/* * QEMU VMWARE VMXNET3 paravirtual NIC * * Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com) * * Developed by Daynix Computing LTD (http://www.daynix.com) * * Authors: * Dmitry Fleytman * Tamir Shomer * Yan Vugenfirer * * This work is licensed under the terms of the GNU GPL, version 2. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "hw/hw.h" #include "hw/pci/pci.h" #include "hw/qdev-properties.h" #include "net/tap.h" #include "net/checksum.h" #include "sysemu/sysemu.h" #include "qemu/bswap.h" #include "qemu/log.h" #include "qemu/module.h" #include "hw/pci/msix.h" #include "hw/pci/msi.h" #include "migration/register.h" #include "migration/vmstate.h" #include "vmxnet3.h" #include "vmxnet3_defs.h" #include "vmxnet_debug.h" #include "vmware_utils.h" #include "net_tx_pkt.h" #include "net_rx_pkt.h" #include "qom/object.h" #define PCI_DEVICE_ID_VMWARE_VMXNET3_REVISION 0x1 #define VMXNET3_MSIX_BAR_SIZE 0x2000 /* Compatibility flags for migration */ #define VMXNET3_COMPAT_FLAG_OLD_MSI_OFFSETS_BIT 0 #define VMXNET3_COMPAT_FLAG_OLD_MSI_OFFSETS \ (1 << VMXNET3_COMPAT_FLAG_OLD_MSI_OFFSETS_BIT) #define VMXNET3_COMPAT_FLAG_DISABLE_PCIE_BIT 1 #define VMXNET3_COMPAT_FLAG_DISABLE_PCIE \ (1 << VMXNET3_COMPAT_FLAG_DISABLE_PCIE_BIT) #define VMXNET3_EXP_EP_OFFSET (0x48) #define VMXNET3_MSI_OFFSET(s) \ ((s)->compat_flags & VMXNET3_COMPAT_FLAG_OLD_MSI_OFFSETS ? 0x50 : 0x84) #define VMXNET3_MSIX_OFFSET(s) \ ((s)->compat_flags & VMXNET3_COMPAT_FLAG_OLD_MSI_OFFSETS ? 0 : 0x9c) #define VMXNET3_DSN_OFFSET (0x100) #define VMXNET3_BAR0_IDX (0) #define VMXNET3_BAR1_IDX (1) #define VMXNET3_MSIX_BAR_IDX (2) #define VMXNET3_OFF_MSIX_TABLE (0x000) #define VMXNET3_OFF_MSIX_PBA(s) \ ((s)->compat_flags & VMXNET3_COMPAT_FLAG_OLD_MSI_OFFSETS ? 0x800 : 0x1000) /* Link speed in Mbps should be shifted by 16 */ #define VMXNET3_LINK_SPEED (1000 << 16) /* Link status: 1 - up, 0 - down. */ #define VMXNET3_LINK_STATUS_UP 0x1 /* Least significant bit should be set for revision and version */ #define VMXNET3_UPT_REVISION 0x1 #define VMXNET3_DEVICE_REVISION 0x1 /* Number of interrupt vectors for non-MSIx modes */ #define VMXNET3_MAX_NMSIX_INTRS (1) /* Macros for rings descriptors access */ #define VMXNET3_READ_TX_QUEUE_DESCR8(_d, dpa, field) \ (vmw_shmem_ld8(_d, dpa + offsetof(struct Vmxnet3_TxQueueDesc, field))) #define VMXNET3_WRITE_TX_QUEUE_DESCR8(_d, dpa, field, value) \ (vmw_shmem_st8(_d, dpa + offsetof(struct Vmxnet3_TxQueueDesc, field, value))) #define VMXNET3_READ_TX_QUEUE_DESCR32(_d, dpa, field) \ (vmw_shmem_ld32(_d, dpa + offsetof(struct Vmxnet3_TxQueueDesc, field))) #define VMXNET3_WRITE_TX_QUEUE_DESCR32(_d, dpa, field, value) \ (vmw_shmem_st32(_d, dpa + offsetof(struct Vmxnet3_TxQueueDesc, field), value)) #define VMXNET3_READ_TX_QUEUE_DESCR64(_d, dpa, field) \ (vmw_shmem_ld64(_d, dpa + offsetof(struct Vmxnet3_TxQueueDesc, field))) #define VMXNET3_WRITE_TX_QUEUE_DESCR64(_d, dpa, field, value) \ (vmw_shmem_st64(_d, dpa + offsetof(struct Vmxnet3_TxQueueDesc, field), value)) #define VMXNET3_READ_RX_QUEUE_DESCR64(_d, dpa, field) \ (vmw_shmem_ld64(_d, dpa + offsetof(struct Vmxnet3_RxQueueDesc, field))) #define VMXNET3_READ_RX_QUEUE_DESCR32(_d, dpa, field) \ (vmw_shmem_ld32(_d, dpa + offsetof(struct Vmxnet3_RxQueueDesc, field))) #define VMXNET3_WRITE_RX_QUEUE_DESCR64(_d, dpa, field, value) \ (vmw_shmem_st64(_d, dpa + offsetof(struct Vmxnet3_RxQueueDesc, field), value)) #define VMXNET3_WRITE_RX_QUEUE_DESCR8(_d, dpa, field, value) \ (vmw_shmem_st8(_d, dpa + offsetof(struct Vmxnet3_RxQueueDesc, field), value)) /* Macros for guest driver shared area access */ #define VMXNET3_READ_DRV_SHARED64(_d, shpa, field) \ (vmw_shmem_ld64(_d, shpa + offsetof(struct Vmxnet3_DriverShared, field))) #define VMXNET3_READ_DRV_SHARED32(_d, shpa, field) \ (vmw_shmem_ld32(_d, shpa + offsetof(struct Vmxnet3_DriverShared, field))) #define VMXNET3_WRITE_DRV_SHARED32(_d, shpa, field, val) \ (vmw_shmem_st32(_d, shpa + offsetof(struct Vmxnet3_DriverShared, field), val)) #define VMXNET3_READ_DRV_SHARED16(_d, shpa, field) \ (vmw_shmem_ld16(_d, shpa + offsetof(struct Vmxnet3_DriverShared, field))) #define VMXNET3_READ_DRV_SHARED8(_d, shpa, field) \ (vmw_shmem_ld8(_d, shpa + offsetof(struct Vmxnet3_DriverShared, field))) #define VMXNET3_READ_DRV_SHARED(_d, shpa, field, b, l) \ (vmw_shmem_read(_d, shpa + offsetof(struct Vmxnet3_DriverShared, field), b, l)) #define VMXNET_FLAG_IS_SET(field, flag) (((field) & (flag)) == (flag)) struct VMXNET3Class { PCIDeviceClass parent_class; DeviceRealize parent_dc_realize; }; typedef struct VMXNET3Class VMXNET3Class; DECLARE_CLASS_CHECKERS(VMXNET3Class, VMXNET3_DEVICE, TYPE_VMXNET3) static inline void vmxnet3_ring_init(PCIDevice *d, Vmxnet3Ring *ring, hwaddr pa, uint32_t size, uint32_t cell_size, bool zero_region) { ring->pa = pa; ring->size = size; ring->cell_size = cell_size; ring->gen = VMXNET3_INIT_GEN; ring->next = 0; if (zero_region) { vmw_shmem_set(d, pa, 0, size * cell_size); } } #define VMXNET3_RING_DUMP(macro, ring_name, ridx, r) \ macro("%s#%d: base %" PRIx64 " size %u cell_size %u gen %d next %u", \ (ring_name), (ridx), \ (r)->pa, (r)->size, (r)->cell_size, (r)->gen, (r)->next) static inline void vmxnet3_ring_inc(Vmxnet3Ring *ring) { if (++ring->next >= ring->size) { ring->next = 0; ring->gen ^= 1; } } static inline void vmxnet3_ring_dec(Vmxnet3Ring *ring) { if (ring->next-- == 0) { ring->next = ring->size - 1; ring->gen ^= 1; } } static inline hwaddr vmxnet3_ring_curr_cell_pa(Vmxnet3Ring *ring) { return ring->pa + ring->next * ring->cell_size; } static inline void vmxnet3_ring_read_curr_cell(PCIDevice *d, Vmxnet3Ring *ring, void *buff) { vmw_shmem_read(d, vmxnet3_ring_curr_cell_pa(ring), buff, ring->cell_size); } static inline void vmxnet3_ring_write_curr_cell(PCIDevice *d, Vmxnet3Ring *ring, void *buff) { vmw_shmem_write(d, vmxnet3_ring_curr_cell_pa(ring), buff, ring->cell_size); } static inline size_t vmxnet3_ring_curr_cell_idx(Vmxnet3Ring *ring) { return ring->next; } static inline uint8_t vmxnet3_ring_curr_gen(Vmxnet3Ring *ring) { return ring->gen; } /* Debug trace-related functions */ static inline void vmxnet3_dump_tx_descr(struct Vmxnet3_TxDesc *descr) { VMW_PKPRN("TX DESCR: " "addr %" PRIx64 ", len: %d, gen: %d, rsvd: %d, " "dtype: %d, ext1: %d, msscof: %d, hlen: %d, om: %d, " "eop: %d, cq: %d, ext2: %d, ti: %d, tci: %d", descr->addr, descr->len, descr->gen, descr->rsvd, descr->dtype, descr->ext1, descr->msscof, descr->hlen, descr->om, descr->eop, descr->cq, descr->ext2, descr->ti, descr->tci); } static inline void vmxnet3_dump_virt_hdr(struct virtio_net_hdr *vhdr) { VMW_PKPRN("VHDR: flags 0x%x, gso_type: 0x%x, hdr_len: %d, gso_size: %d, " "csum_start: %d, csum_offset: %d", vhdr->flags, vhdr->gso_type, vhdr->hdr_len, vhdr->gso_size, vhdr->csum_start, vhdr->csum_offset); } static inline void vmxnet3_dump_rx_descr(struct Vmxnet3_RxDesc *descr) { VMW_PKPRN("RX DESCR: addr %" PRIx64 ", len: %d, gen: %d, rsvd: %d, " "dtype: %d, ext1: %d, btype: %d", descr->addr, descr->len, descr->gen, descr->rsvd, descr->dtype, descr->ext1, descr->btype); } /* Interrupt management */ /* * This function returns sign whether interrupt line is in asserted state * This depends on the type of interrupt used. For INTX interrupt line will * be asserted until explicit deassertion, for MSI(X) interrupt line will * be deasserted automatically due to notification semantics of the MSI(X) * interrupts */ static bool _vmxnet3_assert_interrupt_line(VMXNET3State *s, uint32_t int_idx) { PCIDevice *d = PCI_DEVICE(s); if (s->msix_used && msix_enabled(d)) { VMW_IRPRN("Sending MSI-X notification for vector %u", int_idx); msix_notify(d, int_idx); return false; } if (msi_enabled(d)) { VMW_IRPRN("Sending MSI notification for vector %u", int_idx); msi_notify(d, int_idx); return false; } VMW_IRPRN("Asserting line for interrupt %u", int_idx); pci_irq_assert(d); return true; } static void _vmxnet3_deassert_interrupt_line(VMXNET3State *s, int lidx) { PCIDevice *d = PCI_DEVICE(s); /* * This function should never be called for MSI(X) interrupts * because deassertion