIO_EVENT_MODE_REG */ return s->event; case 0x1c: /* GPIO_INT_EDGE_REG */ return s->edge; case 0x20: /* KBD_INT */ return (s->row_latch != 0x1f) && !s->kbd_mask; case 0x24: /* GPIO_INT */ ret = s->ints; s->ints &= s->mask; if (ret) qemu_irq_lower(s->irq); return ret; case 0x28: /* KBD_MASKIT */ return s->kbd_mask; case 0x2c: /* GPIO_MASKIT */ return s->mask; case 0x30: /* GPIO_DEBOUNCING_REG */ return s->debounce; case 0x34: /* GPIO_LATCH_REG */ return s->latch; } OMAP_BAD_REG(addr); return 0; } static void omap_mpuio_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; uint16_t diff; int ln; switch (offset) { case 0x04: /* OUTPUT_REG */ diff = s->outputs ^ (value & ~s->dir); s->outputs = value; value &= ~s->dir; while ((ln = ffs(diff))) { ln --; if (s->handler[ln]) qemu_set_irq(s->handler[ln], (value >> ln) & 1); diff &= ~(1 << ln); } break; case 0x08: /* IO_CNTL */ diff = s->outputs & (s->dir ^ value); s->dir = value; value = s->outputs & ~s->dir; while ((ln = ffs(diff))) { ln --; if (s->handler[ln]) qemu_set_irq(s->handler[ln], (value >> ln) & 1); diff &= ~(1 << ln); } break; case 0x14: /* KBC_REG */ s->cols = value; omap_mpuio_kbd_update(s); break; case 0x18: /* GPIO_EVENT_MODE_REG */ s->event = value & 0x1f; break; case 0x1c: /* GPIO_INT_EDGE_REG */ s->edge = value; break; case 0x28: /* KBD_MASKIT */ s->kbd_mask = value & 1; omap_mpuio_kbd_update(s); break; case 0x2c: /* GPIO_MASKIT */ s->mask = value; break; case 0x30: /* GPIO_DEBOUNCING_REG */ s->debounce = value & 0x1ff; break; case 0x00: /* INPUT_LATCH */ case 0x10: /* KBR_LATCH */ case 0x20: /* KBD_INT */ case 0x24: /* GPIO_INT */ case 0x34: /* GPIO_LATCH_REG */ OMAP_RO_REG(addr); return; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_mpuio_readfn[] = { omap_badwidth_read16, omap_mpuio_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_mpuio_writefn[] = { omap_badwidth_write16, omap_mpuio_write, omap_badwidth_write16, }; void omap_mpuio_reset(struct omap_mpuio_s *s) { s->inputs = 0; s->outputs = 0; s->dir = ~0; s->event = 0; s->edge = 0; s->kbd_mask = 0; s->mask = 0; s->debounce = 0; s->latch = 0; s->ints = 0; s->row_latch = 0x1f; s->clk = 1; } static void omap_mpuio_onoff(void *opaque, int line, int on) { struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; s->clk = on; if (on) omap_mpuio_kbd_update(s); } struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base, qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup, omap_clk clk) { int iomemtype; struct omap_mpuio_s *s = (struct omap_mpuio_s *) qemu_mallocz(sizeof(struct omap_mpuio_s)); s->base = base; s->irq = gpio_int; s->kbd_irq = kbd_int; s->wakeup = wakeup; s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16); omap_mpuio_reset(s); iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn, omap_mpuio_writefn, s); cpu_register_physical_memory(s->base, 0x800, iomemtype); omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]); return s; } qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s) { return s->in; } void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler) { if (line >= 16 || line < 0) cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line); s->handler[line] = handler; } void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down) { if (row >= 5 || row < 0) cpu_abort(cpu_single_env, "%s: No key %i-%i\n", __FUNCTION__, col, row); if (down) s->buttons[row] |= 1 << col; else s->buttons[row] &= ~(1 << col); omap_mpuio_kbd_update(s); } /* General-Purpose I/O */ struct omap_gpio_s { target_phys_addr_t base; qemu_irq irq; qemu_irq *in; qemu_irq handler[16]; uint16_t inputs; uint16_t outputs; uint16_t dir; uint16_t edge; uint16_t mask; uint16_t ints; }; static void