/* * Nokia N-series internet tablets. * * Copyright (C) 2007 Nokia Corporation * Written by Andrzej Zaborowski <andrew@openedhand.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu-common.h" #include "sysemu.h" #include "omap.h" #include "arm-misc.h" #include "irq.h" #include "console.h" #include "boards.h" #include "i2c.h" #include "devices.h" #include "flash.h" #include "hw.h" #include "bt.h" #include "loader.h" /* Nokia N8x0 support */ struct n800_s { struct omap_mpu_state_s *cpu; struct rfbi_chip_s blizzard; struct { void *opaque; uint32_t (*txrx)(void *opaque, uint32_t value, int len); uWireSlave *chip; } ts; i2c_bus *i2c; int keymap[0x80]; i2c_slave *kbd; TUSBState *usb; void *retu; void *tahvo; void *nand; }; /* GPIO pins */ #define N8X0_TUSB_ENABLE_GPIO 0 #define N800_MMC2_WP_GPIO 8 #define N800_UNKNOWN_GPIO0 9 /* out */ #define N810_MMC2_VIOSD_GPIO 9 #define N810_HEADSET_AMP_GPIO 10 #define N800_CAM_TURN_GPIO 12 #define N810_GPS_RESET_GPIO 12 #define N800_BLIZZARD_POWERDOWN_GPIO 15 #define N800_MMC1_WP_GPIO 23 #define N810_MMC2_VSD_GPIO 23 #define N8X0_ONENAND_GPIO 26 #define N810_BLIZZARD_RESET_GPIO 30 #define N800_UNKNOWN_GPIO2 53 /* out */ #define N8X0_TUSB_INT_GPIO 58 #define N8X0_BT_WKUP_GPIO 61 #define N8X0_STI_GPIO 62 #define N8X0_CBUS_SEL_GPIO 64 #define N8X0_CBUS_DAT_GPIO 65 #define N8X0_CBUS_CLK_GPIO 66 #define N8X0_WLAN_IRQ_GPIO 87 #define N8X0_BT_RESET_GPIO 92 #define N8X0_TEA5761_CS_GPIO 93 #define N800_UNKNOWN_GPIO 94 #define N810_TSC_RESET_GPIO 94 #define N800_CAM_ACT_GPIO 95 #define N810_GPS_WAKEUP_GPIO 95 #define N8X0_MMC_CS_GPIO 96 #define N8X0_WLAN_PWR_GPIO 97 #define N8X0_BT_HOST_WKUP_GPIO 98 #define N810_SPEAKER_AMP_GPIO 101 #define N810_KB_LOCK_GPIO 102 #define N800_TSC_TS_GPIO 103 #define N810_TSC_TS_GPIO 106 #define N8X0_HEADPHONE_GPIO 107 #define N8X0_RETU_GPIO 108 #define N800_TSC_KP_IRQ_GPIO 109 #define N810_KEYBOARD_GPIO 109 #define N800_BAT_COVER_GPIO 110 #define N810_SLIDE_GPIO 110 #define N8X0_TAHVO_GPIO 111 #define N800_UNKNOWN_GPIO4 112 /* out */ #define N810_SLEEPX_LED_GPIO 112 #define N800_TSC_RESET_GPIO 118 /* ? */ #define N810_AIC33_RESET_GPIO 118 #define N800_TSC_UNKNOWN_GPIO 119 /* out */ #define N8X0_TMP105_GPIO 125 /* Config */ #define BT_UART 0 #define XLDR_LL_UART 1 /* Addresses on the I2C bus 0 */ #define N810_TLV320AIC33_ADDR 0x18 /* Audio CODEC */ #define N8X0_TCM825x_ADDR 0x29 /* Camera */ #define N810_LP5521_ADDR 0x32 /* LEDs */ #define N810_TSL2563_ADDR 0x3d /* Light sensor */ #define N810_LM8323_ADDR 0x45 /* Keyboard */ /* Addresses on the I2C bus 1 */ #define N8X0_TMP105_ADDR 0x48 /* Temperature sensor */ #define N8X0_MENELAUS_ADDR 0x72 /* Power management */ /* Chipselects on GPMC NOR interface */ #define N8X0_ONENAND_CS 0 #define N8X0_USB_ASYNC_CS 1 #define N8X0_USB_SYNC_CS 4 #define N8X0_BD_ADDR 0x00, 0x1a, 0x89, 0x9e, 0x3e, 0x81 static void n800_mmc_cs_cb(void *opaque, int line, int level) { /* TODO: this seems to actually be connected to the menelaus, to * which also both MMC slots connect. */ omap_mmc_enable((struct omap_mmc_s *) opaque, !level); printf("%s: MMC slot %i active\n", __FUNCTION__, level + 1); } static void n8x0_gpio_setup(struct n800_s *s) { qemu_irq *mmc_cs = qemu_allocate_irqs(n800_mmc_cs_cb, s->cpu->mmc, 1); omap2_gpio_out_set(s->cpu->gpif, N8X0_MMC_CS_GPIO, mmc_cs[0]); qemu_irq_lower(omap2_gpio_in_get(s->cpu->gpif, N800_BAT_COVER_GPIO)[0]); } #define MAEMO_CAL_HEADER(...) \ 'C', 'o', 'n', 'F', 0x02, 0x00, 0x04, 0x00, \ __VA_ARGS__, \ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, static const uint8_t n8x0_cal_wlan_mac[] = { MAEMO_CAL_HEADER('w', 'l', 'a', 'n', '-', 'm', 'a', 'c') 0x1c, 0x00, 0x00, 0x00, 0x47, 0xd6, 0x69, 0xb3, 0x30, 0x08, 0xa0, 0x83, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1a, 0x00, 0x00, 0x00, 0x89, 0x00, 0x00, 0x00, 0x9e, 0x00, 0x00, 0x00, 0x5d, 0x00, 0x00, 0x00, 0xc1, 0x00, 0x00, 0x00, }; static const uint8_t n8x0_cal_bt_id[] = { MAEMO_CAL_HEADER('b', 't', '-', 'i', 'd', 0, 0, 0) 0x0a, 0x00, 0x00, 0x00, 0xa3, 0x4b, 0xf6, 0x96, 0xa8, 0xeb, 0xb2, 0x41, 0x00, 0x00, 0x00, 0x00, N8X0_BD_ADDR, }; static void n8x0_nand_setup(struct n800_s *s) { char *otp_region; /* Either ec40xx or ec48xx are OK for the ID */ omap_gpmc_attach(s->cpu->gpmc, N8X0_ONENAND_CS, 0, onenand_base_update, onenand_base_unmap, (s->nand = onenand_init(0xec4800, 1, omap2_gpio_in_get(s->cpu->gpif, N8X0_ONENAND_GPIO)[0]))); otp_region = onenand_raw_otp(s->nand); memcpy(otp_region + 0x000, n8x0_cal_wlan_mac, sizeof(n8x0_cal_wlan_mac)); memcpy(otp_region + 0x800, n8x0_cal_bt_id, sizeof(n8x0_cal_bt_id)); /* XXX: in theory should also update the OOB for both pages */ } static void n8x0_i2c_setup(struct