never required for message interrupts */ assert(!s->msix_used || !msix_enabled(d)); /* * This function should never be called for MSI(X) interrupts * because deassertion never required for message interrupts */ assert(!msi_enabled(d)); VMW_IRPRN("Deasserting line for interrupt %u", lidx); pci_irq_deassert(d); } static void vmxnet3_update_interrupt_line_state(VMXNET3State *s, int lidx) { if (!s->interrupt_states[lidx].is_pending && s->interrupt_states[lidx].is_asserted) { VMW_IRPRN("New interrupt line state for index %d is DOWN", lidx); _vmxnet3_deassert_interrupt_line(s, lidx); s->interrupt_states[lidx].is_asserted = false; return; } if (s->interrupt_states[lidx].is_pending && !s->interrupt_states[lidx].is_masked && !s->interrupt_states[lidx].is_asserted) { VMW_IRPRN("New interrupt line state for index %d is UP", lidx); s->interrupt_states[lidx].is_asserted = _vmxnet3_assert_interrupt_line(s, lidx); s->interrupt_states[lidx].is_pending = false; return; } } static void vmxnet3_trigger_interrupt(VMXNET3State *s, int lidx) { PCIDevice *d = PCI_DEVICE(s); s->interrupt_states[lidx].is_pending = true; vmxnet3_update_interrupt_line_state(s, lidx); if (s->msix_used && msix_enabled(d) && s->auto_int_masking) { goto do_automask; } if (msi_enabled(d) && s->auto_int_masking) { goto do_automask; } return; do_automask: s->interrupt_states[lidx].is_masked = true; vmxnet3_update_interrupt_line_state(s, lidx); } static bool vmxnet3_interrupt_asserted(VMXNET3State *s, int lidx) { return s->interrupt_states[lidx].is_asserted; } static void vmxnet3_clear_interrupt(VMXNET3State *s, int int_idx) { s->interrupt_states[int_idx].is_pending = false; if (s->auto_int_masking) { s->interrupt_states[int_idx].is_masked = true; } vmxnet3_update_interrupt_line_state(s, int_idx); } static void vmxnet3_on_interrupt_mask_changed(VMXNET3State *s, int lidx, bool is_masked) { s->interrupt_states[lidx].is_masked = is_masked; vmxnet3_update_interrupt_line_state(s, lidx); } static bool vmxnet3_verify_driver_magic(PCIDevice *d, hwaddr dshmem) { return (VMXNET3_READ_DRV_SHARED32(d, dshmem, magic) == VMXNET3_REV1_MAGIC); } #define VMXNET3_GET_BYTE(x, byte_num) (((x) >> (byte_num)*8) & 0xFF) #define VMXNET3_MAKE_BYTE(byte_num, val) \ (((uint32_t)((val) & 0xFF)) << (byte_num)*8) static void vmxnet3_set_variable_mac(VMXNET3State *s, uint32_t h, uint32_t l) { s->conf.macaddr.a[0] = VMXNET3_GET_BYTE(l, 0); s->conf.macaddr.a[1] = VMXNET3_GET_BYTE(l, 1); s->conf.macaddr.a[2] = VMXNET3_GET_BYTE(l, 2); s->conf.macaddr.a[3] = VMXNET3_GET_BYTE(l, 3); s->conf.macaddr.a[4] = VMXNET3_GET_BYTE(h, 0); s->conf.macaddr.a[5] = VMXNET3_GET_BYTE(h, 1); VMW_CFPRN("Variable MAC: " MAC_FMT, MAC_ARG(s->conf.macaddr.a)); qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); } static uint64_t vmxnet3_get_mac_low(MACAddr *addr) { return VMXNET3_MAKE_BYTE(0, addr->a[0]) | VMXNET3_MAKE_BYTE(1, addr->a[1]) | VMXNET3_MAKE_BYTE(2, addr->a[2]) | VMXNET3_MAKE_BYTE(3, addr->a[3]); } static uint64_t vmxnet3_get_mac_high(MACAddr *addr) { return VMXNET3_MAKE_BYTE(0, addr->a[4]) | VMXNET3_MAKE_BYTE(1, addr->a[5]); } static void vmxnet3_inc_tx_consumption_counter(VMXNET3State *s, int qidx) { vmxnet3_ring_inc(&s->txq_descr[qidx].tx_ring); } static inline void vmxnet3_inc_rx_consumption_counter(VMXNET3State *s, int qidx, int ridx) { vmxnet3_ring_inc(&s->rxq_descr[qidx].rx_ring[ridx]); } static inline void vmxnet3_inc_tx_completion_counter(VMXNET3State *s, int qidx) { vmxnet3_ring_inc(&s->txq_descr[qidx].comp_ring); } static void vmxnet3_inc_rx_completion_counter(VMXNET3State *s, int qidx) { vmxnet3_ring_inc(&s->rxq_descr[qidx].comp_ring); } static void vmxnet3_dec_rx_completion_counter(VMXNET3State *s, int qidx) { vmxnet3_ring_dec(&s->rxq_descr[qidx].comp_ring); } static void vmxnet3_complete_packet(VMXNET3State *s, int qidx, uint32_t tx_ridx) { struct Vmxnet3_TxCompDesc txcq_descr; PCIDevice *d = PCI_DEVICE(s); VMXNET3_RING_DUMP(VMW_RIPRN, "TXC", qidx, &s->txq_descr[qidx].comp_ring); memset(&txcq_descr, 0, sizeof(txcq_descr)); txcq_descr.txdIdx = tx_ridx; txcq_descr.gen = vmxnet3_ring_curr_gen(&s->txq_descr[qidx].comp_ring); txcq_descr.val1 = cpu_to_le32(txcq_descr.val1); txcq_descr.val2 = cpu_to_le32(txcq_descr.val2); vmxnet3_ring_write_curr_cell(d, &s->txq_descr[qidx].comp_ring, &txcq_descr); /* Flush changes in TX descriptor before changing the counter value */ smp_wmb(); vmxnet3_inc_tx_completion_counter(s, qidx); vmxnet3_trigger_interrupt(s, s->txq_descr[qidx].intr_idx); } static bool vmxnet3_setup_tx_offloads(VMXNET3State *s) { switch (s->offload_mode) { case VMXNET3_OM_NONE: return net_tx_pkt_build_vheader(s->tx_pkt, false, false, 0); case VMXNET3_OM_CSUM: VMW_PKPRN("L4 CSO requested\n"); return net_tx_pkt_build_vheader(s->tx_pkt, false, true, 0); case VMXNET3_OM_TSO: VMW_PKPRN("GSO offload requested."); if (!net_tx_pkt_build_vheader(s->tx_pkt, true, true, s->cso_or_gso_size)) { return false; } net_tx_pkt_update_ip_checksums(s->tx_pkt); break; default: g_assert_not_reached(); } return true; } static void vmxnet3_tx_retrieve_metadata(VMXNET3State *s, const struct Vmxnet3_TxDesc *txd) { s->offload_mode = txd->om; s->cso_or_gso_size = txd->msscof; s->tci = txd->tci; s->needs_vlan = txd->ti; } typedef enum { VMXNET3_PKT_STATUS_OK, VMXNET3_PKT_STATUS_ERROR, VMXNET3_PKT_STATUS_DISCARD,/* only for tx */ VMXNET3_PKT_STATUS_OUT_OF_BUF /* only for rx */ } Vmxnet3PktStatus; static void vmxnet3_on_tx_done_update_stats(VMXNET3State *s, int qidx, Vmxnet3PktStatus status) { size_t tot_len = net_tx_pkt_get_total_len(s->tx_pkt); struct UPT1_TxStats *stats = &s->txq_descr[qidx].txq_stats; switch (status) { case VMXNET3_PKT_STATUS_OK: switch (net_tx_pkt_get_packet_type(s->tx_pkt)) { case ETH_PKT_BCAST: stats->bcastPktsTxOK++; stats->bcastBytesTxOK += tot_len; break; case ETH_PKT_MCAST: stats->mcastPktsTxOK++; stats->mcastBytesTxOK += tot_len; break; case ETH_PKT_UCAST: stats->ucastPktsTxOK++; stats->ucastBytesTxOK += tot_len; break; default: g_assert_not_reached(); } if (s->offload_mode == VMXNET3_OM_TSO) { /* * According to VMWARE headers this statistic is a number * of packets after segmentation but since we don't have * this information in QEMU model, the best we can do is to * provide number of non-segmented packets */ stats->TSOPktsTxOK++; stats->TSOBytesTxOK += tot_len; } break; case VMXNET3_PKT_STATUS_DISCARD: stats->pktsTxDiscard++; break; case VMXNET3_PKT_STATUS_ERROR: stats->pktsTxError++; break; default: g_assert_not_reached(); } } static void vmxnet3_on_rx_done_update_stats(VMXNET3State *s, int qidx, Vmxnet3PktStatus status) { struct UPT1_RxStats *stats = &s->rxq_descr[qidx].rxq_stats; size_t tot_len = net_rx_pkt_get_total_len(s->rx_pkt); switch (status) { case VMXNET3_PKT_STATUS_OUT_OF_BUF: stats->pktsRxOutOfBuf++; break; case VMXNET3_PKT_STATUS_ERROR: stats->pktsRxError++; break; case VMXNET3_PKT_STATUS_OK: switch (net_rx_pkt_get_packet_type(s->rx_pkt)) { case ETH_PKT_BCAST: stats->bcastPktsRxOK++; stats->bcastBytesRxOK += tot_len; break; case ETH_PKT_MCAST: stats->mcastPktsRxOK++; stats->mcastBytesRxOK += tot_len; break; case ETH_PKT_UCAST: stats->ucastPktsRxOK++; stats->ucastBytesRxOK += tot_len; break; default: g_assert_not_reached(); } if (tot_len > s->mtu) { stats->LROPktsRxOK++; stats->LROBytesRxOK += tot_len; } break; default: g_assert_not_reached(); } } static inline void vmxnet3_ring_read_curr_txdesc(PCIDevice *pcidev, Vmxnet3Ring *ring, struct Vmxnet3_TxDesc *txd) { vmxnet3_ring_read_curr_cell(pcidev, ring, txd); txd->addr = le64_to_cpu(txd->addr); txd->val1 = le32_to_cpu(txd->val1); txd->val2 = le32_to_cpu(txd->val2); } static inline bool vmxnet3_pop_next_tx_descr(VMXNET3State *s, int qidx, struct Vmxnet3_TxDesc *txd, uint32_t *descr_idx) { Vmxnet3Ring *ring = &s->txq_descr[qidx].tx_ring; PCIDevice *d = PCI_DEVICE(s); vmxnet3_ring_read_curr_txdesc(d, ring, txd); if (txd->gen == vmxnet3_ring_curr_gen(ring)) { /* Only read after generation field verification */ smp_rmb(); /* Re-read to be sure we got the latest version */ vmxnet3_ring_read_curr_txdesc(d, ring, txd); VMXNET3_RING_DUMP(VMW_RIPRN, "TX", qidx, ring); *descr_idx = vmxnet3_ring_curr_cell_idx(ring); vmxnet3_inc_tx_consumption_counter(s, qidx); return true; } return false; } static bool vmxnet3_send_packet(VMXNET3State *s, uint32_t qidx) { Vmxnet3PktStatus status = VMXNET3_PKT_STATUS_OK; if (!vmxnet3_setup_tx_offloads(s)) { status = VMXNET3_PKT_STATUS_ERROR; goto func_exit; } /* debug prints */ vmxnet3_dump_virt_hdr(net_tx_pkt_get_vhdr(s->tx_pkt)); net_tx_pkt_dump(s->tx_pkt); if (!net_tx_pkt_send(s->tx_pkt, qemu_get_queue(s->nic))) { status = VMXNET3_PKT_STATUS_DISCARD; goto func_exit; } func_exit: vmxnet3_on_tx_done_update_stats(s, qidx, status); return (status == VMXNET3_PKT_STATUS_OK); } static void vmxnet3_process_tx_queue(VMXNET3State *s, int qidx) { struct Vmxnet3_TxDesc txd; uint32_t txd_idx; uint32_t data_len; hwaddr data_pa; for (;;) { if (!vmxnet3_pop_next_tx_descr(s, qidx, &txd, &txd_idx)) { break; } vmxnet3_dump_tx_descr(&txd); if (!s->skip_current_tx_pkt) { data_len = (txd.len > 0) ? txd.len : VMXNET3_MAX_TX_BUF_SIZE; data_pa = txd.addr; if (!net_tx_pkt_add_raw_fragment_pci(s->tx_pkt, PCI_DEVICE(s), data_pa, data_len)) { s->skip_current_tx_pkt = true; } } if (s->tx_sop) { vmxnet3_tx_retrieve_metadata(s, &txd); s->tx_sop = false; } if (txd.eop) { if (!s->skip_current_tx_pkt && net_tx_pkt_parse(s->tx_pkt)) { if (s->needs_vlan) { net_tx_pkt_setup_vlan_header(s->tx_pkt, s->tci); } vmxnet3_send_packet(s, qidx); } else { vmxnet3_on_tx_done_update_stats(s, qidx, VMXNET3_PKT_STATUS_ERROR); } vmxnet3_complete_packet(s, qidx, txd_idx); s->tx_sop = true; s->skip_current_tx_pkt = false; net_tx_pkt_reset(s->tx_pkt, net_tx_pkt_unmap_frag_pci, PCI_DEVICE(s)); } } net_tx_pkt_reset(s->tx_pkt, net_tx_pkt_unmap_frag_pci, PCI_DEVICE(s)); } static inline void vmxnet3_read_next_rx_descr(VMXNET3State *s, int qidx, int ridx, struct Vmxnet3_RxDesc *dbuf, uint32_t *didx) { PCIDevice *d = PCI_DEVICE(s); Vmxnet3Ring *ring = &s->rxq_descr[qidx].rx_ring[ridx]; *didx = vmxnet3_ring_curr_cell_idx(ring); vmxnet3_ring_read_curr_cell(d, ring, dbuf); dbuf->addr = le64_to_cpu(dbuf->addr); dbuf->val1 = le32_to_cpu(dbuf->val1); dbuf->ext1 = le32_to_cpu(dbuf->ext1); } static inline uint8_t vmxnet3_get_rx_ring_gen(VMXNET3State *s, int qidx, int ridx) { return s->rxq_descr[qidx].rx_ring[ridx].gen; } static inline hwaddr vmxnet3_pop_rxc_descr(VMXNET3State *s, int qidx, uint32_t *descr_gen) { uint8_t ring_gen; struct Vmxnet3_RxCompDesc rxcd; hwaddr daddr = vmxnet3_ring_curr_cell_pa(&s->rxq_descr[qidx].comp_ring); pci_dma_read(PCI_DEVICE(s), daddr, &rxcd, sizeof(struct Vmxnet3_RxCompDesc)); rxcd.val1 = le32_to_cpu(rxcd.val1); rxcd.val2 = le32_to_cpu(rxcd.val2); rxcd.val3 = le32_to_cpu(rxcd.val3); ring_gen = vmxnet3_ring_curr_gen(&s->rxq_descr[qidx].comp_ring); if (rxcd.gen != ring_gen) { *descr_gen = ring_gen; vmxnet3_inc_rx_completion_counter(s, qidx); return daddr; } return 0; } static inline void vmxnet3_revert_rxc_descr(VMXNET3State *s, int qidx) { vmxnet3_dec_rx_completion_counter(s, qidx); } #define RXQ_IDX (0) #define RX_HEAD_BODY_RING (0) #define RX_BODY_ONLY_RING (1) static bool vmxnet3_get_next_head_rx_descr(VMXNET3State *s, struct Vmxnet3_RxDesc *descr_buf, uint32_t *descr_idx, uint32_t *ridx) { for (;;) { uint32_t ring_gen; vmxnet3_read_next_rx_descr(s, RXQ_IDX, RX_HEAD_BODY_RING, descr_buf, descr_idx); /* If no more free descriptors - return */ ring_gen = vmxnet3_get_rx_ring_gen(s, RXQ_IDX, RX_HEAD_BODY_RING); if (descr_buf->gen != ring_gen) { return false; } /* Only read after generation field verification */ smp_rmb(); /* Re-read to be sure we got the latest version */ vmxnet3_read_next_rx_descr(s, RXQ_IDX, RX_HEAD_BODY_RING, descr_buf, descr_idx); /* Mark current descriptor as used/skipped */ vmxnet3_inc_rx_consumption_counter(s, RXQ_IDX, RX_HEAD_BODY_RING); /* If this is what we are looking for - return */ if (descr_buf->btype == VMXNET3_RXD_BTYPE_HEAD) { *ridx = RX_HEAD_BODY_RING; return true; } } } static bool vmxnet3_get_next_body_rx_descr(VMXNET3State *s, struct Vmxnet3_RxDesc *d, uint32_t *didx, uint32_t *ridx) { vmxnet3_read_next_rx_descr(s, RXQ_IDX, RX_HEAD_BODY_RING, d, didx); /* Try to find corresponding descriptor in head/body ring */ if (d->gen == vmxnet3_get_rx_ring_gen(s, RXQ_IDX, RX_HEAD_BODY_RING)) { /* Only read after generation field verification */ smp_rmb(); /* Re-read to be sure we got the latest version */ vmxnet3_read_next_rx_descr(s, RXQ_IDX, RX_HEAD_BODY_RING, d, didx); if (d->btype == VMXNET3_RXD_BTYPE_BODY) { vmxnet3_inc_rx_consumption_counter(s, RXQ_IDX, RX_HEAD_BODY_RING); *ridx = RX_HEAD_BODY_RING; return true; } } /* * If there is no free descriptors on head/body ring or next free * descriptor is a head descriptor switch to body only ring */ vmxnet3_read_next_rx_descr(s, RXQ_IDX, RX_BODY_ONLY_RING, d, didx); /* If no more free descriptors - return */ if (d->gen == vmxnet3_get_rx_ring_gen(s, RXQ_IDX, RX_BODY_ONLY_RING)) { /* Only read after generation field verification */ smp_rmb(); /* Re-read to be sure we got the latest version */ vmxnet3_read_next_rx_descr(s, RXQ_IDX, RX_BODY_ONLY_RING, d, didx); assert(d->btype == VMXNET3_RXD_BTYPE_BODY); *ridx = RX_BODY_ONLY_RING; vmxnet3_inc_rx_consumption_counter(s, RXQ_IDX, RX_BODY_ONLY_RING); return true; } return false; } static inline bool vmxnet3_get_next_rx_descr(VMXNET3State *s, bool is_head, struct Vmxnet3_RxDesc *descr_buf, uint32_t *descr_idx, uint32_t *ridx) { if (is_head || !s->rx_packets_compound) { return vmxnet3_get_next_head_rx_descr(s, descr_buf, descr_idx, ridx); } else { return vmxnet3_get_next_body_rx_descr(s, descr_buf, descr_idx, ridx); } } /* In case packet was csum offloaded (either NEEDS_CSUM or DATA_VALID), * the implementation always passes an RxCompDesc with a "Checksum * calculated and found correct" to the OS (cnc=0 and tuc=1, see * vmxnet3_rx_update_descr). This emulates the observed ESXi behavior. * * Therefore, if packet has the NEEDS_CSUM set, we must calculate * and place a fully computed checksum into the tcp/udp header. * Otherwise, the OS driver will receive a checksum-correct indication * (CHECKSUM_UNNECESSARY), but with the actual tcp/udp checksum field * having just the pseudo header csum value. * * While this is not a problem if packet is destined for local delivery, * in the case the host OS performs forwarding, it will forward an * incorrectly checksummed packet. */ static void vmxnet3_rx_need_csum_calculate(struct NetRxPkt *pkt, const void *pkt_data, size_t pkt_len) { struct virtio_net_hdr *vhdr; bool hasip4, hasip6; EthL4HdrProto l4hdr_proto; uint8_t *data; int len; vhdr = net_rx_pkt_get_vhdr(pkt); if (!VMXNET_FLAG_IS_SET(vhdr->flags, VIRTIO_NET_HDR_F_NEEDS_CSUM)) { return; } net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto); if (!(hasip4 || hasip6) || (l4hdr_proto != ETH_L4_HDR_PROTO_TCP && l4hdr_proto != ETH_L4_HDR_PROTO_UDP)) { return; } vmxnet3_dump_virt_hdr(vhdr); /* Validate packet len: csum_start + scum_offset + length of csum field */ if (pkt_len < (vhdr->csum_start + vhdr->csum_offset + 2)) { VMW_PKPRN("packet len:%zu < csum_start(%d) + csum_offset(%d) + 2, " "cannot calculate checksum", pkt_len, vhdr->csum_start, vhdr->csum_offset); return; } data = (uint8_t *)pkt_data + vhdr->csum_start; len = pkt_len - vhdr->csum_start; /* Put the checksum obtained into the packet */ stw_be_p(data + vhdr->csum_offset, net_checksum_finish_nozero(net_checksum_add(len, data))); vhdr->flags &= ~VIRTIO_NET_HDR_F_NEEDS_CSUM; vhdr->flags |= VIRTIO_NET_HDR_F_DATA_VALID; } static void vmxnet3_rx_update_descr(struct NetRxPkt *pkt, struct Vmxnet3_RxCompDesc *rxcd) { int csum_ok, is_gso; bool hasip4, hasip6; EthL4HdrProto l4hdr_proto; struct virtio_net_hdr *vhdr; uint8_t offload_type; if (net_rx_pkt_is_vlan_stripped(pkt)) { rxcd->ts = 1; rxcd->tci = net_rx_pkt_get_vlan_tag(pkt); } vhdr = net_rx_pkt_get_vhdr(pkt); /* * Checksum is valid when lower level tell so or when lower level * requires checksum offload telling that packet produced/bridged * locally and did travel over network after last checksum calculation * or production */ csum_ok = VMXNET_FLAG_IS_SET(vhdr->flags, VIRTIO_NET_HDR_F_DATA_VALID) || VMXNET_FLAG_IS_SET(vhdr->flags, VIRTIO_NET_HDR_F_NEEDS_CSUM); offload_type = vhdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN; is_gso = (offload_type != VIRTIO_NET_HDR_GSO_NONE) ? 