omap_gpio_set(void *opaque, int line, int level) { struct omap_gpio_s *s = (struct omap_gpio_s *) opaque; uint16_t prev = s->inputs; if (level) s->inputs |= 1 << line; else s->inputs &= ~(1 << line); if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) & (1 << line) & s->dir & ~s->mask) { s->ints |= 1 << line; qemu_irq_raise(s->irq); } } static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr) { struct omap_gpio_s *s = (struct omap_gpio_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* DATA_INPUT */ return s->inputs; case 0x04: /* DATA_OUTPUT */ return s->outputs; case 0x08: /* DIRECTION_CONTROL */ return s->dir; case 0x0c: /* INTERRUPT_CONTROL */ return s->edge; case 0x10: /* INTERRUPT_MASK */ return s->mask; case 0x14: /* INTERRUPT_STATUS */ return s->ints; } OMAP_BAD_REG(addr); return 0; } static void omap_gpio_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_gpio_s *s = (struct omap_gpio_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; uint16_t diff; int ln; switch (offset) { case 0x00: /* DATA_INPUT */ OMAP_RO_REG(addr); return; case 0x04: /* DATA_OUTPUT */ diff = (s->outputs ^ value) & ~s->dir; s->outputs = value; while ((ln = ffs(diff))) { ln --; if (s->handler[ln]) qemu_set_irq(s->handler[ln], (value >> ln) & 1); diff &= ~(1 << ln); } break; case 0x08: /* DIRECTION_CONTROL */ diff = s->outputs & (s->dir ^ value); s->dir = value; value = s->outputs & ~s->dir; while ((ln = ffs(diff))) { ln --; if (s->handler[ln]) qemu_set_irq(s->handler[ln], (value >> ln) & 1); diff &= ~(1 << ln); } break; case 0x0c: /* INTERRUPT_CONTROL */ s->edge = value; break; case 0x10: /* INTERRUPT_MASK */ s->mask = value; break; case 0x14: /* INTERRUPT_STATUS */ s->ints &= ~value; if (!s->ints) qemu_irq_lower(s->irq); break; default: OMAP_BAD_REG(addr); return; } } /* *Some* sources say the memory region is 32-bit. */ static CPUReadMemoryFunc *omap_gpio_readfn[] = { omap_badwidth_read16, omap_gpio_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_gpio_writefn[] = { omap_badwidth_write16, omap_gpio_write, omap_badwidth_write16, }; void omap_gpio_reset(struct omap_gpio_s *s) { s->inputs = 0; s->outputs = ~0; s->dir = ~0; s->edge = ~0; s->mask = ~0; s->ints = 0; } struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base, qemu_irq irq, omap_clk clk) { int iomemtype; struct omap_gpio_s *s = (struct omap_gpio_s *) qemu_mallocz(sizeof(struct omap_gpio_s)); s->base = base; s->irq = irq; s->in = qemu_allocate_irqs(omap_gpio_set, s, 16); omap_gpio_reset(s); iomemtype = cpu_register_io_memory(0, omap_gpio_readfn, omap_gpio_writefn, s); cpu_register_physical_memory(s->base, 0x1000, iomemtype); return s; } qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s) { return s->in; } void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler) { if (line >= 16 || line < 0) cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line); s->handler[line] = handler; } /* MicroWire Interface */ struct omap_uwire_s { target_phys_addr_t base; qemu_irq txirq; qemu_irq rxirq; qemu_irq txdrq; uint16_t txbuf; uint16_t rxbuf; uint16_t control; uint16_t setup[5]; struct uwire_slave_s *chip[4]; }; static void omap_uwire_transfer_start(struct omap_uwire_s *s) { int chipselect = (s->control >> 10) & 3; /* INDEX */ struct uwire_slave_s *slave = s->chip[chipselect]; if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */ if (s->control & (1 << 12)) /* CS_CMD */ if (slave && slave->send) slave->send(slave->opaque, s->txbuf >> (16 - ((s->control >> 5) & 0x1f))); s->control &= ~(1 << 14); /* CSRB */ /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or * a DRQ. When is the level IRQ supposed to be reset? */ } if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */ if (s->control & (1 << 12)) /* CS_CMD */ if (slave && slave->receive) s->rxbuf = slave->receive(slave->opaque); s->control |= 1 << 15; /* RDRB */ /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or * a DRQ. When is the level IRQ supposed to be reset? */ } } static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr) { struct omap_uwire_s *s = (struct omap_uwire_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* RDR */ s->control &= ~(1 << 15); /* RDRB */ return s->rxbuf; case 0x04: /* CSR */ return s->control; case 0x08: /* SR1 */ return s->setup[0]; case 0x0c: /* SR2 */ return s->setup[1]; case 0x10: /* SR3 */ return s->setup[2]; case 0x14: /* SR4 */ return s->setup[3]; case 0x18: /* SR5 */ return s->setup[4]; } OMAP_BAD_REG(addr); return 0; } static void omap_uwire_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_uwire_s *s = (struct omap_uwire_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* TDR */ s->txbuf = value; /* TD */ if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */ ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */ (s->control & (1 << 12)))) { /* CS_CMD */ s->control |= 1 << 14; /* CSRB */ omap_uwire_transfer_start(s); } break; case 0x04: /* CSR */ s->control = value & 0x1fff; if (value & (1 << 13)) /* START */ omap_uwire_transfer_start(s); break; case 0x08: /* SR1 */ s->setup[0] = value & 0x003f; break; case 0x0c: /* SR2 */ s->setup[1] = value & 0x0fc0; break; case 0x10: /* SR3 */ s->setup[2] = value & 0x0003; break; case 0x14: /* SR4 */ s->setup[3] = value & 0x0001; break; case 0x18: /* SR5 */ s->setup[4] = value & 0x000f; break; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_uwire_readfn[] = { omap_badwidth_read16, omap_uwire_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_uwire_writefn[] = { omap_badwidth_write16, omap_uwire_write, omap_badwidth_write16, }; void omap_uwire_reset(struct omap_uwire_s *s) { s->control = 0; s->setup[0] = 0; s->setup[1] = 0; s->setup[2] = 0; s->setup[3] = 0; s->setup[4] = 0; } struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base, qemu_irq *irq, qemu_irq dma, omap_clk clk) { int iomemtype; struct omap_uwire_s *s = (struct omap_uwire_s *) qemu_mallocz(sizeof(struct omap_uwire_s)); s->base = base; s->txirq = irq[0]; s->rxirq = irq[1]; s->txdrq = dma; omap_uwire_reset(s); iomemtype = cpu_register_io_memory(0, omap_uwire_readfn, omap_uwire_writefn, s); cpu_register_physical_memory(s->base, 0x800, iomemtype); return s; } void omap_uwire_attach(struct omap_uwire_s *s, struct uwire_slave_s *slave, int chipselect) { if (chipselect < 0 || chipselect > 3) cpu_abort(cpu_single_env, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect); s->chip[chipselect] = slave; } /* Pseudonoise Pulse-Width Light Modulator */ void omap_pwl_update(struct omap_mpu_state_s *s) { int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0; if (output != s->pwl.output) { s->pwl.output = output; printf("%s: Backlight now at %i/256\n", __FUNCTION__, output); } } static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* PWL_LEVEL */ return s->pwl.level; case 0x04: /* PWL_CTRL */ return s->pwl.enable; } OMAP_BAD_REG(addr); return 0; } static void omap_pwl_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* PWL_LEVEL */ s->pwl.level = value; omap_pwl_update(s); break; case 0x04: /* PWL_CTRL */ s->pwl.enable = value & 1; omap_pwl_update(s); break; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_pwl_readfn[] = { omap_pwl_read, omap_badwidth_read8, omap_badwidth_read8, }; static CPUWriteMemoryFunc *omap_pwl_writefn[] = { omap_pwl_write, omap_badwidth_write8, omap_badwidth_write8, }; void omap_pwl_reset(struct omap_mpu_state_s *s) { s->pwl.output = 0; s->pwl.level = 0; s->pwl.enable = 0; s->pwl.clk = 1; omap_pwl_update(s); } static void omap_pwl_clk_update(void *opaque, int line, int on) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; s->pwl.clk = on; omap_pwl_update(s); } static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s, omap_clk clk) { int iomemtype; omap_pwl_reset(s); iomemtype = cpu_register_io_memory(0, omap_pwl_readfn, omap_pwl_writefn, s); cpu_register_physical_memory(base, 0x800, iomemtype); omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]); } /* Pulse-Width Tone module */ static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* FRC */ return s->pwt.frc; case 0x04: /* VCR */ return s->pwt.vrc; case 0x08: /* GCR */ return s->pwt.gcr; } OMAP_BAD_REG(addr); return 0; } static void omap_pwt_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; switch (offset) { case 0x00: /* FRC */ s->pwt.frc = value & 0x3f; break; case 0x04: /* VRC */ if ((value ^ s->pwt.vrc) & 1) { if (value & 1) printf("%s: %iHz buzz on\n", __FUNCTION__, (int) /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */ ((omap_clk_getrate(s->pwt.clk) >> 3) / /* Pre-multiplexer divider */ ((s->pwt.gcr & 2) ? 1 : 154) / /* Octave multiplexer */ (2 << (value & 3)) * /* 101/107 divider */ ((value & (1 << 2)) ? 101 : 107) * /* 49/55 divider */ ((value & (1 << 3)) ? 49 : 55) * /* 50/63 divider */ ((value & (1 << 4)) ? 50 : 63) * /* 80/127 divider */ ((value & (1 << 5)) ? 80 : 127) / (107 * 55 * 63 * 127))); else printf("%s: silence!\n", __FUNCTION__); } s->pwt.vrc = value & 0x7f; break; case 0x08: /* GCR */ s->pwt.gcr = value & 3; break; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_pwt_readfn[] = { omap_pwt_read, omap_badwidth_read8, omap_badwidth_read8, }; static CPUWriteMemoryFunc *omap_pwt_writefn[] = { omap_pwt_write, omap_badwidth_write8, omap_badwidth_write8, }; void omap_pwt_reset(struct omap_mpu_state_s *s) { s->pwt.frc = 0; s->pwt.vrc = 0; s->pwt.gcr = 0; } static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s, omap_clk clk) { int iomemtype; s->pwt.clk = clk; omap_pwt_reset(s); iomemtype = cpu_register_io_memory(0, omap_pwt_readfn, omap_pwt_writefn, s); cpu_register_physical_memory(base, 0x800, iomemtype); } /* Real-time Clock module */ struct omap_rtc_s { target_phys_addr_t base; qemu_irq irq; qemu_irq alarm; QEMUTimer *clk; uint8_t interrupts; uint8_t status; int16_t comp_reg; int running; int pm_am; int auto_comp; int round; struct tm *(*convert)(const time_t *timep, struct tm *result); struct tm alarm_tm; time_t alarm_ti; struct tm current_tm; time_t ti; uint64_t tick; }; static void omap_rtc_interrupts_update(struct omap_rtc_s *s) { qemu_set_irq(s->alarm, (s->status >> 6) & 1); } static void omap_rtc_alarm_update(struct omap_rtc_s *s) { s->alarm_ti = mktime(&s->alarm_tm); if (s->alarm_ti == -1) printf("%s: conversion failed\n", __FUNCTION__); } static inline uint8_t omap_rtc_bcd(int num) { return ((num / 10) << 4) | (num % 10); } static inline int omap_rtc_bin(uint8_t num) { return (num & 15) + 10 * (num >> 4); } static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr) { struct omap_rtc_s *s = (struct omap_rtc_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; uint8_t i; switch (offset) { case 0x00: /* SECONDS_REG */ return omap_rtc_bcd(s->current_tm.tm_sec); case 0x04: /* MINUTES_REG */ return omap_rtc_bcd(s->current_tm.tm_min); case 0x08: /* HOURS_REG */ if (s->pm_am) return ((s->current_tm.tm_hour > 11) << 7) | omap_rtc_bcd(((s->current_tm.tm_hour - 1) % 12) + 1); else return omap_rtc_bcd(s->current_tm.tm_hour); case 0x0c: /* DAYS_REG */ return omap_rtc_bcd(s->current_tm.tm_mday); case 0x10: /* MONTHS_REG */ return