n800_s *s) { DeviceState *dev; qemu_irq tmp_irq = omap2_gpio_in_get(s->cpu->gpif, N8X0_TMP105_GPIO)[0]; /* Attach the CPU on one end of our I2C bus. */ s->i2c = omap_i2c_bus(s->cpu->i2c[0]); /* Attach a menelaus PM chip */ dev = i2c_create_slave(s->i2c, "twl92230", N8X0_MENELAUS_ADDR); qdev_connect_gpio_out(dev, 3, s->cpu->irq[0][OMAP_INT_24XX_SYS_NIRQ]); /* Attach a TMP105 PM chip (A0 wired to ground) */ dev = i2c_create_slave(s->i2c, "tmp105", N8X0_TMP105_ADDR); qdev_connect_gpio_out(dev, 0, tmp_irq); } /* Touchscreen and keypad controller */ static MouseTransformInfo n800_pointercal = { .x = 800, .y = 480, .a = { 14560, -68, -3455208, -39, -9621, 35152972, 65536 }, }; static MouseTransformInfo n810_pointercal = { .x = 800, .y = 480, .a = { 15041, 148, -4731056, 171, -10238, 35933380, 65536 }, }; #define RETU_KEYCODE 61 /* F3 */ static void n800_key_event(void *opaque, int keycode) { struct n800_s *s = (struct n800_s *) opaque; int code = s->keymap[keycode & 0x7f]; if (code == -1) { if ((keycode & 0x7f) == RETU_KEYCODE) retu_key_event(s->retu, !(keycode & 0x80)); return; } tsc210x_key_event(s->ts.chip, code, !(keycode & 0x80)); } static const int n800_keys[16] = { -1, 72, /* Up */ 63, /* Home (F5) */ -1, 75, /* Left */ 28, /* Enter */ 77, /* Right */ -1, 1, /* Cycle (ESC) */ 80, /* Down */ 62, /* Menu (F4) */ -1, 66, /* Zoom- (F8) */ 64, /* FullScreen (F6) */ 65, /* Zoom+ (F7) */ -1, }; static void n800_tsc_kbd_setup(struct n800_s *s) { int i; /* XXX: are the three pins inverted inside the chip between the * tsc and the cpu (N4111)? */ qemu_irq penirq = NULL; /* NC */ qemu_irq kbirq = omap2_gpio_in_get(s->cpu->gpif, N800_TSC_KP_IRQ_GPIO)[0]; qemu_irq dav = omap2_gpio_in_get(s->cpu->gpif, N800_TSC_TS_GPIO)[0]; s->ts.chip = tsc2301_init(penirq, kbirq, dav); s->ts.opaque = s->ts.chip->opaque; s->ts.txrx = tsc210x_txrx; for (i = 0; i < 0x80; i ++) s->keymap[i] = -1; for (i = 0; i < 0x10; i ++) if (n800_keys[i] >= 0) s->keymap[n800_keys[i]] = i; qemu_add_kbd_event_handler(n800_key_event, s); tsc210x_set_transform(s->ts.chip, &n800_pointercal); } static void n810_tsc_setup(struct n800_s *s) { qemu_irq pintdav = omap2_gpio_in_get(s->cpu->gpif, N810_TSC_TS_GPIO)[0]; s->ts.opaque = tsc2005_init(pintdav); s->ts.txrx = tsc2005_txrx; tsc2005_set_transform(s->ts.opaque, &n810_pointercal); } /* N810 Keyboard controller */ static void n810_key_event(void *opaque, int keycode) { struct n800_s *s = (struct n800_s *) opaque; int code = s->keymap[keycode & 0x7f]; if (code == -1) { if ((keycode & 0x7f) == RETU_KEYCODE) retu_key_event(s->retu, !(keycode & 0x80)); return; } lm832x_key_event(s->kbd, code, !(keycode & 0x80)); } #define M 0 static int n810_keys[0x80] = { [0x01] = 16, /* Q */ [0x02] = 37, /* K */ [0x03] = 24, /* O */ [0x04] = 25, /* P */ [0x05] = 14, /* Backspace */ [0x06] = 30, /* A */ [0x07] = 31, /* S */ [0x08] = 32, /* D */ [0x09] = 33, /* F */ [0x0a] = 34, /* G */ [0x0b] = 35, /* H */ [0x0c] = 36, /* J */ [0x11] = 17, /* W */ [0x12] = 62, /* Menu (F4) */ [0x13] = 38, /* L */ [0x14] = 40, /* ' (Apostrophe) */ [0x16] = 44, /* Z */ [0x17] = 45, /* X */ [0x18] = 46, /* C */ [0x19] = 47, /* V */ [0x1a] = 48, /* B */ [0x1b] = 49, /* N */ [0x1c] = 42, /* Shift (Left shift) */ [0x1f] = 65, /* Zoom+ (F7) */ [0x21] = 18, /* E */ [0x22] = 39, /* ; (Semicolon) */ [0x23] = 12, /* - (Minus) */ [0x24] = 13, /* = (Equal) */ [0x2b] = 56, /* Fn (Left Alt) */ [0x2c] = 50, /* M */ [0x2f] = 66, /* Zoom- (F8) */ [0x31] = 19, /* R */ [0x32] = 29 | M, /* Right Ctrl */ [0x34] = 57, /* Space */ [0x35] = 51, /* , (Comma) */ [0x37] = 72 | M, /* Up */ [0x3c] = 82 | M, /* Compose (Insert) */ [0x3f] = 64, /* FullScreen (F6) */ [0x41] = 20, /* T */ [0x44] = 52, /* . (Dot) */ [0x46] = 77 | M, /* Right */ [0x4f] = 63, /* Home (F5) */ [0x51] = 21, /* Y */ [0x53] = 80 | M, /* Down */ [0x55] = 28, /* Enter */ [0x5f] = 1, /* Cycle (ESC) */ [0x61] = 22, /* U */ [0x64] = 75 | M, /* Left */ [0x71] = 23, /* I */ #if 0 [0x75] = 28 | M, /* KP Enter (KP Enter) */ #else [0x75] = 15, /* KP Enter (Tab) */ #endif }; #undef M static void n810_kbd_setup(struct n800_s *s) { qemu_irq kbd_irq = omap2_gpio_in_get(s->cpu->gpif, N810_KEYBOARD_GPIO)[0]; DeviceState *dev; int i; for (i = 0; i < 0x80; i ++) s->keymap[i] = -1; for (i = 0; i < 0x80; i ++) if (n810_keys[i] > 0) s->keymap[n810_keys[i]] = i; qemu_add_kbd_event_handler(n810_key_event, s); /* Attach the LM8322 keyboard to the I2C bus, * should happen in n8x0_i2c_setup and s->kbd be initialised here. */ dev = i2c_create_slave(s->i2c, "lm8323", N810_LM8323_ADDR); qdev_connect_gpio_out(dev, 0, kbd_irq); } /* LCD MIPI DBI-C controller (URAL) */ struct mipid_s { int resp[4]; int