1 : 0; if (!csum_ok && !is_gso) { goto nocsum; } net_rx_pkt_get_protocols(pkt, &hasip4, &hasip6, &l4hdr_proto); if ((l4hdr_proto != ETH_L4_HDR_PROTO_TCP && l4hdr_proto != ETH_L4_HDR_PROTO_UDP) || (!hasip4 && !hasip6)) { goto nocsum; } rxcd->cnc = 0; rxcd->v4 = hasip4 ? 1 : 0; rxcd->v6 = hasip6 ? 1 : 0; rxcd->tcp = l4hdr_proto == ETH_L4_HDR_PROTO_TCP; rxcd->udp = l4hdr_proto == ETH_L4_HDR_PROTO_UDP; rxcd->fcs = rxcd->tuc = rxcd->ipc = 1; return; nocsum: rxcd->cnc = 1; return; } static void vmxnet3_pci_dma_writev(PCIDevice *pci_dev, const struct iovec *iov, size_t start_iov_off, hwaddr target_addr, size_t bytes_to_copy) { size_t curr_off = 0; size_t copied = 0; while (bytes_to_copy) { if (start_iov_off < (curr_off + iov->iov_len)) { size_t chunk_len = MIN((curr_off + iov->iov_len) - start_iov_off, bytes_to_copy); pci_dma_write(pci_dev, target_addr + copied, iov->iov_base + start_iov_off - curr_off, chunk_len); copied += chunk_len; start_iov_off += chunk_len; curr_off = start_iov_off; bytes_to_copy -= chunk_len; } else { curr_off += iov->iov_len; } iov++; } } static void vmxnet3_pci_dma_write_rxcd(PCIDevice *pcidev, dma_addr_t pa, struct Vmxnet3_RxCompDesc *rxcd) { rxcd->val1 = cpu_to_le32(rxcd->val1); rxcd->val2 = cpu_to_le32(rxcd->val2); rxcd->val3 = cpu_to_le32(rxcd->val3); pci_dma_write(pcidev, pa, rxcd, sizeof(*rxcd)); } static bool vmxnet3_indicate_packet(VMXNET3State *s) { struct Vmxnet3_RxDesc rxd; PCIDevice *d = PCI_DEVICE(s); bool is_head = true; uint32_t rxd_idx; uint32_t rx_ridx = 0; struct Vmxnet3_RxCompDesc rxcd; uint32_t new_rxcd_gen = VMXNET3_INIT_GEN; hwaddr new_rxcd_pa = 0; hwaddr ready_rxcd_pa = 0; struct iovec *data = net_rx_pkt_get_iovec(s->rx_pkt); size_t bytes_copied = 0; size_t bytes_left = net_rx_pkt_get_total_len(s->rx_pkt); uint16_t num_frags = 0; size_t chunk_size; net_rx_pkt_dump(s->rx_pkt); while (bytes_left > 0) { /* cannot add more frags to packet */ if (num_frags == s->max_rx_frags) { break; } new_rxcd_pa = vmxnet3_pop_rxc_descr(s, RXQ_IDX, &new_rxcd_gen); if (!new_rxcd_pa) { break; } if (!vmxnet3_get_next_rx_descr(s, is_head, &rxd, &rxd_idx, &rx_ridx)) { break; } chunk_size = MIN(bytes_left, rxd.len); vmxnet3_pci_dma_writev(d, data, bytes_copied, rxd.addr, chunk_size); bytes_copied += chunk_size; bytes_left -= chunk_size; vmxnet3_dump_rx_descr(&rxd); if (ready_rxcd_pa != 0) { vmxnet3_pci_dma_write_rxcd(d, ready_rxcd_pa, &rxcd); } memset(&rxcd, 0, sizeof(struct Vmxnet3_RxCompDesc)); rxcd.rxdIdx = rxd_idx; rxcd.len = chunk_size; rxcd.sop = is_head; rxcd.gen = new_rxcd_gen; rxcd.rqID = RXQ_IDX + rx_ridx * s->rxq_num; if (bytes_left == 0) { vmxnet3_rx_update_descr(s->rx_pkt, &rxcd); } VMW_RIPRN("RX Completion descriptor: rxRing: %lu rxIdx %lu len %lu " "sop %d csum_correct %lu", (unsigned long) rx_ridx, (unsigned long) rxcd.rxdIdx, (unsigned long) rxcd.len, (int) rxcd.sop, (unsigned long) rxcd.tuc); is_head = false; ready_rxcd_pa = new_rxcd_pa; new_rxcd_pa = 0; num_frags++; } if (ready_rxcd_pa != 0) { rxcd.eop = 1; rxcd.err = (bytes_left != 0); vmxnet3_pci_dma_write_rxcd(d, ready_rxcd_pa, &rxcd); /* Flush RX descriptor changes */ smp_wmb(); } if (new_rxcd_pa != 0) { vmxnet3_revert_rxc_descr(s, RXQ_IDX); } vmxnet3_trigger_interrupt(s, s->rxq_descr[RXQ_IDX].intr_idx); if (bytes_left == 0) { vmxnet3_on_rx_done_update_stats(s, RXQ_IDX, VMXNET3_PKT_STATUS_OK); return true; } else if (num_frags == s->max_rx_frags) { vmxnet3_on_rx_done_update_stats(s, RXQ_IDX, VMXNET3_PKT_STATUS_ERROR); return false; } else { vmxnet3_on_rx_done_update_stats(s, RXQ_IDX, VMXNET3_PKT_STATUS_OUT_OF_BUF); return false; } } static void vmxnet3_io_bar0_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { VMXNET3State *s = opaque; if (!s->device_active) { return; } if (VMW_IS_MULTIREG_ADDR(addr, VMXNET3_REG_TXPROD, VMXNET3_DEVICE_MAX_TX_QUEUES, VMXNET3_REG_ALIGN)) { int tx_queue_idx = VMW_MULTIREG_IDX_BY_ADDR(addr, VMXNET3_REG_TXPROD, VMXNET3_REG_ALIGN); if (tx_queue_idx <= s->txq_num) { vmxnet3_process_tx_queue(s, tx_queue_idx); } else { qemu_log_mask(LOG_GUEST_ERROR, "vmxnet3: Illegal TX queue %d/%d\n", tx_queue_idx, s->txq_num); } return; } if (VMW_IS_MULTIREG_ADDR(addr, VMXNET3_REG_IMR, VMXNET3_MAX_INTRS, VMXNET3_REG_ALIGN)) { int l = VMW_MULTIREG_IDX_BY_ADDR(addr, VMXNET3_REG_IMR, VMXNET3_REG_ALIGN); VMW_CBPRN("Interrupt mask for line %d written: 0x%" PRIx64, l, val); vmxnet3_on_interrupt_mask_changed(s, l, val); return; } if (VMW_IS_MULTIREG_ADDR(addr, VMXNET3_REG_RXPROD, VMXNET3_DEVICE_MAX_RX_QUEUES, VMXNET3_REG_ALIGN) || VMW_IS_MULTIREG_ADDR(addr, VMXNET3_REG_RXPROD2, VMXNET3_DEVICE_MAX_RX_QUEUES, VMXNET3_REG_ALIGN)) { return; } VMW_WRPRN("BAR0 unknown write [%" PRIx64 "] = %" PRIx64 ", size %d", (uint64_t) addr, val, size); } static uint64_t vmxnet3_io_bar0_read(void *opaque, hwaddr addr, unsigned size) { VMXNET3State *s = opaque; if (VMW_IS_MULTIREG_ADDR(addr, VMXNET3_REG_IMR, VMXNET3_MAX_INTRS, VMXNET3_REG_ALIGN)) { int l = VMW_MULTIREG_IDX_BY_ADDR(addr, VMXNET3_REG_IMR, VMXNET3_REG_ALIGN); return s->interrupt_states[l].is_masked; } VMW_CBPRN("BAR0 unknown read [%" PRIx64 "], size %d", addr, size); return 0; } static void vmxnet3_reset_interrupt_states(VMXNET3State *s) { int i; for (i = 0; i < ARRAY_SIZE(s->interrupt_states); i++) { s->interrupt_states[i].is_asserted = false; s->interrupt_states[i].is_pending = false; s->interrupt_states[i].is_masked = true; } } static void vmxnet3_reset_mac(VMXNET3State *s) { memcpy(&s->conf.macaddr.a, &s->perm_mac.a, sizeof(s->perm_mac.a)); VMW_CFPRN("MAC address set to: " MAC_FMT, MAC_ARG(s->conf.macaddr.a)); } static void vmxnet3_deactivate_device(VMXNET3State *s) { if (s->device_active) { VMW_CBPRN("Deactivating vmxnet3..."); net_tx_pkt_uninit(s->tx_pkt); net_rx_pkt_uninit(s->rx_pkt); s->device_active = false; } } static void vmxnet3_reset(VMXNET3State *s) { VMW_CBPRN("Resetting vmxnet3..."); vmxnet3_deactivate_device(s); vmxnet3_reset_interrupt_states(s); s->drv_shmem = 0; s->tx_sop = true; s->skip_current_tx_pkt = false; } static void vmxnet3_update_rx_mode(VMXNET3State *s) { PCIDevice *d = PCI_DEVICE(s); s->rx_mode = VMXNET3_READ_DRV_SHARED32(d, s->drv_shmem, devRead.rxFilterConf.rxMode); VMW_CFPRN("RX mode: 0x%08X", s->rx_mode); } static void vmxnet3_update_vlan_filters(VMXNET3State *s) { int i; PCIDevice *d = PCI_DEVICE(s); /* Copy configuration from shared memory */ VMXNET3_READ_DRV_SHARED(d, s->drv_shmem, devRead.rxFilterConf.vfTable, s->vlan_table, sizeof(s->vlan_table)); /* Invert byte order when needed */ for (i = 0; i < ARRAY_SIZE(s->vlan_table); i++) { s->vlan_table[i] = le32_to_cpu(s->vlan_table[i]); } /* Dump configuration for debugging purposes */ VMW_CFPRN("Configured VLANs:"); for (i = 0; i < sizeof(s->vlan_table) * 8; i++) { if (VMXNET3_VFTABLE_ENTRY_IS_SET(s->vlan_table, i)) { VMW_CFPRN("\tVLAN %d is present", i); } } } static void vmxnet3_update_mcast_filters(VMXNET3State *s) { PCIDevice *d = PCI_DEVICE(s); uint16_t list_bytes = VMXNET3_READ_DRV_SHARED16(d, s->drv_shmem, devRead.rxFilterConf.mfTableLen); s->mcast_list_len = list_bytes / sizeof(s->mcast_list[0]); s->mcast_list = g_realloc(s->mcast_list, list_bytes); if (!s->mcast_list) { if (s->mcast_list_len == 0) { VMW_CFPRN("Current multicast list is empty"); } else { VMW_ERPRN("Failed to allocate multicast list of %d elements", s->mcast_list_len); } s->mcast_list_len = 0; } else { int i; hwaddr mcast_list_pa = VMXNET3_READ_DRV_SHARED64(d, s->drv_shmem, devRead.rxFilterConf.mfTablePA); pci_dma_read(d, mcast_list_pa, s->mcast_list, list_bytes); VMW_CFPRN("Current multicast list len is %d:", s->mcast_list_len); for (i = 0; i < s->mcast_list_len; i++) { VMW_CFPRN("\t" MAC_FMT, MAC_ARG(s->mcast_list[i].a)); } } } static void vmxnet3_setup_rx_filtering(VMXNET3State *s) { vmxnet3_update_rx_mode(s); vmxnet3_update_vlan_filters(s); vmxnet3_update_mcast_filters(s); } static