omap_rtc_bcd(s->current_tm.tm_mon + 1); case 0x14: /* YEARS_REG */ return omap_rtc_bcd(s->current_tm.tm_year % 100); case 0x18: /* WEEK_REG */ return s->current_tm.tm_wday; case 0x20: /* ALARM_SECONDS_REG */ return omap_rtc_bcd(s->alarm_tm.tm_sec); case 0x24: /* ALARM_MINUTES_REG */ return omap_rtc_bcd(s->alarm_tm.tm_min); case 0x28: /* ALARM_HOURS_REG */ if (s->pm_am) return ((s->alarm_tm.tm_hour > 11) << 7) | omap_rtc_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1); else return omap_rtc_bcd(s->alarm_tm.tm_hour); case 0x2c: /* ALARM_DAYS_REG */ return omap_rtc_bcd(s->alarm_tm.tm_mday); case 0x30: /* ALARM_MONTHS_REG */ return omap_rtc_bcd(s->alarm_tm.tm_mon + 1); case 0x34: /* ALARM_YEARS_REG */ return omap_rtc_bcd(s->alarm_tm.tm_year % 100); case 0x40: /* RTC_CTRL_REG */ return (s->pm_am << 3) | (s->auto_comp << 2) | (s->round << 1) | s->running; case 0x44: /* RTC_STATUS_REG */ i = s->status; s->status &= ~0x3d; return i; case 0x48: /* RTC_INTERRUPTS_REG */ return s->interrupts; case 0x4c: /* RTC_COMP_LSB_REG */ return ((uint16_t) s->comp_reg) & 0xff; case 0x50: /* RTC_COMP_MSB_REG */ return ((uint16_t) s->comp_reg) >> 8; } OMAP_BAD_REG(addr); return 0; } static void omap_rtc_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_rtc_s *s = (struct omap_rtc_s *) opaque; int offset = addr & OMAP_MPUI_REG_MASK; struct tm new_tm; time_t ti[2]; switch (offset) { case 0x00: /* SECONDS_REG */ #if ALMDEBUG printf("RTC SEC_REG <-- %02x\n", value); #endif s->ti -= s->current_tm.tm_sec; s->ti += omap_rtc_bin(value); return; case 0x04: /* MINUTES_REG */ #if ALMDEBUG printf("RTC MIN_REG <-- %02x\n", value); #endif s->ti -= s->current_tm.tm_min * 60; s->ti += omap_rtc_bin(value) * 60; return; case 0x08: /* HOURS_REG */ #if ALMDEBUG printf("RTC HRS_REG <-- %02x\n", value); #endif s->ti -= s->current_tm.tm_hour * 3600; if (s->pm_am) { s->ti += (omap_rtc_bin(value & 0x3f) & 12) * 3600; s->ti += ((value >> 7) & 1) * 43200; } else s->ti += omap_rtc_bin(value & 0x3f) * 3600; return; case 0x0c: /* DAYS_REG */ #if ALMDEBUG printf("RTC DAY_REG <-- %02x\n", value); #endif s->ti -= s->current_tm.tm_mday * 86400; s->ti += omap_rtc_bin(value) * 86400; return; case 0x10: /* MONTHS_REG */ #if ALMDEBUG printf("RTC MTH_REG <-- %02x\n", value); #endif memcpy(&new_tm, &s->current_tm, sizeof(new_tm)); new_tm.tm_mon = omap_rtc_bin(value); ti[0] = mktime(&s->current_tm); ti[1] = mktime(&new_tm); if (ti[0] != -1 && ti[1] != -1) { s->ti -= ti[0]; s->ti += ti[1]; } else { /* A less accurate version */ s->ti -= s->current_tm.tm_mon * 2592000; s->ti += omap_rtc_bin(value) * 2592000; } return; case 0x14: /* YEARS_REG */ #if ALMDEBUG printf("RTC YRS_REG <-- %02x\n", value); #endif memcpy(&new_tm, &s->current_tm, sizeof(new_tm)); new_tm.tm_year += omap_rtc_bin(value) - (new_tm.tm_year % 100); ti[0] = mktime(&s->current_tm); ti[1] = mktime(&new_tm); if (ti[0] != -1 && ti[1] != -1) { s->ti -= ti[0]; s->ti += ti[1]; } else { /* A less accurate version */ s->ti -= (s->current_tm.tm_year % 100) * 31536000; s->ti += omap_rtc_bin(value) * 31536000; } return; case 0x18: /* WEEK_REG */ return; /* Ignored */ case 0x20: /* ALARM_SECONDS_REG */ #if ALMDEBUG printf("ALM SEC_REG <-- %02x\n", value); #endif s->alarm_tm.tm_sec = omap_rtc_bin(value); omap_rtc_alarm_update(s); return; case 0x24: /* ALARM_MINUTES_REG */ #if ALMDEBUG printf("ALM MIN_REG <-- %02x\n", value); #endif s->alarm_tm.tm_min = omap_rtc_bin(value); omap_rtc_alarm_update(s); return; case 0x28: /* ALARM_HOURS_REG */ #if ALMDEBUG printf("ALM HRS_REG <-- %02x\n", value); #endif if (s->pm_am) s->alarm_tm.tm_hour = ((omap_rtc_bin(value & 0x3f)) % 12) + ((value >> 7) & 1) * 12; else s->alarm_tm.tm_hour = omap_rtc_bin(value); omap_rtc_alarm_update(s); return; case 0x2c: /* ALARM_DAYS_REG */ #if ALMDEBUG printf("ALM DAY_REG <-- %02x\n", value); #endif s->alarm_tm.tm_mday = omap_rtc_bin(value); omap_rtc_alarm_update(s); return; case 0x30: /* ALARM_MONTHS_REG */ #if ALMDEBUG printf("ALM MON_REG <-- %02x\n", value); #endif s->alarm_tm.tm_mon = omap_rtc_bin(value); omap_rtc_alarm_update(s); return; case 0x34: /* ALARM_YEARS_REG */ #if ALMDEBUG printf("ALM YRS_REG <-- %02x\n", value); #endif s->alarm_tm.tm_year = omap_rtc_bin(value); omap_rtc_alarm_update(s); return; case 0x40: /* RTC_CTRL_REG */ #if ALMDEBUG printf("RTC CONTROL <-- %02x\n", value); #endif s->pm_am = (value >> 3) & 1; s->auto_comp = (value >> 2) & 1; s->round = (value >> 1) & 1; s->running = value & 1; s->status &= 0xfd; s->status |= s->running << 1; return; case 0x44: /* RTC_STATUS_REG */ #if ALMDEBUG printf("RTC STATUSL <-- %02x\n", value); #endif s->status &= ~((value & 0xc0) ^ 0x80); omap_rtc_interrupts_update(s); return; case 0x48: /* RTC_INTERRUPTS_REG */ #if ALMDEBUG printf("RTC INTRS <-- %02x\n", value); #endif s->interrupts = value; return; case 0x4c: /* RTC_COMP_LSB_REG */ #if ALMDEBUG printf("RTC COMPLSB <-- %02x\n", value); #endif s->comp_reg &= 0xff00; s->comp_reg |= 0x00ff & value; return; case 0x50: /* RTC_COMP_MSB_REG */ #if ALMDEBUG printf("RTC COMPMSB <-- %02x\n", value); #endif s->comp_reg &= 0x00ff; s->comp_reg |= 0xff00 & (value << 8); return; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_rtc_readfn[] = { omap_rtc_read, omap_badwidth_read8, omap_badwidth_read8, }; static CPUWriteMemoryFunc *omap_rtc_writefn[] = { omap_rtc_write, omap_badwidth_write8, omap_badwidth_write8, }; static void omap_rtc_tick(void *opaque) { struct omap_rtc_s *s = opaque; if (s->round) { /* Round to nearest full minute. */ if (s->current_tm.tm_sec < 30) s->ti -= s->current_tm.tm_sec; else s->ti += 60 - s->current_tm.tm_sec; s->round = 0; } localtime_r(&s->ti, &s->current_tm); if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) { s->status |= 0x40; omap_rtc_interrupts_update(s); } if (s->interrupts & 0x04) switch (s->interrupts & 3) { case 0: s->status |= 0x04; qemu_irq_raise(s->irq); break; case 1: if (s->current_tm.tm_sec) break; s->status |= 0x08; qemu_irq_raise(s->irq); break; case 2: if (s->current_tm.tm_sec || s->current_tm.tm_min) break; s->status |= 0x10; qemu_irq_raise(s->irq); break; case 3: if (s->current_tm.tm_sec || s->current_tm.tm_min || s->current_tm.tm_hour) break; s->status |= 0x20; qemu_irq_raise(s->irq); break; } /* Move on */ if (s->running) s->ti ++; s->tick += 1000; /* * Every full hour add a rough approximation of the compensation * register to the 32kHz Timer (which drives the RTC) value. */ if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min) s->tick += s->comp_reg * 1000 / 32768; qemu_mod_timer(s->clk, s->tick); } void omap_rtc_reset(struct omap_rtc_s *s) { s->interrupts = 0; s->comp_reg = 0; s->running = 0; s->pm_am = 0; s->auto_comp = 0; s->round = 0; s->tick = qemu_get_clock(rt_clock); memset(&s->alarm_tm, 0, sizeof(s->alarm_tm)); s->alarm_tm.tm_mday = 0x01; s->status = 1 << 7; time(&s->ti); s->ti = mktime(s->convert(&s->ti, &s->current_tm)); omap_rtc_alarm_update(s); omap_rtc_tick(s); } struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base, qemu_irq *irq, omap_clk clk) { int iomemtype; struct omap_rtc_s *s = (struct omap_rtc_s *) qemu_mallocz(sizeof(struct omap_rtc_s)); s->base = base; s->irq = irq[0]; s->alarm = irq[1]; s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s); s->convert = rtc_utc ? gmtime_r : localtime_r; omap_rtc_reset(s); iomemtype = cpu_register_io_memory(0, omap_rtc_readfn, omap_rtc_writefn, s); cpu_register_physical_memory(s->base, 