param[4]; int p; int pm; int cmd; int sleep; int booster; int te; int selfcheck; int partial; int normal; int vscr; int invert; int onoff; int gamma; uint32_t id; }; static void mipid_reset(struct mipid_s *s) { if (!s->sleep) fprintf(stderr, "%s: Display off\n", __FUNCTION__); s->pm = 0; s->cmd = 0; s->sleep = 1; s->booster = 0; s->selfcheck = (1 << 7) | /* Register loading OK. */ (1 << 5) | /* The chip is attached. */ (1 << 4); /* Display glass still in one piece. */ s->te = 0; s->partial = 0; s->normal = 1; s->vscr = 0; s->invert = 0; s->onoff = 1; s->gamma = 0; } static uint32_t mipid_txrx(void *opaque, uint32_t cmd, int len) { struct mipid_s *s = (struct mipid_s *) opaque; uint8_t ret; if (len > 9) hw_error("%s: FIXME: bad SPI word width %i\n", __FUNCTION__, len); if (s->p >= ARRAY_SIZE(s->resp)) ret = 0; else ret = s->resp[s->p ++]; if (s->pm --> 0) s->param[s->pm] = cmd; else s->cmd = cmd; switch (s->cmd) { case 0x00: /* NOP */ break; case 0x01: /* SWRESET */ mipid_reset(s); break; case 0x02: /* BSTROFF */ s->booster = 0; break; case 0x03: /* BSTRON */ s->booster = 1; break; case 0x04: /* RDDID */ s->p = 0; s->resp[0] = (s->id >> 16) & 0xff; s->resp[1] = (s->id >> 8) & 0xff; s->resp[2] = (s->id >> 0) & 0xff; break; case 0x06: /* RD_RED */ case 0x07: /* RD_GREEN */ /* XXX the bootloader sometimes issues RD_BLUE meaning RDDID so * for the bootloader one needs to change this. */ case 0x08: /* RD_BLUE */ s->p = 0; /* TODO: return first pixel components */ s->resp[0] = 0x01; break; case 0x09: /* RDDST */ s->p = 0; s->resp[0] = s->booster << 7; s->resp[1] = (5 << 4) | (s->partial << 2) | (s->sleep << 1) | s->normal; s->resp[2] = (s->vscr << 7) | (s->invert << 5) | (s->onoff << 2) | (s->te << 1) | (s->gamma >> 2); s->resp[3] = s->gamma << 6; break; case 0x0a: /* RDDPM */ s->p = 0; s->resp[0] = (s->onoff << 2) | (s->normal << 3) | (s->sleep << 4) | (s->partial << 5) | (s->sleep << 6) | (s->booster << 7); break; case 0x0b: /* RDDMADCTR */ s->p = 0; s->resp[0] = 0; break; case 0x0c: /* RDDCOLMOD */ s->p = 0; s->resp[0] = 5; /* 65K colours */ break; case 0x0d: /* RDDIM */ s->p = 0; s->resp[0] = (s->invert << 5) | (s->vscr << 7) | s->gamma; break; case 0x0e: /* RDDSM */ s->p = 0; s->resp[0] = s->te << 7; break; case 0x0f: /* RDDSDR */ s->p = 0; s->resp[0] = s->selfcheck; break; case 0x10: /* SLPIN */ s->sleep = 1; break; case 0x11: /* SLPOUT */ s->sleep = 0; s->selfcheck ^= 1 << 6; /* POFF self-diagnosis Ok */ break; case 0x12: /* PTLON */ s->partial = 1; s->normal = 0; s->vscr = 0; break; case 0x13: /* NORON */ s->partial = 0; s->normal = 1; s->vscr = 0; break; case 0x20: /* INVOFF */ s->invert = 0; break; case 0x21: /* INVON */ s->invert = 1; break; case 0x22: /* APOFF */ case 0x23: /* APON */ goto bad_cmd; case 0x25: /* WRCNTR */ if (s->pm < 0) s->pm = 1; goto bad_cmd; case 0x26: /* GAMSET */ if (!s->pm) s->gamma = ffs(s->param[0] & 0xf) - 1; else if (s->pm < 0) s->pm = 1; break; case 0x28: /* DISPOFF */ s->onoff = 0; fprintf(stderr, "%s: Display off\n", __FUNCTION__); break; case 0x29: /* DISPON */ s->onoff = 1; fprintf(stderr, "%s: Display on\n", __FUNCTION__); break; case 0x2a: /* CASET */ case 0x2b: /* RASET */ case 0x2c: /* RAMWR */ case 0x2d: /* RGBSET */ case 0x2e: /* RAMRD */ case 0x30: /* PTLAR */ case 0x33: /* SCRLAR */ goto bad_cmd; case 0x34: /* TEOFF */ s->te = 0; break; case 0x35: /* TEON */ if (!s->pm) s->te = 1; else if (s->pm < 0) s->pm = 1; break; case 0x36: /* MADCTR */ goto bad_cmd; case 0x37: /* VSCSAD */ s->partial = 0; s->normal = 0; s->vscr = 1; break; case 0x38: /* IDMOFF */ case 0x39: /* IDMON */ case 0x3a: /* COLMOD */ goto bad_cmd; case 0xb0: /* CLKINT / DISCTL */ case 0xb1: /* CLKEXT */ if (s->pm < 0) s->pm = 2; break; case 0xb4: /* FRMSEL */ break; case 0xb5: /* FRM8SEL */ case 0xb6: /* TMPRNG / INIESC */ case 0xb7: /* TMPHIS / NOP2 */ case 0xb8: /* TMPREAD / MADCTL */ case 0xba: /* DISTCTR */ case 0xbb: /* EPVOL */ goto bad_cmd; case 0xbd: /* Unknown */ s->p = 0; s->resp[0] = 0; s->resp[1] = 1; break; case 0xc2: /* IFMOD */ if (s->pm < 0) s->pm = 2; break; case 0xc6: /* PWRCTL */ case 0xc7: /* PPWRCTL */ case 0xd0: /* EPWROUT */ case 0xd1: /* EPWRIN */ case 0xd4: /* RDEV */ case 0xd5: /* RDRR */ goto bad_cmd; case 0xda: /* RDID1 */ s->p = 0; s->resp[0] = (s->id >> 16) & 0xff; break; case 0xdb: /* RDID2 */ s->p = 0; s->resp[0] = (s->id >> 8) & 0xff; break; case 0xdc: /* RDID3 */ s->p = 0; s->resp[0] = (s->id >> 0) & 0xff; break; default: bad_cmd: fprintf(stderr, "%s: unknown command %02x\n", __FUNCTION__, s->cmd); break; } return ret; } static void *mipid_init(void) { struct mipid_s *s = (struct mipid_s *) qemu_mallocz(sizeof(*s)); s->id = 