uint32_t vmxnet3_get_interrupt_config(VMXNET3State *s) { uint32_t interrupt_mode = VMXNET3_IT_AUTO | (VMXNET3_IMM_AUTO << 2); VMW_CFPRN("Interrupt config is 0x%X", interrupt_mode); return interrupt_mode; } static void vmxnet3_fill_stats(VMXNET3State *s) { int i; PCIDevice *d = PCI_DEVICE(s); if (!s->device_active) return; for (i = 0; i < s->txq_num; i++) { pci_dma_write(d, s->txq_descr[i].tx_stats_pa, &s->txq_descr[i].txq_stats, sizeof(s->txq_descr[i].txq_stats)); } for (i = 0; i < s->rxq_num; i++) { pci_dma_write(d, s->rxq_descr[i].rx_stats_pa, &s->rxq_descr[i].rxq_stats, sizeof(s->rxq_descr[i].rxq_stats)); } } static void vmxnet3_adjust_by_guest_type(VMXNET3State *s) { struct Vmxnet3_GOSInfo gos; PCIDevice *d = PCI_DEVICE(s); VMXNET3_READ_DRV_SHARED(d, s->drv_shmem, devRead.misc.driverInfo.gos, &gos, sizeof(gos)); s->rx_packets_compound = (gos.gosType == VMXNET3_GOS_TYPE_WIN) ? false : true; VMW_CFPRN("Guest type specifics: RXCOMPOUND: %d", s->rx_packets_compound); } static void vmxnet3_dump_conf_descr(const char *name, struct Vmxnet3_VariableLenConfDesc *pm_descr) { VMW_CFPRN("%s descriptor dump: Version %u, Length %u", name, pm_descr->confVer, pm_descr->confLen); }; static void vmxnet3_update_pm_state(VMXNET3State *s) { struct Vmxnet3_VariableLenConfDesc pm_descr; PCIDevice *d = PCI_DEVICE(s); pm_descr.confLen = VMXNET3_READ_DRV_SHARED32(d, s->drv_shmem, devRead.pmConfDesc.confLen); pm_descr.confVer = VMXNET3_READ_DRV_SHARED32(d, s->drv_shmem, devRead.pmConfDesc.confVer); pm_descr.confPA = VMXNET3_READ_DRV_SHARED64(d, s->drv_shmem, devRead.pmConfDesc.confPA); vmxnet3_dump_conf_descr("PM State", &pm_descr); } static void vmxnet3_update_features(VMXNET3State *s) { uint32_t guest_features; int rxcso_supported; PCIDevice *d = PCI_DEVICE(s); guest_features = VMXNET3_READ_DRV_SHARED32(d, s->drv_shmem, devRead.misc.uptFeatures); rxcso_supported = VMXNET_FLAG_IS_SET(guest_features, UPT1_F_RXCSUM); s->rx_vlan_stripping = VMXNET_FLAG_IS_SET(guest_features, UPT1_F_RXVLAN); s->lro_supported = VMXNET_FLAG_IS_SET(guest_features, UPT1_F_LRO); VMW_CFPRN("Features configuration: LRO: %d, RXCSUM: %d, VLANSTRIP: %d", s->lro_supported, rxcso_supported, s->rx_vlan_stripping); if (s->peer_has_vhdr) { qemu_set_offload(qemu_get_queue(s->nic)->peer, rxcso_supported, s->lro_supported, s->lro_supported, 0, 0, 0, 0); } } static bool vmxnet3_verify_intx(VMXNET3State *s, int intx) { return s->msix_used || msi_enabled(PCI_DEVICE(s)) || intx == pci_get_byte(s->parent_obj.config + PCI_INTERRUPT_PIN) - 1; } static void vmxnet3_validate_interrupt_idx(bool is_msix, int idx) { int max_ints = is_msix ? VMXNET3_MAX_INTRS : VMXNET3_MAX_NMSIX_INTRS; if (idx >= max_ints) { hw_error("Bad interrupt index: %d\n", idx); } } static void vmxnet3_validate_interrupts(VMXNET3State *s) { int i; VMW_CFPRN("Verifying event interrupt index (%d)", s->event_int_idx); vmxnet3_validate_interrupt_idx(s->msix_used, s->event_int_idx); for (i = 0; i < s->txq_num; i++) { int idx = s->txq_descr[i].intr_idx; VMW_CFPRN("Verifying TX queue %d interrupt index (%d)", i, idx); vmxnet3_validate_interrupt_idx(s->msix_used, idx); } for (i = 0; i < s->rxq_num; i++) { int idx = s->rxq_descr[i].intr_idx; VMW_CFPRN("Verifying RX queue %d interrupt index (%d)", i, idx); vmxnet3_validate_interrupt_idx(s->msix_used, idx); } } static bool vmxnet3_validate_queues(VMXNET3State *s) { /* * txq_num and rxq_num are total number of queues * configured by guest. These numbers must not * exceed corresponding maximal values. */ if (s->txq_num > VMXNET3_DEVICE_MAX_TX_QUEUES) { qemu_log_mask(LOG_GUEST_ERROR, "vmxnet3: Bad TX queues number: %d\n", s->txq_num); return false; } if (s->rxq_num > VMXNET3_DEVICE_MAX_RX_QUEUES) { qemu_log_mask(LOG_GUEST_ERROR, "vmxnet3: Bad RX queues number: %d\n", s->rxq_num); return false; } return true; } static void vmxnet3_activate_device(VMXNET3State *s) { int i; static const uint32_t VMXNET3_DEF_TX_THRESHOLD = 1; PCIDevice *d = PCI_DEVICE(s); hwaddr qdescr_table_pa; uint64_t pa; uint32_t size; /* Verify configuration consistency */ if (!vmxnet3_verify_driver_magic(d, s->drv_shmem)) { VMW_ERPRN("Device configuration received from driver is invalid"); return; } /* Verify if device is active */ if (s->device_active) { VMW_CFPRN("Vmxnet3 device is active"); return; } s->txq_num = VMXNET3_READ_DRV_SHARED8(d, s->drv_shmem, devRead.misc.numTxQueues); s->rxq_num = VMXNET3_READ_DRV_SHARED8(d, s->drv_shmem, devRead.misc.numRxQueues); VMW_CFPRN("Number of TX/RX queues %u/%u", s->txq_num, s->rxq_num); if (!vmxnet3_validate_queues(s)) { return; } vmxnet3_adjust_by_guest_type(s); vmxnet3_update_features(s); vmxnet3_update_pm_state(s); vmxnet3_setup_rx_filtering(s); /* Cache fields from shared memory */ s->mtu = VMXNET3_READ_DRV_SHARED32(d, s->drv_shmem, devRead.misc.mtu); if (s->mtu < VMXNET3_MIN_MTU || s->mtu > VMXNET3_MAX_MTU) { qemu_log_mask(LOG_GUEST_ERROR, "vmxnet3: Bad MTU size: %u\n", s->mtu); return; } VMW_CFPRN("MTU is %u", s->mtu); s->max_rx_frags = VMXNET3_READ_DRV_SHARED16(d, s->drv_shmem, devRead.misc.maxNumRxSG); if (s->max_rx_frags == 0) { s->max_rx_frags = 1; } VMW_CFPRN("Max RX fragments is %u", s->max_rx_frags); s->event_int_idx = VMXNET3_READ_DRV_SHARED8(d, s->drv_shmem, devRead.intrConf.eventIntrIdx); assert(vmxnet3_verify_intx(s, s->event_int_idx)); VMW_CFPRN("Events interrupt line is %u", s->event_int_idx); s->auto_int_masking = VMXNET3_READ_DRV_SHARED8(d, s->drv_shmem, devRead.intrConf.autoMask); VMW_CFPRN("Automatic interrupt masking is %d", (int)s->auto_int_masking); qdescr_table_pa = VMXNET3_READ_DRV_SHARED64(d, s->drv_shmem, devRead.misc.queueDescPA); VMW_CFPRN("TX queues descriptors table is at 0x%" PRIx64, qdescr_table_pa); /* * Worst-case scenario is a packet that holds all TX rings space so * we calculate total size of all TX rings for max TX fragments number */ s->max_tx_frags = 0; /* TX queues */ for (i = 0; i < s->txq_num; i++) { hwaddr qdescr_pa = qdescr_table_pa + i * sizeof(struct Vmxnet3_TxQueueDesc); /* Read interrupt number for this TX queue */ s->txq_descr[i].intr_idx = VMXNET3_READ_TX_QUEUE_DESCR8(d, qdescr_pa, conf.intrIdx); assert(vmxnet3_verify_intx(s, s->txq_descr[i].intr_idx)); VMW_CFPRN("TX Queue %d interrupt: %d", i, s->txq_descr[i].intr_idx); /* Read rings memory locations for TX queues */ pa = VMXNET3_READ_TX_QUEUE_DESCR64(d, qdescr_pa, conf.txRingBasePA); size = VMXNET3_READ_TX_QUEUE_DESCR32(d, qdescr_pa, conf.txRingSize); if (size > VMXNET3_TX_RING_MAX_SIZE) { size = VMXNET3_TX_RING_MAX_SIZE; } vmxnet3_ring_init(d, &s->txq_descr[i].tx_ring, pa, size, sizeof(struct Vmxnet3_TxDesc), false); VMXNET3_RING_DUMP(VMW_CFPRN, "TX", i, &s->txq_descr[i].tx_ring); s->max_tx_frags += size; /* TXC ring */ pa = VMXNET3_READ_TX_QUEUE_DESCR64(d, qdescr_pa, conf.compRingBasePA); size = VMXNET3_READ_TX_QUEUE_DESCR32(d, qdescr_pa, conf.compRingSize); if (size > VMXNET3_TC_RING_MAX_SIZE) { size = VMXNET3_TC_RING_MAX_SIZE; } vmxnet3_ring_init(d, &s->txq_descr[i].comp_ring, pa, size, sizeof(struct Vmxnet3_TxCompDesc), true); VMXNET3_RING_DUMP(VMW_CFPRN, "TXC", i, &s->txq_descr[i].comp_ring); s->txq_descr[i].tx_stats_pa = qdescr_pa + offsetof(struct Vmxnet3_TxQueueDesc, stats); memset(&s->txq_descr[i].txq_stats, 0, sizeof(s->txq_descr[i].txq_stats)); /* Fill device-managed parameters for queues */ VMXNET3_WRITE_TX_QUEUE_DESCR32(d, qdescr_pa, ctrl.txThreshold, VMXNET3_DEF_TX_THRESHOLD); } /* Preallocate TX packet wrapper */ VMW_CFPRN("Max TX fragments is %u", s->max_tx_frags); net_tx_pkt_init(&s->tx_pkt, s->max_tx_frags); net_rx_pkt_init(&s->rx_pkt); /* Read rings memory locations for RX queues */ for (i = 0; i < s->rxq_num; i++) { int j; hwaddr qd_pa = qdescr_table_pa + s->txq_num * sizeof(struct Vmxnet3_TxQueueDesc) + i * sizeof(struct Vmxnet3_RxQueueDesc); /* Read interrupt number for this RX queue */ s->rxq_descr[i].intr_idx = VMXNET3_READ_TX_QUEUE_DESCR8(d, qd_pa, conf.intrIdx); assert(vmxnet3_verify_intx(s, s->rxq_descr[i].intr_idx)); VMW_CFPRN("RX Queue %d interrupt: %d", i, s->rxq_descr[i].intr_idx); /* Read