0x800, iomemtype); return s; } /* General chip reset */ static void omap_mpu_reset(void *opaque) { struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque; omap_clkm_reset(mpu); omap_inth_reset(mpu->ih[0]); omap_inth_reset(mpu->ih[1]); omap_dma_reset(mpu->dma); omap_mpu_timer_reset(mpu->timer[0]); omap_mpu_timer_reset(mpu->timer[1]); omap_mpu_timer_reset(mpu->timer[2]); omap_wd_timer_reset(mpu->wdt); omap_os_timer_reset(mpu->os_timer); omap_lcdc_reset(mpu->lcd); omap_ulpd_pm_reset(mpu); omap_pin_cfg_reset(mpu); omap_mpui_reset(mpu); omap_tipb_bridge_reset(mpu->private_tipb); omap_tipb_bridge_reset(mpu->public_tipb); omap_dpll_reset(&mpu->dpll[0]); omap_dpll_reset(&mpu->dpll[1]); omap_dpll_reset(&mpu->dpll[2]); omap_uart_reset(mpu->uart[0]); omap_uart_reset(mpu->uart[1]); omap_uart_reset(mpu->uart[2]); omap_mmc_reset(mpu->mmc); omap_mpuio_reset(mpu->mpuio); omap_gpio_reset(mpu->gpio); omap_uwire_reset(mpu->microwire); omap_pwl_reset(mpu); omap_pwt_reset(mpu); omap_i2c_reset(mpu->i2c); omap_rtc_reset(mpu->rtc); cpu_reset(mpu->env); } static const struct omap_map_s { target_phys_addr_t phys_dsp; target_phys_addr_t phys_mpu; uint32_t size; const char *name; } omap15xx_dsp_mm[] = { /* Strobe 0 */ { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */ { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */ { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */ { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */ { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */ { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */ { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */ { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */ { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */ { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */ { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */ { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */ { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */ { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */ { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */ { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */ { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */ /* Strobe 1 */ { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */ { 0 } }; static void omap_setup_dsp_mapping(const struct omap_map_s *map) { int io; for (; map->phys_dsp; map ++) { io = cpu_get_physical_page_desc(map->phys_mpu); cpu_register_physical_memory(map->phys_dsp, map->size, io); } } static void omap_mpu_wakeup(void *opaque, int irq, int req) { struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque; if (mpu->env->halted) cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB); } struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size, DisplayState *ds, const char *core) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) qemu_mallocz(sizeof(struct omap_mpu_state_s)); ram_addr_t imif_base, emiff_base; /* Core */ s->mpu_model = omap310; s->env = cpu_init(); s->sdram_size = sdram_size; s->sram_size = OMAP15XX_SRAM_SIZE; cpu_arm_set_model(s->env, core ?: "ti925t"); s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0]; /* Clocks */ omap_clk_init(s); /* Memory-mapped stuff */ cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size, (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM); cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size, (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM); omap_clkm_init(0xfffece00, 0xe1008000, s); s->ih[0] = omap_inth_init(0xfffecb00, 0x100, arm_pic_init_cpu(s->env), omap_findclk(s, "arminth_ck")); s->ih[1] = omap_inth_init(0xfffe0000, 