0x838f03; mipid_reset(s); return s; } static void n8x0_spi_setup(struct n800_s *s) { void *tsc = s->ts.opaque; void *mipid = mipid_init(); omap_mcspi_attach(s->cpu->mcspi[0], s->ts.txrx, tsc, 0); omap_mcspi_attach(s->cpu->mcspi[0], mipid_txrx, mipid, 1); } /* This task is normally performed by the bootloader. If we're loading * a kernel directly, we need to enable the Blizzard ourselves. */ static void n800_dss_init(struct rfbi_chip_s *chip) { uint8_t *fb_blank; chip->write(chip->opaque, 0, 0x2a); /* LCD Width register */ chip->write(chip->opaque, 1, 0x64); chip->write(chip->opaque, 0, 0x2c); /* LCD HNDP register */ chip->write(chip->opaque, 1, 0x1e); chip->write(chip->opaque, 0, 0x2e); /* LCD Height 0 register */ chip->write(chip->opaque, 1, 0xe0); chip->write(chip->opaque, 0, 0x30); /* LCD Height 1 register */ chip->write(chip->opaque, 1, 0x01); chip->write(chip->opaque, 0, 0x32); /* LCD VNDP register */ chip->write(chip->opaque, 1, 0x06); chip->write(chip->opaque, 0, 0x68); /* Display Mode register */ chip->write(chip->opaque, 1, 1); /* Enable bit */ chip->write(chip->opaque, 0, 0x6c); chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */ chip->write(chip->opaque, 1, 0x00); /* Input X Start Position */ chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */ chip->write(chip->opaque, 1, 0x00); /* Input Y Start Position */ chip->write(chip->opaque, 1, 0x1f); /* Input X End Position */ chip->write(chip->opaque, 1, 0x03); /* Input X End Position */ chip->write(chip->opaque, 1, 0xdf); /* Input Y End Position */ chip->write(chip->opaque, 1, 0x01); /* Input Y End Position */ chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */ chip->write(chip->opaque, 1, 0x00); /* Output X Start Position */ chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */ chip->write(chip->opaque, 1, 0x00); /* Output Y Start Position */ chip->write(chip->opaque, 1, 0x1f); /* Output X End Position */ chip->write(chip->opaque, 1, 0x03); /* Output X End Position */ chip->write(chip->opaque, 1, 0xdf); /* Output Y End Position */ chip->write(chip->opaque, 1, 0x01); /* Output Y End Position */ chip->write(chip->opaque, 1, 0x01); /* Input Data Format */ chip->write(chip->opaque, 1, 0x01); /* Data Source Select */ fb_blank = memset(qemu_malloc(800 * 480 * 2), 0xff, 800 * 480 * 2); /* Display Memory Data Port */ chip->block(chip->opaque, 1, fb_blank, 800 * 480 * 2, 800); qemu_free(fb_blank); } static void n8x0_dss_setup(struct n800_s *s) { s->blizzard.opaque = s1d13745_init(NULL); s->blizzard.block = s1d13745_write_block; s->blizzard.write = s1d13745_write; s->blizzard.read = s1d13745_read; omap_rfbi_attach(s->cpu->dss, 0, &s->blizzard); } static void n8x0_cbus_setup(struct n800_s *s) { qemu_irq dat_out = omap2_gpio_in_get(s->cpu->gpif, N8X0_CBUS_DAT_GPIO)[0]; qemu_irq retu_irq = omap2_gpio_in_get(s->cpu->gpif, N8X0_RETU_GPIO)[0]; qemu_irq tahvo_irq = omap2_gpio_in_get(s->cpu->gpif, N8X0_TAHVO_GPIO)[0]; CBus *cbus = cbus_init(dat_out); omap2_gpio_out_set(s->cpu->gpif, N8X0_CBUS_CLK_GPIO, cbus->clk); omap2_gpio_out_set(s->cpu->gpif, N8X0_CBUS_DAT_GPIO, cbus->dat); omap2_gpio_out_set(s->cpu->gpif, N8X0_CBUS_SEL_GPIO, cbus->sel); cbus_attach(cbus, s->retu = retu_init(retu_irq, 1)); cbus_attach(cbus, s->tahvo = tahvo_init(tahvo_irq, 1)); } static void n8x0_uart_setup(struct n800_s *s) { CharDriverState *radio = uart_hci_init( omap2_gpio_in_get(s->cpu->gpif, N8X0_BT_HOST_WKUP_GPIO)[0]); omap2_gpio_out_set(s->cpu->gpif, N8X0_BT_RESET_GPIO, csrhci_pins_get(radio)[csrhci_pin_reset]); omap2_gpio_out_set(s->cpu->gpif, N8X0_BT_WKUP_GPIO, csrhci_pins_get(radio)[csrhci_pin_wakeup]); omap_uart_attach(s->cpu->uart[BT_UART], radio); } static void n8x0_usb_power_cb(void *opaque, int line, int level) { struct n800_s *s = opaque; tusb6010_power(s->usb, level); } static void n8x0_usb_setup(struct n800_s *s) { qemu_irq tusb_irq = omap2_gpio_in_get(s->cpu->gpif, N8X0_TUSB_INT_GPIO)[0]; qemu_irq tusb_pwr = qemu_allocate_irqs(n8x0_usb_power_cb, s, 1)[0]; TUSBState *tusb = tusb6010_init(tusb_irq); /* Using the NOR interface */ omap_gpmc_attach(s->cpu->gpmc, N8X0_USB_ASYNC_CS, tusb6010_async_io(tusb), NULL, NULL, tusb); omap_gpmc_attach(s->cpu->gpmc, N8X0_USB_SYNC_CS, tusb6010_sync_io(tusb), NULL, NULL, tusb); s->usb = tusb; omap2_gpio_out_set(s->cpu->gpif, N8X0_TUSB_ENABLE_GPIO, tusb_pwr); } /* Setup done before the main bootloader starts by some early setup code * - used when we want to run the main bootloader in emulation. This * isn't documented. */ static uint32_t n800_pinout[104] = { 0x080f00d8, 0x00d40808, 0x03080808, 0x080800d0, 0x00dc0808, 0x0b0f0f00, 0x080800b4, 0x00c00808, 0x08080808, 0x180800c4, 0x00b80000, 0x08080808, 0x080800bc, 