rings memory locations */ for (j = 0; j < VMXNET3_RX_RINGS_PER_QUEUE; j++) { /* RX rings */ pa = VMXNET3_READ_RX_QUEUE_DESCR64(d, qd_pa, conf.rxRingBasePA[j]); size = VMXNET3_READ_RX_QUEUE_DESCR32(d, qd_pa, conf.rxRingSize[j]); if (size > VMXNET3_RX_RING_MAX_SIZE) { size = VMXNET3_RX_RING_MAX_SIZE; } vmxnet3_ring_init(d, &s->rxq_descr[i].rx_ring[j], pa, size, sizeof(struct Vmxnet3_RxDesc), false); VMW_CFPRN("RX queue %d:%d: Base: %" PRIx64 ", Size: %d", i, j, pa, size); } /* RXC ring */ pa = VMXNET3_READ_RX_QUEUE_DESCR64(d, qd_pa, conf.compRingBasePA); size = VMXNET3_READ_RX_QUEUE_DESCR32(d, qd_pa, conf.compRingSize); if (size > VMXNET3_RC_RING_MAX_SIZE) { size = VMXNET3_RC_RING_MAX_SIZE; } vmxnet3_ring_init(d, &s->rxq_descr[i].comp_ring, pa, size, sizeof(struct Vmxnet3_RxCompDesc), true); VMW_CFPRN("RXC queue %d: Base: %" PRIx64 ", Size: %d", i, pa, size); s->rxq_descr[i].rx_stats_pa = qd_pa + offsetof(struct Vmxnet3_RxQueueDesc, stats); memset(&s->rxq_descr[i].rxq_stats, 0, sizeof(s->rxq_descr[i].rxq_stats)); } vmxnet3_validate_interrupts(s); /* Make sure everything is in place before device activation */ smp_wmb(); vmxnet3_reset_mac(s); s->device_active = true; } static void vmxnet3_handle_command(VMXNET3State *s, uint64_t cmd) { s->last_command = cmd; switch (cmd) { case VMXNET3_CMD_GET_PERM_MAC_HI: VMW_CBPRN("Set: Get upper part of permanent MAC"); break; case VMXNET3_CMD_GET_PERM_MAC_LO: VMW_CBPRN("Set: Get lower part of permanent MAC"); break; case VMXNET3_CMD_GET_STATS: VMW_CBPRN("Set: Get device statistics"); vmxnet3_fill_stats(s); break; case VMXNET3_CMD_ACTIVATE_DEV: VMW_CBPRN("Set: Activating vmxnet3 device"); vmxnet3_activate_device(s); break; case VMXNET3_CMD_UPDATE_RX_MODE: VMW_CBPRN("Set: Update rx mode"); vmxnet3_update_rx_mode(s); break; case VMXNET3_CMD_UPDATE_VLAN_FILTERS: VMW_CBPRN("Set: Update VLAN filters"); vmxnet3_update_vlan_filters(s); break; case VMXNET3_CMD_UPDATE_MAC_FILTERS: VMW_CBPRN("Set: Update MAC filters"); vmxnet3_update_mcast_filters(s); break; case VMXNET3_CMD_UPDATE_FEATURE: VMW_CBPRN("Set: Update features"); vmxnet3_update_features(s); break; case VMXNET3_CMD_UPDATE_PMCFG: VMW_CBPRN("Set: Update power management config"); vmxnet3_update_pm_state(s); break; case VMXNET3_CMD_GET_LINK: VMW_CBPRN("Set: Get link"); break; case VMXNET3_CMD_RESET_DEV: VMW_CBPRN("Set: Reset device"); vmxnet3_reset(s); break; case VMXNET3_CMD_QUIESCE_DEV: VMW_CBPRN("Set: VMXNET3_CMD_QUIESCE_DEV - deactivate the device"); vmxnet3_deactivate_device(s); break; case VMXNET3_CMD_GET_CONF_INTR: VMW_CBPRN("Set: VMXNET3_CMD_GET_CONF_INTR - interrupt configuration"); break; case VMXNET3_CMD_GET_ADAPTIVE_RING_INFO: VMW_CBPRN("Set: VMXNET3_CMD_GET_ADAPTIVE_RING_INFO - " "adaptive ring info flags"); break; case VMXNET3_CMD_GET_DID_LO: VMW_CBPRN("Set: Get lower part of device ID"); break; case VMXNET3_CMD_GET_DID_HI: VMW_CBPRN("Set: Get upper part of device ID"); break; case VMXNET3_CMD_GET_DEV_EXTRA_INFO: VMW_CBPRN("Set: Get device extra info"); break; default: VMW_CBPRN("Received unknown command: %" PRIx64, cmd); break; } } static uint64_t vmxnet3_get_command_status(VMXNET3State *s) { uint64_t ret; switch (s->last_command) { case VMXNET3_CMD_ACTIVATE_DEV: ret = (s->device_active) ? 0 : 1; VMW_CFPRN("Device active: %" PRIx64, ret); break; case VMXNET3_CMD_RESET_DEV: case VMXNET3_CMD_QUIESCE_DEV: case VMXNET3_CMD_GET_QUEUE_STATUS: case VMXNET3_CMD_GET_DEV_EXTRA_INFO: ret = 0; break; case VMXNET3_CMD_GET_LINK: ret = s->link_status_and_speed; VMW_CFPRN("Link and speed: %" PRIx64, ret); break; case VMXNET3_CMD_GET_PERM_MAC_LO: ret = vmxnet3_get_mac_low(&s->perm_mac); break; case VMXNET3_CMD_GET_PERM_MAC_HI: ret = vmxnet3_get_mac_high(&s->perm_mac); break; case VMXNET3_CMD_GET_CONF_INTR: ret = vmxnet3_get_interrupt_config(s); break; case VMXNET3_CMD_GET_ADAPTIVE_RING_INFO: ret = VMXNET3_DISABLE_ADAPTIVE_RING; break; case VMXNET3_CMD_GET_DID_LO: ret = PCI_DEVICE_ID_VMWARE_VMXNET3; break; case VMXNET3_CMD_GET_DID_HI: ret = VMXNET3_DEVICE_REVISION; break; default: VMW_WRPRN("Received request for unknown command: %x", s->last_command); ret = 0; break; } return ret; } static void vmxnet3_set_events(VMXNET3State *s, uint32_t val) { uint32_t events; PCIDevice *d = PCI_DEVICE(s); VMW_CBPRN("Setting events: 0x%x", val); events = VMXNET3_READ_DRV_SHARED32(d, s->drv_shmem, ecr) | val; VMXNET3_WRITE_DRV_SHARED32(d, s->drv_shmem, ecr, events); } static void vmxnet3_ack_events(VMXNET3State *s, uint32_t val) { PCIDevice *d = PCI_DEVICE(s); uint32_t events; VMW_CBPRN("Clearing events: 0x%x", val); events = VMXNET3_READ_DRV_SHARED32(d, s->drv_shmem, ecr) & ~val; VMXNET3_WRITE_DRV_SHARED32(d, s->drv_shmem, ecr, events); } static void vmxnet3_io_bar1_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { VMXNET3State *s = opaque; switch (addr) { /* Vmxnet3 Revision Report Selection */ case VMXNET3_REG_VRRS: VMW_CBPRN("Write BAR1 [VMXNET3_REG_VRRS] = %" PRIx64 ", size %d", val, size); break; /* UPT Version Report Selection */ case VMXNET3_REG_UVRS: VMW_CBPRN("Write BAR1 [VMXNET3_REG_UVRS] = %" PRIx64 ", size %d", val, size); break; /* Driver Shared Address Low */ case VMXNET3_REG_DSAL: VMW_CBPRN("Write BAR1 [VMXNET3_REG_DSAL] = %" PRIx64 ", size %d", val, size); /* * Guest driver will first write the low part of the shared * memory address. We save it to temp variable and set the * shared address only after we get the high part */ if (val == 0) { vmxnet3_deactivate_device(s); } s->temp_shared_guest_driver_memory = val; s->drv_shmem = 0; break; /* Driver Shared Address High */ case VMXNET3_REG_DSAH: VMW_CBPRN("Write BAR1 [VMXNET3_REG_DSAH] = %" PRIx64 ", size %d", val, size); /* * Set the shared memory between guest driver and device. * We already should have low address part. */ s->drv_shmem = s->temp_shared_guest_driver_memory | (val << 32); break; /* Command */ case VMXNET3_REG_CMD: VMW_CBPRN("Write BAR1 [VMXNET3_REG_CMD] = %" PRIx64 ", size %d", val, size); vmxnet3_handle_command(s, val); break; /* MAC Address Low */ case VMXNET3_REG_MACL: VMW_CBPRN("Write BAR1 [VMXNET3_REG_MACL] = %" PRIx64 ", size %d", val, size); s->temp_mac = val; break; /* MAC Address High */ case VMXNET3_REG_MACH: VMW_CBPRN("Write BAR1 [VMXNET3_REG_MACH] = %" PRIx64 ", size %d", val, size); vmxnet3_set_variable_mac(s, val, s->temp_mac); break; /* Interrupt Cause Register */ case VMXNET3_REG_ICR: VMW_CBPRN("Write BAR1 [VMXNET3_REG_ICR] = %" PRIx64 ", size %d", val, size); qemu_log_mask(LOG_GUEST_ERROR, "%s: write to read-only register VMXNET3_REG_ICR\n", TYPE_VMXNET3); break; /* Event Cause Register */ case VMXNET3_REG_ECR: VMW_CBPRN("Write BAR1 [VMXNET3_REG_ECR] = %" PRIx64 ", size %d", val, size); vmxnet3_ack_events(s, val); break; default: VMW_CBPRN("Unknown Write to BAR1 [%" PRIx64 "] = %" PRIx64 ", size %d", addr, val, size); break; } } static uint64_t vmxnet3_io_bar1_read(void *opaque, hwaddr addr, unsigned size) { VMXNET3State *s = opaque; uint64_t ret = 0; switch (addr) { /* Vmxnet3 Revision Report Selection */ case VMXNET3_REG_VRRS: VMW_CBPRN("Read BAR1 [VMXNET3_REG_VRRS], size %d", size); ret = VMXNET3_DEVICE_REVISION; break; /* UPT Version Report Selection */ case VMXNET3_REG_UVRS: VMW_CBPRN("Read BAR1 [VMXNET3_REG_UVRS], size %d", size); ret = VMXNET3_UPT_REVISION; break; /* Command */ case VMXNET3_REG_CMD: VMW_CBPRN("Read BAR1 [VMXNET3_REG_CMD], size %d", size); ret = vmxnet3_get_command_status(s); break; /* MAC Address Low */ case VMXNET3_REG_MACL: VMW_CBPRN("Read BAR1 [VMXNET3_REG_MACL], size %d", size); ret = vmxnet3_get_mac_low(&s->conf.macaddr); break; /* MAC Address High */ case VMXNET3_REG_MACH: VMW_CBPRN("Read BAR1 [VMXNET3_REG_MACH], size %d", size); ret = vmxnet3_get_mac_high(&s->conf.macaddr); break; /* * Interrupt Cause Register * Used for legacy interrupts only so interrupt index always 0 */ case VMXNET3_REG_ICR: VMW_CBPRN("Read BAR1 [VMXNET3_REG_ICR], size %d", size); if (vmxnet3_interrupt_asserted(s, 0)) { vmxnet3_clear_interrupt(s, 0); ret = true; } else { ret = false; } break; default: VMW_CBPRN("Unknown read