0x800, &s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], omap_findclk(s, "arminth_ck")); s->irq[0] = s->ih[0]->pins; s->irq[1] = s->ih[1]->pins; s->dma = omap_dma_init(0xfffed800, s->irq[0], s, omap_findclk(s, "dma_ck")); s->port[emiff ].addr_valid = omap_validate_emiff_addr; s->port[emifs ].addr_valid = omap_validate_emifs_addr; s->port[imif ].addr_valid = omap_validate_imif_addr; s->port[tipb ].addr_valid = omap_validate_tipb_addr; s->port[local ].addr_valid = omap_validate_local_addr; s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr; s->timer[0] = omap_mpu_timer_init(0xfffec500, s->irq[0][OMAP_INT_TIMER1], omap_findclk(s, "mputim_ck")); s->timer[1] = omap_mpu_timer_init(0xfffec600, s->irq[0][OMAP_INT_TIMER2], omap_findclk(s, "mputim_ck")); s->timer[2] = omap_mpu_timer_init(0xfffec700, s->irq[0][OMAP_INT_TIMER3], omap_findclk(s, "mputim_ck")); s->wdt = omap_wd_timer_init(0xfffec800, s->irq[0][OMAP_INT_WD_TIMER], omap_findclk(s, "armwdt_ck")); s->os_timer = omap_os_timer_init(0xfffb9000, s->irq[1][OMAP_INT_OS_TIMER], omap_findclk(s, "clk32-kHz")); s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL], &s->dma->lcd_ch, ds, imif_base, emiff_base, omap_findclk(s, "lcd_ck")); omap_ulpd_pm_init(0xfffe0800, s); omap_pin_cfg_init(0xfffe1000, s); omap_id_init(s); omap_mpui_init(0xfffec900, s); s->private_tipb = omap_tipb_bridge_init(0xfffeca00, s->irq[0][OMAP_INT_BRIDGE_PRIV], omap_findclk(s, "tipb_ck")); s->public_tipb = omap_tipb_bridge_init(0xfffed300, s->irq[0][OMAP_INT_BRIDGE_PUB], omap_findclk(s, "tipb_ck")); omap_tcmi_init(0xfffecc00, s); s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1], omap_findclk(s, "uart1_ck"), serial_hds[0]); s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2], omap_findclk(s, "uart2_ck"), serial_hds[0] ? serial_hds[1] : 0); s->uart[2] = omap_uart_init(0xe1019800, s->irq[0][OMAP_INT_UART3], omap_findclk(s, "uart3_ck"), serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0); omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1")); omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2")); omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3")); s->mmc = omap_mmc_init(0xfffb7800, s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX], omap_findclk(s, "mmc_ck")); s->mpuio = omap_mpuio_init(0xfffb5000, s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO], s->wakeup, omap_findclk(s, "clk32-kHz")); s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1], omap_findclk(s, "arm_gpio_ck")); s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX], s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck")); omap_pwl_init(0xfffb5800, s, omap_findclk(s, "clk32-kHz")); omap_pwt_init(0xfffb6000, s, omap_findclk(s, "xtal_osc_12m")); s->i2c = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C], &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck")); s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER], omap_findclk(s, "clk32-kHz")); /* Register mappings not currenlty implemented: * McBSP2 Comm fffb1000 - fffb17ff * McBSP1 Audio fffb1800 - fffb1fff (not mapped on OMAP310) * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310) * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310) * USB W2FC fffb4000 - fffb47ff * Camera Interface fffb6800 - fffb6fff * McBSP3 fffb7000 - fffb77ff (not mapped on OMAP310) * USB Host fffba000 - fffba7ff * FAC fffba800 - fffbafff * HDQ/1-Wire fffbc000 - fffbc7ff * TIPB switches fffbc800 - fffbcfff * LED1 fffbd000 - fffbd7ff * LED2 fffbd800 - fffbdfff * Mailbox fffcf000 - fffcf7ff * Local bus IF fffec100 - fffec1ff * Local bus MMU fffec200 - fffec2ff * DSP MMU fffed200 - fffed2ff */ omap_setup_dsp_mapping(omap15xx_dsp_mm); qemu_register_reset(omap_mpu_reset, s); return s; }