0x00cc0808, 0x08081818, 0x18180128, 0x01241800, 0x18181818, 0x000000f0, 0x01300000, 0x00001b0b, 0x1b0f0138, 0x00e0181b, 0x1b031b0b, 0x180f0078, 0x00740018, 0x0f0f0f1a, 0x00000080, 0x007c0000, 0x00000000, 0x00000088, 0x00840000, 0x00000000, 0x00000094, 0x00980300, 0x0f180003, 0x0000008c, 0x00900f0f, 0x0f0f1b00, 0x0f00009c, 0x01140000, 0x1b1b0f18, 0x0818013c, 0x01400008, 0x00001818, 0x000b0110, 0x010c1800, 0x0b030b0f, 0x181800f4, 0x00f81818, 0x00000018, 0x000000fc, 0x00401808, 0x00000000, 0x0f1b0030, 0x003c0008, 0x00000000, 0x00000038, 0x00340000, 0x00000000, 0x1a080070, 0x00641a1a, 0x08080808, 0x08080060, 0x005c0808, 0x08080808, 0x08080058, 0x00540808, 0x08080808, 0x0808006c, 0x00680808, 0x08080808, 0x000000a8, 0x00b00000, 0x08080808, 0x000000a0, 0x00a40000, 0x00000000, 0x08ff0050, 0x004c0808, 0xffffffff, 0xffff0048, 0x0044ffff, 0xffffffff, 0x000000ac, 0x01040800, 0x08080b0f, 0x18180100, 0x01081818, 0x0b0b1808, 0x1a0300e4, 0x012c0b1a, 0x02020018, 0x0b000134, 0x011c0800, 0x0b1b1b00, 0x0f0000c8, 0x00ec181b, 0x000f0f02, 0x00180118, 0x01200000, 0x0f0b1b1b, 0x0f0200e8, 0x0000020b, }; static void n800_setup_nolo_tags(void *sram_base) { int i; uint32_t *p = sram_base + 0x8000; uint32_t *v = sram_base + 0xa000; memset(p, 0, 0x3000); strcpy((void *) (p + 0), "QEMU N800"); strcpy((void *) (p + 8), "F5"); stl_raw(p + 10, 0x04f70000); strcpy((void *) (p + 9), "RX-34"); /* RAM size in MB? */ stl_raw(p + 12, 0x80); /* Pointer to the list of tags */ stl_raw(p + 13, OMAP2_SRAM_BASE + 0x9000); /* The NOLO tags start here */ p = sram_base + 0x9000; #define ADD_TAG(tag, len) \ stw_raw((uint16_t *) p + 0, tag); \ stw_raw((uint16_t *) p + 1, len); p ++; \ stl_raw(p ++, OMAP2_SRAM_BASE | (((void *) v - sram_base) & 0xffff)); /* OMAP STI console? Pin out settings? */ ADD_TAG(0x6e01, 414); for (i = 0; i < ARRAY_SIZE(n800_pinout); i ++) stl_raw(v ++, n800_pinout[i]); /* Kernel memsize? */ ADD_TAG(0x6e05, 1); stl_raw(v ++, 2); /* NOLO serial console */ ADD_TAG(0x6e02, 4); stl_raw(v ++, XLDR_LL_UART); /* UART number (1 - 3) */ #if 0 /* CBUS settings (Retu/AVilma) */ ADD_TAG(0x6e03, 6); stw_raw((uint16_t *) v + 0, 65); /* CBUS GPIO0 */ stw_raw((uint16_t *) v + 1, 66); /* CBUS GPIO1 */ stw_raw((uint16_t *) v + 2, 64); /* CBUS GPIO2 */ v += 2; #endif /* Nokia ASIC BB5 (Retu/Tahvo) */ ADD_TAG(0x6e0a, 4); stw_raw((uint16_t *) v + 0, 111); /* "Retu" interrupt GPIO */ stw_raw((uint16_t *) v + 1, 108); /* "Tahvo" interrupt GPIO */ v ++; /* LCD console? */ ADD_TAG(0x6e04, 4); stw_raw((uint16_t *) v + 0, 30); /* ??? */ stw_raw((uint16_t *) v + 1, 24); /* ??? */ v ++; #if 0 /* LCD settings */ ADD_TAG(0x6e06, 2); stw_raw((uint16_t *) (v ++), 15); /* ??? */ #endif /* I^2C (Menelaus) */ ADD_TAG(0x6e07, 4); stl_raw(v ++, 0x00720000); /* ??? */ /* Unknown */ ADD_TAG(0x6e0b, 6); stw_raw((uint16_t *) v + 0, 94); /* ??? */ stw_raw((uint16_t *) v + 1, 23); /* ??? */ stw_raw((uint16_t *) v + 2, 0); /* ??? */ v += 2; /* OMAP gpio switch info */ ADD_TAG(0x6e0c, 80); strcpy((void *) v, "bat_cover"); v += 3; stw_raw((uint16_t *) v + 0, 110); /* GPIO num ??? */ stw_raw((uint16_t *) v + 1, 1); /* GPIO num ??? */ v += 2; strcpy((void *) v, "cam_act"); v += 3; stw_raw((uint16_t *) v + 0, 95); /* GPIO num ??? */ stw_raw((uint16_t *) v + 1, 32); /* GPIO num ??? */ v += 2; strcpy((void *) v, "cam_turn"); v += 3; stw_raw((uint16_t *) v + 0, 12); /* GPIO num ??? */ stw_raw((uint16_t *) v + 1, 33); /* GPIO num ??? */ v += 2; strcpy((void *) v, "headphone"); v += 3; stw_raw((uint16_t *) v + 0, 107); /* GPIO num ??? */ stw_raw((uint16_t *) v + 1, 17); /* GPIO num ??? */ v += 2; /* Bluetooth */ ADD_TAG(0x6e0e, 12); stl_raw(v ++, 0x5c623d01); /* ??? */ stl_raw(v ++, 0x00000201); /* ??? */ stl_raw(v ++, 0x00000000); /* ??? */ /* CX3110x WLAN settings */ ADD_TAG(0x6e0f, 8); stl_raw(v ++, 0x00610025); /* ??? */ stl_raw(v ++, 0xffff0057); /* ??? */ /* MMC host settings */ ADD_TAG(0x6e10, 12); stl_raw(v ++, 0xffff000f); /* ??? */ stl_raw(v ++, 0xffffffff); /* ??? */ stl_raw(v ++, 0x00000060); /* ??? */ /* OneNAND chip select */ ADD_TAG(0x6e11, 10); stl_raw(v ++, 0x00000401); /* ??? */ stl_raw(v ++, 0x0002003a); /* ??? */ stl_raw(v ++, 0x00000002); /* ??? */ /* TEA5761 sensor settings */ ADD_TAG(0x6e12, 2); stl_raw(v ++, 93); /* GPIO num ??? */ #if 0 /* Unknown tag */ ADD_TAG(6e09, 0); /* Kernel UART / console */ ADD_TAG(6e12, 0); #endif /* End of the list */ stl_raw(p ++, 0x00000000); stl_raw(p ++, 0x00000000); } /* This task is normally performed by the bootloader. If we're loading * a kernel directly, we need to set up GPMC mappings ourselves. */ static void n800_gpmc_init(struct n800_s *s) { uint32_t config7 = (0xf << 8) | /* MASKADDRESS */ (1 << 