BAR1[%" PRIx64 "], %d bytes", addr, size); break; } return ret; } static int vmxnet3_can_receive(NetClientState *nc) { VMXNET3State *s = qemu_get_nic_opaque(nc); return s->device_active && VMXNET_FLAG_IS_SET(s->link_status_and_speed, VMXNET3_LINK_STATUS_UP); } static inline bool vmxnet3_is_registered_vlan(VMXNET3State *s, const void *data) { uint16_t vlan_tag = eth_get_pkt_tci(data) & VLAN_VID_MASK; if (IS_SPECIAL_VLAN_ID(vlan_tag)) { return true; } return VMXNET3_VFTABLE_ENTRY_IS_SET(s->vlan_table, vlan_tag); } static bool vmxnet3_is_allowed_mcast_group(VMXNET3State *s, const uint8_t *group_mac) { int i; for (i = 0; i < s->mcast_list_len; i++) { if (!memcmp(group_mac, s->mcast_list[i].a, sizeof(s->mcast_list[i]))) { return true; } } return false; } static bool vmxnet3_rx_filter_may_indicate(VMXNET3State *s, const void *data, size_t size) { struct eth_header *ehdr = PKT_GET_ETH_HDR(data); if (VMXNET_FLAG_IS_SET(s->rx_mode, VMXNET3_RXM_PROMISC)) { return true; } if (!vmxnet3_is_registered_vlan(s, data)) { return false; } switch (net_rx_pkt_get_packet_type(s->rx_pkt)) { case ETH_PKT_UCAST: if (!VMXNET_FLAG_IS_SET(s->rx_mode, VMXNET3_RXM_UCAST)) { return false; } if (memcmp(s->conf.macaddr.a, ehdr->h_dest, ETH_ALEN)) { return false; } break; case ETH_PKT_BCAST: if (!VMXNET_FLAG_IS_SET(s->rx_mode, VMXNET3_RXM_BCAST)) { return false; } break; case ETH_PKT_MCAST: if (VMXNET_FLAG_IS_SET(s->rx_mode, VMXNET3_RXM_ALL_MULTI)) { return true; } if (!VMXNET_FLAG_IS_SET(s->rx_mode, VMXNET3_RXM_MCAST)) { return false; } if (!vmxnet3_is_allowed_mcast_group(s, ehdr->h_dest)) { return false; } break; default: g_assert_not_reached(); } return true; } static ssize_t vmxnet3_receive(NetClientState *nc, const uint8_t *buf, size_t size) { VMXNET3State *s = qemu_get_nic_opaque(nc); size_t bytes_indicated; if (!vmxnet3_can_receive(nc)) { VMW_PKPRN("Cannot receive now"); return -1; } if (s->peer_has_vhdr) { net_rx_pkt_set_vhdr(s->rx_pkt, (struct virtio_net_hdr *)buf); buf += sizeof(struct virtio_net_hdr); size -= sizeof(struct virtio_net_hdr); } net_rx_pkt_set_packet_type(s->rx_pkt, get_eth_packet_type(PKT_GET_ETH_HDR(buf))); if (vmxnet3_rx_filter_may_indicate(s, buf, size)) { struct iovec iov = { .iov_base = (void *)buf, .iov_len = size }; net_rx_pkt_set_protocols(s->rx_pkt, &iov, 1, 0); vmxnet3_rx_need_csum_calculate(s->rx_pkt, buf, size); net_rx_pkt_attach_data(s->rx_pkt, buf, size, s->rx_vlan_stripping); bytes_indicated = vmxnet3_indicate_packet(s) ? size : -1; if (bytes_indicated < size) { VMW_PKPRN("RX: %zu of %zu bytes indicated", bytes_indicated, size); } } else { VMW_PKPRN("Packet dropped by RX filter"); bytes_indicated = size; } assert(size > 0); assert(bytes_indicated != 0); return bytes_indicated; } static void vmxnet3_set_link_status(NetClientState *nc) { VMXNET3State *s = qemu_get_nic_opaque(nc); if (nc->link_down) { s->link_status_and_speed &= ~VMXNET3_LINK_STATUS_UP; } else { s->link_status_and_speed |= VMXNET3_LINK_STATUS_UP; } vmxnet3_set_events(s, VMXNET3_ECR_LINK); vmxnet3_trigger_interrupt(s, s->event_int_idx); } static NetClientInfo net_vmxnet3_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .receive = vmxnet3_receive, .link_status_changed = vmxnet3_set_link_status, }; static bool vmxnet3_peer_has_vnet_hdr(VMXNET3State *s) { NetClientState *nc = qemu_get_queue(s->nic); if (qemu_has_vnet_hdr(nc->peer)) { return true; } return false; } static void vmxnet3_net_uninit(VMXNET3State *s) { g_free(s->mcast_list); vmxnet3_deactivate_device(s); qemu_del_nic(s->nic); } static void vmxnet3_net_init(VMXNET3State *s) { DeviceState *d = DEVICE(s); VMW_CBPRN("vmxnet3_net_init called..."); qemu_macaddr_default_if_unset(&s->conf.macaddr); /* Windows guest will query the address that was set on init */ memcpy(&s->perm_mac.a, &s->conf.macaddr.a, sizeof(s->perm_mac.a)); s->mcast_list = NULL; s->mcast_list_len = 0; s->link_status_and_speed = VMXNET3_LINK_SPEED | VMXNET3_LINK_STATUS_UP; VMW_CFPRN("Permanent MAC: " MAC_FMT, MAC_ARG(s->perm_mac.a)); s->nic = qemu_new_nic(&net_vmxnet3_info, &s->conf, object_get_typename(OBJECT(s)), d->id, &d->mem_reentrancy_guard, s); s->peer_has_vhdr = vmxnet3_peer_has_vnet_hdr(s); s->tx_sop = true; s->skip_current_tx_pkt = false; s->tx_pkt = NULL; s->rx_pkt = NULL; s->rx_vlan_stripping = false; s->lro_supported = false; if (s->peer_has_vhdr) { qemu_set_vnet_hdr_len(qemu_get_queue(s->nic)->peer, sizeof(struct virtio_net_hdr)); } qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); } static void vmxnet3_unuse_msix_vectors(VMXNET3State *s, int num_vectors) { PCIDevice *d = PCI_DEVICE(s); int i; for (i = 0; i < num_vectors; i++) { msix_vector_unuse(d, i); } } static void vmxnet3_use_msix_vectors(VMXNET3State *s, int num_vectors) { PCIDevice *d = PCI_DEVICE(s); int i; for (i = 0; i < num_vectors; i++) { msix_vector_use(d, i); } } static bool vmxnet3_init_msix(VMXNET3State *s) { PCIDevice *d = PCI_DEVICE(s); int res = msix_init(d, VMXNET3_MAX_INTRS, &s->msix_bar, VMXNET3_MSIX_BAR_IDX, VMXNET3_OFF_MSIX_TABLE, &s->msix_bar, VMXNET3_MSIX_BAR_IDX, VMXNET3_OFF_MSIX_PBA(s), VMXNET3_MSIX_OFFSET(s), NULL); if (0 > res) { VMW_WRPRN("Failed to initialize MSI-X, error %d", res); s->msix_used = false; } else { vmxnet3_use_msix_vectors(s, VMXNET3_MAX_INTRS); s->msix_used = true; } return s->msix_used; } static void vmxnet3_cleanup_msix(VMXNET3State *s) { PCIDevice *d = PCI_DEVICE(s); if (s->msix_used) { vmxnet3_unuse_msix_vectors(s, VMXNET3_MAX_INTRS); msix_uninit(d, &s->msix_bar, &s->msix_bar); } } static void vmxnet3_cleanup_msi(VMXNET3State *s) { PCIDevice *d = PCI_DEVICE(s); msi_uninit(d); } static const MemoryRegionOps b0_ops = { .read = vmxnet3_io_bar0_read, .write = vmxnet3_io_bar0_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static const MemoryRegionOps b1_ops = { .read = vmxnet3_io_bar1_read, .write = vmxnet3_io_bar1_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static uint64_t vmxnet3_device_serial_num(VMXNET3State *s) { uint64_t dsn_payload; uint8_t *dsnp = (uint8_t *)&dsn_payload; dsnp[0] = 0xfe; dsnp[1] = s->conf.macaddr.a[3]; dsnp[2] = s->conf.macaddr.a[4]; dsnp[3] = s->conf.macaddr.a[5]; dsnp[4] = s->conf.macaddr.a[0]; dsnp[5] = s->conf.macaddr.a[1]; dsnp[6] = s->conf.macaddr.a[2]; dsnp[7] = 0xff; return dsn_payload; } #define VMXNET3_USE_64BIT (true) #define VMXNET3_PER_VECTOR_MASK (false) static void vmxnet3_pci_realize(PCIDevice *pci_dev, Error **errp) { VMXNET3State *s = VMXNET3(pci_dev); int ret; VMW_CBPRN("Starting init..."); memory_region_init_io(&s->bar0, OBJECT(s), &b0_ops, s, "vmxnet3-b0", VMXNET3_PT_REG_SIZE); pci_register_bar(pci_dev, VMXNET3_BAR0_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0); memory_region_init_io(&s->bar1, OBJECT(s), &b1_ops, s, "vmxnet3-b1", VMXNET3_VD_REG_SIZE); pci_register_bar(pci_dev, VMXNET3_BAR1_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar1); memory_region_init(&s->msix_bar, OBJECT(s), "vmxnet3-msix-bar", VMXNET3_MSIX_BAR_SIZE); pci_register_bar(pci_dev, VMXNET3_MSIX_BAR_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->msix_bar); vmxnet3_reset_interrupt_states(s); /* Interrupt pin A */ pci_dev->config[PCI_INTERRUPT_PIN] = 0x01; ret = msi_init(pci_dev, VMXNET3_MSI_OFFSET(s), VMXNET3_MAX_NMSIX_INTRS, VMXNET3_USE_64BIT, VMXNET3_PER_VECTOR_MASK, NULL); /* Any error other than -ENOTSUP(board's MSI support is broken) * is a programming error. Fall back to INTx silently on -ENOTSUP */ assert(!ret || ret == -ENOTSUP); if (!vmxnet3_init_msix(s)) { VMW_WRPRN("Failed to initialize MSI-X, configuration is inconsistent."); } vmxnet3_net_init(s); if (pci_is_express(pci_dev)) { if (pci_bus_is_express(pci_get_bus(pci_dev))) { pcie_endpoint_cap_init(pci_dev, VMXNET3_EXP_EP_OFFSET); } pcie_dev_ser_num_init(pci_dev, VMXNET3_DSN_OFFSET, vmxnet3_device_serial_num(s)); } } static void vmxnet3_instance_init(Object *obj) { VMXNET3State *s = VMXNET3(obj); device_add_bootindex_property(obj, &s->conf.bootindex, "bootindex", "/ethernet-phy@0", DEVICE(obj)); } static void vmxnet3_pci_uninit(PCIDevice *pci_dev) { VMXNET3State *s = VMXNET3(pci_dev); VMW_CBPRN("Starting uninit..."); vmxnet3_net_uninit(s); vmxnet3_cleanup_msix(s); vmxnet3_cleanup_msi(s); } static void vmxnet3_qdev_reset(DeviceState *dev) { PCIDevice *d = PCI_DEVICE(dev); VMXNET3State *s = VMXNET3(d); VMW_CBPRN("Starting QDEV reset..."); vmxnet3_reset(s); } static bool vmxnet3_mc_list_needed(void *opaque) { return true; } static int vmxnet3_mcast_list_pre_load(void *opaque) { VMXNET3State *s = opaque; s->mcast_list = g_malloc(s->mcast_list_buff_size); return 0; } static int vmxnet3_pre_save(void *opaque) { VMXNET3State *s = opaque; s->mcast_list_buff_size = s->mcast_list_len * sizeof(MACAddr); return 0; } static const VMStateDescription vmxstate_vmxnet3_mcast_list = { .name = "vmxnet3/mcast_list", .version_id = 1, .minimum_version_id = 1, .pre_load = vmxnet3_mcast_list_pre_load, .needed = vmxnet3_mc_list_needed, .fields = (const VMStateField[]) { VMSTATE_VBUFFER_UINT32(mcast_list, VMXNET3State, 0, NULL, mcast_list_buff_size), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_vmxnet3_ring = { .name = "vmxnet3-ring", .version_id = 0, .fields = (const VMStateField[]) { VMSTATE_UINT64(pa, Vmxnet3Ring), VMSTATE_UINT32(size, Vmxnet3Ring), VMSTATE_UINT32(cell_size, Vmxnet3Ring), VMSTATE_UINT32(next, Vmxnet3Ring), VMSTATE_UINT8(gen, Vmxnet3Ring), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_vmxnet3_tx_stats = { .name = "vmxnet3-tx-stats", .version_id = 0, .fields = (const VMStateField[]) { VMSTATE_UINT64(TSOPktsTxOK, struct UPT1_TxStats), VMSTATE_UINT64(TSOBytesTxOK, struct UPT1_TxStats), VMSTATE_UINT64(ucastPktsTxOK, struct UPT1_TxStats), VMSTATE_UINT64(ucastBytesTxOK, struct UPT1_TxStats), VMSTATE_UINT64(mcastPktsTxOK, struct UPT1_TxStats), VMSTATE_UINT64(mcastBytesTxOK, struct UPT1_TxStats), VMSTATE_UINT64(bcastPktsTxOK, struct UPT1_TxStats), VMSTATE_UINT64(bcastBytesTxOK, struct UPT1_TxStats), VMSTATE_UINT64(pktsTxError, struct UPT1_TxStats), VMSTATE_UINT64(pktsTxDiscard, struct UPT1_TxStats), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_vmxnet3_txq_descr = { .name = "vmxnet3-txq-descr", .version_id = 0, .fields = (const VMStateField[]) { VMSTATE_STRUCT(tx_ring, Vmxnet3TxqDescr, 0, vmstate_vmxnet3_ring, Vmxnet3Ring), VMSTATE_STRUCT(comp_ring, Vmxnet3TxqDescr, 0, vmstate_vmxnet3_ring, Vmxnet3Ring), VMSTATE_UINT8(intr_idx, Vmxnet3TxqDescr), VMSTATE_UINT64(tx_stats_pa, Vmxnet3TxqDescr), VMSTATE_STRUCT(txq_stats, Vmxnet3TxqDescr, 0, vmstate_vmxnet3_tx_stats, struct UPT1_TxStats), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_vmxnet3_rx_stats = { .name = "vmxnet3-rx-stats", .version_id = 0, .fields = (const VMStateField[]) { VMSTATE_UINT64(LROPktsRxOK, struct UPT1_RxStats), VMSTATE_UINT64(LROBytesRxOK, struct UPT1_RxStats), VMSTATE_UINT64(ucastPktsRxOK, struct UPT1_RxStats), VMSTATE_UINT64(ucastBytesRxOK, struct UPT1_RxStats), VMSTATE_UINT64(mcastPktsRxOK, struct UPT1_RxStats), VMSTATE_UINT64(mcastBytesRxOK, struct UPT1_RxStats), VMSTATE_UINT64(bcastPktsRxOK, struct UPT1_RxStats), VMSTATE_UINT64(bcastBytesRxOK, struct UPT1_RxStats), VMSTATE_UINT64(pktsRxOutOfBuf, struct UPT1_RxStats), VMSTATE_UINT64(pktsRxError, struct UPT1_RxStats), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_vmxnet3_rxq_descr = { .name = "vmxnet3-rxq-descr", .version_id = 0, .fields = (const VMStateField[]) { VMSTATE_STRUCT_ARRAY(rx_ring, Vmxnet3RxqDescr, VMXNET3_RX_RINGS_PER_QUEUE, 0, vmstate_vmxnet3_ring, Vmxnet3Ring), VMSTATE_STRUCT(comp_ring, Vmxnet3RxqDescr, 0, vmstate_vmxnet3_ring, Vmxnet3Ring), VMSTATE_UINT8(intr_idx, Vmxnet3RxqDescr), VMSTATE_UINT64(rx_stats_pa, Vmxnet3RxqDescr), VMSTATE_STRUCT(rxq_stats, Vmxnet3RxqDescr, 0, vmstate_vmxnet3_rx_stats, struct UPT1_RxStats), VMSTATE_END_OF_LIST() } }; static int vmxnet3_post_load(void *opaque, int version_id) { VMXNET3State *s = opaque; net_tx_pkt_init(&s->tx_pkt, s->max_tx_frags); net_rx_pkt_init(&s->rx_pkt); if (s->msix_used) { vmxnet3_use_msix_vectors(s, VMXNET3_MAX_INTRS); } if (!vmxnet3_validate_queues(s)) { return -1; } vmxnet3_validate_interrupts(s); return 0; } static const VMStateDescription vmstate_vmxnet3_int_state = { .name = "vmxnet3-int-state", .version_id = 0, .fields = (const VMStateField[]) { VMSTATE_BOOL(is_masked, Vmxnet3IntState), VMSTATE_BOOL(is_pending, Vmxnet3IntState), VMSTATE_BOOL(is_asserted, Vmxnet3IntState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_vmxnet3 = { .name = "vmxnet3", .version_id = 1, .minimum_version_id = 1, .pre_save = vmxnet3_pre_save, .post_load = vmxnet3_post_load, .fields = (const VMStateField[]) { VMSTATE_PCI_DEVICE(parent_obj, VMXNET3State), VMSTATE_MSIX(parent_obj, VMXNET3State), VMSTATE_BOOL(rx_packets_compound, VMXNET3State), VMSTATE_BOOL(rx_vlan_stripping, VMXNET3State), VMSTATE_BOOL(lro_supported, VMXNET3State), VMSTATE_UINT32(rx_mode, VMXNET3State), VMSTATE_UINT32(mcast_list_len, VMXNET3State), VMSTATE_UINT32(mcast_list_buff_size, VMXNET3State), VMSTATE_UINT32_ARRAY(vlan_table, VMXNET3State, VMXNET3_VFT_SIZE), VMSTATE_UINT32(mtu, VMXNET3State), VMSTATE_UINT16(max_rx_frags, VMXNET3State), VMSTATE_UINT32(max_tx_frags, VMXNET3State), VMSTATE_UINT8(event_int_idx, VMXNET3State), VMSTATE_BOOL(auto_int_masking, VMXNET3State), VMSTATE_UINT8(txq_num, VMXNET3State), VMSTATE_UINT8(rxq_num, VMXNET3State), VMSTATE_UINT32(device_active, VMXNET3State), VMSTATE_UINT32(last_command, VMXNET3State), VMSTATE_UINT32(link_status_and_speed, VMXNET3State), VMSTATE_UINT32(temp_mac, VMXNET3State), VMSTATE_UINT64(drv_shmem, VMXNET3State), VMSTATE_UINT64(temp_shared_guest_driver_memory, VMXNET3State), VMSTATE_STRUCT_ARRAY(txq_descr, VMXNET3State, VMXNET3_DEVICE_MAX_TX_QUEUES, 0, vmstate_vmxnet3_txq_descr, Vmxnet3TxqDescr), VMSTATE_STRUCT_ARRAY(rxq_descr, VMXNET3State, VMXNET3_DEVICE_MAX_RX_QUEUES, 0, vmstate_vmxnet3_rxq_descr, Vmxnet3RxqDescr), VMSTATE_STRUCT_ARRAY(interrupt_states, VMXNET3State, VMXNET3_MAX_INTRS, 0, vmstate_vmxnet3_int_state, Vmxnet3IntState), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription * const []) { &vmxstate_vmxnet3_mcast_list, NULL } }; static Property vmxnet3_properties[] = { DEFINE_NIC_PROPERTIES(VMXNET3State, conf), DEFINE_PROP_BIT("x-old-msi-offsets", VMXNET3State, compat_flags, VMXNET3_COMPAT_FLAG_OLD_MSI_OFFSETS_BIT, false), DEFINE_PROP_BIT("x-disable-pcie", VMXNET3State, compat_flags, VMXNET3_COMPAT_FLAG_DISABLE_PCIE_BIT, false), DEFINE_PROP_END_OF_LIST(), }; static void vmxnet3_realize(DeviceState *qdev, Error **errp) { VMXNET3Class *vc = VMXNET3_DEVICE_GET_CLASS(qdev); PCIDevice *pci_dev = PCI_DEVICE(qdev); VMXNET3State *s = VMXNET3(qdev); if (!(s->compat_flags & VMXNET3_COMPAT_FLAG_DISABLE_PCIE)) { pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS; } vc->parent_dc_realize(qdev, errp); } static void vmxnet3_class_init(ObjectClass *class, void *data) { DeviceClass *dc = DEVICE_CLASS(class); PCIDeviceClass *c = PCI_DEVICE_CLASS(class); VMXNET3Class *vc = VMXNET3_DEVICE_CLASS(class); c->realize = vmxnet3_pci_realize; c->exit = vmxnet3_pci_uninit; c->vendor_id = PCI_VENDOR_ID_VMWARE; c->device_id = PCI_DEVICE_ID_VMWARE_VMXNET3; c->revision = PCI_DEVICE_ID_VMWARE_VMXNET3_REVISION; c->romfile = "efi-vmxnet3.rom"; c->class_id = PCI_CLASS_NETWORK_ETHERNET; c->subsystem_vendor_id = PCI_VENDOR_ID_VMWARE; c->subsystem_id = PCI_DEVICE_ID_VMWARE_VMXNET3; device_class_set_parent_realize(dc, vmxnet3_realize, &vc->parent_dc_realize); dc->desc = "VMWare Paravirtualized Ethernet v3"; device_class_set_legacy_reset(dc, vmxnet3_qdev_reset); dc->vmsd = &vmstate_vmxnet3; device_class_set_props(dc, vmxnet3_properties); set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); } static const TypeInfo vmxnet3_info = { .name = TYPE_VMXNET3, .parent = TYPE_PCI_DEVICE, .class_size = sizeof(VMXNET3Class), .instance_size = sizeof(VMXNET3State), .class_init = vmxnet3_class_init, .instance_init = vmxnet3_instance_init, .interfaces = (InterfaceInfo[]) { { INTERFACE_PCIE_DEVICE }, { INTERFACE_CONVENTIONAL_PCI_DEVICE }, { } }, }; static void vmxnet3_register_types(void) { VMW_CBPRN("vmxnet3_register_types called..."); type_register_static(&vmxnet3_info); } type_init(vmxnet3_register_types)