6) | /* CSVALID */ (4 << 0); /* BASEADDRESS */ cpu_physical_memory_write(0x6800a078, /* GPMC_CONFIG7_0 */ (void *) &config7, sizeof(config7)); } /* Setup sequence done by the bootloader */ static void n8x0_boot_init(void *opaque) { struct n800_s *s = (struct n800_s *) opaque; uint32_t buf; /* PRCM setup */ #define omap_writel(addr, val) \ buf = (val); \ cpu_physical_memory_write(addr, (void *) &buf, sizeof(buf)) omap_writel(0x48008060, 0x41); /* PRCM_CLKSRC_CTRL */ omap_writel(0x48008070, 1); /* PRCM_CLKOUT_CTRL */ omap_writel(0x48008078, 0); /* PRCM_CLKEMUL_CTRL */ omap_writel(0x48008090, 0); /* PRCM_VOLTSETUP */ omap_writel(0x48008094, 0); /* PRCM_CLKSSETUP */ omap_writel(0x48008098, 0); /* PRCM_POLCTRL */ omap_writel(0x48008140, 2); /* CM_CLKSEL_MPU */ omap_writel(0x48008148, 0); /* CM_CLKSTCTRL_MPU */ omap_writel(0x48008158, 1); /* RM_RSTST_MPU */ omap_writel(0x480081c8, 0x15); /* PM_WKDEP_MPU */ omap_writel(0x480081d4, 0x1d4); /* PM_EVGENCTRL_MPU */ omap_writel(0x480081d8, 0); /* PM_EVEGENONTIM_MPU */ omap_writel(0x480081dc, 0); /* PM_EVEGENOFFTIM_MPU */ omap_writel(0x480081e0, 0xc); /* PM_PWSTCTRL_MPU */ omap_writel(0x48008200, 0x047e7ff7); /* CM_FCLKEN1_CORE */ omap_writel(0x48008204, 0x00000004); /* CM_FCLKEN2_CORE */ omap_writel(0x48008210, 0x047e7ff1); /* CM_ICLKEN1_CORE */ omap_writel(0x48008214, 0x00000004); /* CM_ICLKEN2_CORE */ omap_writel(0x4800821c, 0x00000000); /* CM_ICLKEN4_CORE */ omap_writel(0x48008230, 0); /* CM_AUTOIDLE1_CORE */ omap_writel(0x48008234, 0); /* CM_AUTOIDLE2_CORE */ omap_writel(0x48008238, 7); /* CM_AUTOIDLE3_CORE */ omap_writel(0x4800823c, 0); /* CM_AUTOIDLE4_CORE */ omap_writel(0x48008240, 0x04360626); /* CM_CLKSEL1_CORE */ omap_writel(0x48008244, 0x00000014); /* CM_CLKSEL2_CORE */ omap_writel(0x48008248, 0); /* CM_CLKSTCTRL_CORE */ omap_writel(0x48008300, 0x00000000); /* CM_FCLKEN_GFX */ omap_writel(0x48008310, 0x00000000); /* CM_ICLKEN_GFX */ omap_writel(0x48008340, 0x00000001); /* CM_CLKSEL_GFX */ omap_writel(0x48008400, 0x00000004); /* CM_FCLKEN_WKUP */ omap_writel(0x48008410, 0x00000004); /* CM_ICLKEN_WKUP */ omap_writel(0x48008440, 0x00000000); /* CM_CLKSEL_WKUP */ omap_writel(0x48008500, 0x000000cf); /* CM_CLKEN_PLL */ omap_writel(0x48008530, 0x0000000c); /* CM_AUTOIDLE_PLL */ omap_writel(0x48008540, /* CM_CLKSEL1_PLL */ (0x78 << 12) | (6 << 8)); omap_writel(0x48008544, 2); /* CM_CLKSEL2_PLL */ /* GPMC setup */ n800_gpmc_init(s); /* Video setup */ n800_dss_init(&s->blizzard); /* CPU setup */ s->cpu->env->regs[15] = s->cpu->env->boot_info->loader_start; s->cpu->env->GE = 0x5; /* If the machine has a slided keyboard, open it */ if (s->kbd) qemu_irq_raise(omap2_gpio_in_get(s->cpu->gpif, N810_SLIDE_GPIO)[0]); } #define OMAP_TAG_NOKIA_BT 0x4e01 #define OMAP_TAG_WLAN_CX3110X 0x4e02 #define OMAP_TAG_CBUS 0x4e03 #define OMAP_TAG_EM_ASIC_BB5 0x4e04 static struct omap_gpiosw_info_s { const char *name; int line; int type; } n800_gpiosw_info[] = { { "bat_cover", N800_BAT_COVER_GPIO, OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED, }, { "cam_act", N800_CAM_ACT_GPIO, OMAP_GPIOSW_TYPE_ACTIVITY, }, { "cam_turn", N800_CAM_TURN_GPIO, OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_INVERTED, }, { "headphone", N8X0_HEADPHONE_GPIO, OMAP_GPIOSW_TYPE_CONNECTION | OMAP_GPIOSW_INVERTED, }, { NULL } }, n810_gpiosw_info[] = { { "gps_reset", N810_GPS_RESET_GPIO, OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_OUTPUT, }, { "gps_wakeup", N810_GPS_WAKEUP_GPIO, OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_OUTPUT, }, { "headphone", N8X0_HEADPHONE_GPIO, OMAP_GPIOSW_TYPE_CONNECTION | OMAP_GPIOSW_INVERTED, }, { "kb_lock", N810_KB_LOCK_GPIO, OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED, }, { "sleepx_led", N810_SLEEPX_LED_GPIO, OMAP_GPIOSW_TYPE_ACTIVITY | OMAP_GPIOSW_INVERTED | OMAP_GPIOSW_OUTPUT, }, { "slide", N810_SLIDE_GPIO, OMAP_GPIOSW_TYPE_COVER | OMAP_GPIOSW_INVERTED, }, { NULL } }; static struct omap_partition_info_s { uint32_t offset; uint32_t size; int mask; const char *name; } n800_part_info[] = { { 0x00000000, 0x00020000, 0x3, "bootloader" }, { 0x00020000, 0x00060000, 0x0, "config" }, { 0x00080000, 0x00200000, 0x0, "kernel" }, { 0x00280000, 0x00200000, 0x3, "initfs" }, { 0x00480000, 0x0fb80000, 0x3, "rootfs" }, { 0, 0, 0, NULL } }, n810_part_info[] = { { 0x00000000, 0x00020000, 0x3, "bootloader" }, { 0x00020000, 0x00060000, 0x0, "config" }, { 0x00080000, 0x00220000, 0x0, "kernel" }, { 0x002a0000, 0x00400000, 0x0, "initfs" }, { 0x006a0000, 0x0f960000, 0x0, "rootfs" }, { 0, 0, 0, NULL } }; static bdaddr_t n8x0_bd_addr = {{ N8X0_BD_ADDR }}; static int n8x0_atag_setup(void *p, int model) { uint8_t *b; uint16_t *w; uint32_t *l; struct omap_gpiosw_info_s *gpiosw; struct omap_partition_info_s *partition; const char *tag; w = p; stw_raw(w ++, OMAP_TAG_UART); /* u16 tag */ stw_raw(w ++, 4); /* u16 len */ stw_raw(w ++, (1 << 2) | (1 << 1) | (1 << 0)); /* uint enabled_uarts */ w ++; #if 0 stw_raw(w ++, OMAP_TAG_SERIAL_CONSOLE); /* u16 tag */ stw_raw(w ++, 4); /* u16 len */ stw_raw(w ++, XLDR_LL_UART + 1); /* u8 console_uart */ stw_raw(w ++, 115200); /* u32 console_speed */ #endif stw_raw(w ++, OMAP_TAG_LCD); /* u16 tag */ stw_raw(w ++, 36); /* u16 len */ strcpy((void *) w, "QEMU LCD panel"); /* char panel_name[16] */ w += 8; strcpy((void *) w, "blizzard"); /* char ctrl_name[16] */ w += 8; stw_raw(w ++, N810_BLIZZARD_RESET_GPIO); /* TODO: n800 s16 nreset_gpio */ stw_raw(w ++, 24); /* u8 data_lines */ stw_raw(w ++, OMAP_TAG_CBUS); /* u16 tag */ stw_raw(w ++, 8); /* u16 len */ stw_raw(w ++, N8X0_CBUS_CLK_GPIO); /* s16 clk_gpio */ stw_raw(w ++, N8X0_CBUS_DAT_GPIO); /* s16 dat_gpio */ stw_raw(w ++, N8X0_CBUS_SEL_GPIO); /* s16 sel_gpio */ w ++; stw_raw(w ++, OMAP_TAG_EM_ASIC_BB5); /* u16 tag */ stw_raw(w ++, 4); /* u16 len */ stw_raw(w ++, N8X0_RETU_GPIO); /* s16 retu_irq_gpio */ stw_raw(w ++, N8X0_TAHVO_GPIO); /* s16 tahvo_irq_gpio */ gpiosw = (model == 810) ? n810_gpiosw_info : n800_gpiosw_info; for (; gpiosw->name; gpiosw ++) { stw_raw(w ++, OMAP_TAG_GPIO_SWITCH); /* u16 tag */ stw_raw(w ++, 20); /* u16 len */ strcpy((void *) w, gpiosw->name); /* char name[12] */ w += 6; stw_raw(w ++, gpiosw->line); /* u16 gpio */ stw_raw(w ++, gpiosw->type); stw_raw(w ++, 0); stw_raw(w ++, 0); } stw_raw(w ++, OMAP_TAG_NOKIA_BT); /* u16 tag */ stw_raw(w ++, 12); /* u16 len */ b = (void *) w; stb_raw(b ++, 0x01); /* u8 chip_type (CSR) */ stb_raw(b ++, N8X0_BT_WKUP_GPIO); /* u8 bt_wakeup_gpio */ stb_raw(b ++, N8X0_BT_HOST_WKUP_GPIO); /* u8 host_wakeup_gpio */ stb_raw(b ++, N8X0_BT_RESET_GPIO); /* u8 reset_gpio */ stb_raw(b ++, BT_UART + 1); /* u8 bt_uart */ memcpy(b, &n8x0_bd_addr, 6); /* u8 bd_addr[6] */ b += 6; stb_raw(b ++, 0x02); /* u8 bt_sysclk (38.4) */ w = (void *) b; stw_raw(w ++, OMAP_TAG_WLAN_CX3110X); /* u16 tag */ stw_raw(w ++, 8); /* u16 len */ stw_raw(w ++, 0x25); /* u8 chip_type */ stw_raw(w ++, N8X0_WLAN_PWR_GPIO); /* s16 power_gpio */ stw_raw(w ++, N8X0_WLAN_IRQ_GPIO); /* s16 irq_gpio */ stw_raw(w ++, -1); /* s16 spi_cs_gpio */ stw_raw(w ++, OMAP_TAG_MMC); /* u16 tag */ stw_raw(w ++, 16); /* u16 len */ if (model == 810) { stw_raw(w ++, 0x23f); /* unsigned flags */ stw_raw(w ++, -1); /* s16 power_pin */ stw_raw(w ++, -1); /* s16 switch_pin */ stw_raw(w ++, -1); /* s16 wp_pin */ stw_raw(w ++, 0x240); /* unsigned flags */ stw_raw(w ++, 0xc000); /* s16 power_pin */ stw_raw(w ++, 0x0248); /* s16 switch_pin */ stw_raw(w ++, 0xc000); /* s16 wp_pin */ } else { stw_raw(w ++, 0xf); /* unsigned flags */ stw_raw(w ++, -1); /* s16 power_pin */ stw_raw(w ++, -1); /* s16 switch_pin */ stw_raw(w ++, -1); /* s16 wp_pin */ stw_raw(w ++, 0); /* unsigned flags */ stw_raw(w ++, 0); /* s16 power_pin */ stw_raw(w ++, 0); /* s16 switch_pin */ stw_raw(w ++, 0); /* s16 wp_pin */ } stw_raw(w ++, OMAP_TAG_TEA5761); /* u16 tag */ stw_raw(w ++, 4); /* u16 len */ stw_raw(w ++, N8X0_TEA5761_CS_GPIO); /* u16 enable_gpio */ w ++; partition = (model == 810) ? n810_part_info : n800_part_info; for (; partition->name; partition ++) { stw_raw(w ++, OMAP_TAG_PARTITION); /* u16 tag */ stw_raw(w ++, 28); /* u16 len */ strcpy((void *) w, partition->name); /* char name[16] */ l = (void *) (w + 8); stl_raw(l ++, partition->size); /* unsigned int size */ stl_raw(l ++, partition->offset); /* unsigned int offset */ stl_raw(l ++, partition->mask); /* unsigned int mask_flags */ w = (void *) l; } stw_raw(w ++, OMAP_TAG_BOOT_REASON); /* u16 tag */ stw_raw(w ++, 12); /* u16 len */ #if 0 strcpy((void *) w, "por"); /* char reason_str[12] */ strcpy((void *) w, "charger"); /* char reason_str[12] */ strcpy((void *) w, "32wd_to"); /* char reason_str[12] */ strcpy((void *) w, "sw_rst"); /* char reason_str[12] */ strcpy((void *) w, "mbus"); /* char reason_str[12] */ strcpy((void *) w, "unknown"); /* char reason_str[12] */ strcpy((void *) w, "swdg_to"); /* char reason_str[12] */ strcpy((void *) w, "sec_vio"); /* char reason_str[12] */ strcpy((void *) w, "pwr_key"); /* char reason_str[12] */ strcpy((void *) w, "rtc_alarm"); /* char reason_str[12] */ #else strcpy((void *) w, "pwr_key"); /* char reason_str[12] */ #endif w += 6; tag = (model == 810) ? "RX-44" : "RX-34"; stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */ stw_raw(w ++, 24); /* u16 len */ strcpy((void *) w, "product"); /* char component[12] */ w += 6; strcpy((void *) w, tag); /* char version[12] */ w += 6; stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */ stw_raw(w ++, 24); /* u16 len */ strcpy((void *) w, "hw-build"); /* char component[12] */ w += 6; strcpy((void *) w, "QEMU " QEMU_VERSION); /* char version[12] */ w += 6; tag = (model == 810) ? "1.1.10-qemu" : "1.1.6-qemu"; stw_raw(w ++, OMAP_TAG_VERSION_STR); /* u16 tag */ stw_raw(w ++, 24); /* u16 len */ strcpy((void *) w, "nolo"); /* char component[12] */ w += 6; strcpy((void *) w, tag); /* char version[12] */ w += 6; return (void *) w - p; } static int n800_atag_setup(struct arm_boot_info *info, void *p) { return n8x0_atag_setup(p, 800); } static int n810_atag_setup(struct arm_boot_info *info, void *p) { return n8x0_atag_setup(p, 810); } static void n8x0_init(ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model, struct arm_boot_info *binfo, int model) { struct n800_s *s = (struct n800_s *) qemu_mallocz(sizeof(*s)); int sdram_size = binfo->ram_size; DisplayState *ds; s->cpu = omap2420_mpu_init(sdram_size, cpu_model); /* Setup peripherals * * Believed external peripherals layout in the N810: * (spi bus 1) * tsc2005 * lcd_mipid * (spi bus 2) * Conexant cx3110x (WLAN) * optional: pc2400m (WiMAX) * (i2c bus 0) * TLV320AIC33 (audio codec) * TCM825x (camera by Toshiba) * lp5521 (clever LEDs) * tsl2563 (light sensor, hwmon, model 7, rev. 0) * lm8323 (keypad, manf 00, rev 04) * (i2c bus 1) * tmp105 (temperature sensor, hwmon) * menelaus (pm) * (somewhere on i2c - maybe N800-only) * tea5761 (FM tuner) * (serial 0) * GPS * (some serial port) * csr41814 (Bluetooth) */ n8x0_gpio_setup(s); n8x0_nand_setup(s); n8x0_i2c_setup(s); if (model == 800) n800_tsc_kbd_setup(s); else if (model == 810) { n810_tsc_setup(s); n810_kbd_setup(s); } n8x0_spi_setup(s); n8x0_dss_setup(s); n8x0_cbus_setup(s); n8x0_uart_setup(s); if (usb_enabled) n8x0_usb_setup(s); /* Setup initial (reset) machine state */ /* Start at the OneNAND bootloader. */ s->cpu->env->regs[15] = 0; if (kernel_filename) { /* Or at the linux loader. */ binfo->kernel_filename = kernel_filename; binfo->kernel_cmdline = kernel_cmdline; binfo->initrd_filename = initrd_filename; arm_load_kernel(s->cpu->env, binfo); qemu_register_reset(n8x0_boot_init, s); n8x0_boot_init(s); } if (option_rom[0] && (boot_device[0] == 'n' || !kernel_filename)) { int rom_size; uint8_t nolo_tags[0x10000]; /* No, wait, better start at the ROM. */ s->cpu->env->regs[15] = OMAP2_Q2_BASE + 0x400000; /* This is intended for loading the `secondary.bin' program from * Nokia images (the NOLO bootloader). The entry point seems * to be at OMAP2_Q2_BASE + 0x400000. * * The `2nd.bin' files contain some kind of earlier boot code and * for them the entry point needs to be set to OMAP2_SRAM_BASE. * * The code above is for loading the `zImage' file from Nokia * images. */ rom_size = load_image_targphys(option_rom[0], OMAP2_Q2_BASE + 0x400000, sdram_size - 0x400000); printf("%i bytes of image loaded\n", rom_size); n800_setup_nolo_tags(nolo_tags); cpu_physical_memory_write(OMAP2_SRAM_BASE, nolo_tags, 0x10000); } /* FIXME: We shouldn't really be doing this here. The LCD controller will set the size once configured, so this just sets an initial size until the guest activates the display. */ ds = get_displaystate(); ds->surface = qemu_resize_displaysurface(ds, 800, 480); dpy_resize(ds); } static struct arm_boot_info n800_binfo = { .loader_start = OMAP2_Q2_BASE, /* Actually two chips of 0x4000000 bytes each */ .ram_size = 0x08000000, .board_id = 0x4f7, .atag_board = n800_atag_setup, }; static struct arm_boot_info n810_binfo = { .loader_start = OMAP2_Q2_BASE, /* Actually two chips of 0x4000000 bytes each */ .ram_size = 0x08000000, /* 0x60c and 0x6bf (WiMAX Edition) have been assigned but are not * used by some older versions of the bootloader and 5555 is used * instead (including versions that shipped with many devices). */ .board_id = 0x60c, .atag_board = n810_atag_setup, }; static void n800_init(ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { return n8x0_init(ram_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model, &n800_binfo, 800); } static void n810_init(ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { return n8x0_init(ram_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model, &n810_binfo, 810); } static QEMUMachine n800_machine = { .name = "n800", .desc = "Nokia N800 tablet aka. RX-34 (OMAP2420)", .init = n800_init, }; static QEMUMachine n810_machine = { .name = "n810", .desc = "Nokia N810 tablet aka. RX-44 (OMAP2420)", .init = n810_init, }; static void nseries_machine_init(void) { qemu_register_machine(&n800_machine); qemu_register_machine(&n810_machine); } machine_init(nseries_machine_init);