/* * Luminary Micro Stellaris Ethernet Controller * * Copyright (c) 2007 CodeSourcery. * Written by Paul Brook * * This code is licensed under the GPL. */ #include "qemu/osdep.h" #include "hw/irq.h" #include "hw/qdev-properties.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "net/net.h" #include "qemu/log.h" #include "qemu/module.h" #include #include "qom/object.h" //#define DEBUG_STELLARIS_ENET 1 #ifdef DEBUG_STELLARIS_ENET #define DPRINTF(fmt, ...) \ do { printf("stellaris_enet: " fmt , ## __VA_ARGS__); } while (0) #define BADF(fmt, ...) \ do { fprintf(stderr, "stellaris_enet: error: " fmt , ## __VA_ARGS__); exit(1);} while (0) #else #define DPRINTF(fmt, ...) do {} while(0) #define BADF(fmt, ...) \ do { fprintf(stderr, "stellaris_enet: error: " fmt , ## __VA_ARGS__);} while (0) #endif #define SE_INT_RX 0x01 #define SE_INT_TXER 0x02 #define SE_INT_TXEMP 0x04 #define SE_INT_FOV 0x08 #define SE_INT_RXER 0x10 #define SE_INT_MD 0x20 #define SE_INT_PHY 0x40 #define SE_RCTL_RXEN 0x01 #define SE_RCTL_AMUL 0x02 #define SE_RCTL_PRMS 0x04 #define SE_RCTL_BADCRC 0x08 #define SE_RCTL_RSTFIFO 0x10 #define SE_TCTL_TXEN 0x01 #define SE_TCTL_PADEN 0x02 #define SE_TCTL_CRC 0x04 #define SE_TCTL_DUPLEX 0x08 #define TYPE_STELLARIS_ENET "stellaris_enet" OBJECT_DECLARE_SIMPLE_TYPE(stellaris_enet_state, STELLARIS_ENET) typedef struct { uint8_t data[2048]; uint32_t len; } StellarisEnetRxFrame; struct stellaris_enet_state { SysBusDevice parent_obj; uint32_t ris; uint32_t im; uint32_t rctl; uint32_t tctl; uint32_t thr; uint32_t mctl; uint32_t mdv; uint32_t mtxd; uint32_t mrxd; uint32_t np; uint32_t tx_fifo_len; uint8_t tx_fifo[2048]; /* Real hardware has a 2k fifo, which works out to be at most 31 packets. We implement a full 31 packet fifo. */ StellarisEnetRxFrame rx[31]; uint32_t rx_fifo_offset; uint32_t next_packet; NICState *nic; NICConf conf; qemu_irq irq; MemoryRegion mmio; }; static const VMStateDescription vmstate_rx_frame = { .name = "stellaris_enet/rx_frame", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT8_ARRAY(data, StellarisEnetRxFrame, 2048), VMSTATE_UINT32(len, StellarisEnetRxFrame), VMSTATE_END_OF_LIST() } }; static int stellaris_enet_post_load(void *opaque, int version_id) { stellaris_enet_state *s = opaque; int i; /* Sanitize inbound state. Note that next_packet is an index but * np is a size; hence their valid upper bounds differ. */ if (s->next_packet >= ARRAY_SIZE(s->rx)) { return -1; } if (s->np > ARRAY_SIZE(s->rx)) { return -1; } for (i = 0; i < ARRAY_SIZE(s->rx); i++) { if (s->rx[i].len > ARRAY_SIZE(s->rx[i].data)) { return -1; } } if (s->rx_fifo_offset > ARRAY_SIZE(s->rx[0].data) - 4) { return -1; } if (s->tx_fifo_len > ARRAY_SIZE(s->tx_fifo)) { return -1; } return 0; } static const VMStateDescription vmstate_stellaris_enet = { .name = "stellaris_enet", .version_id = 2, .minimum_version_id = 2, .post_load = stellaris_enet_post_load, .fields = (const VMStateField[]) { VMSTATE_UINT32(ris, stellaris_enet_state), VMSTATE_UINT32(im, stellaris_enet_state), VMSTATE_UINT32(rctl, stellaris_enet_state), VMSTATE_UINT32(tctl, stellaris_enet_state), VMSTATE_UINT32(thr, stellaris_enet_state), VMSTATE_UINT32(mctl, stellaris_enet_state), VMSTATE_UINT32(mdv, stellaris_enet_state), VMSTATE_UINT32(mtxd, stellaris_enet_state), VMSTATE_UINT32(mrxd, stellaris_enet_state), VMSTATE_UINT32(np, stellaris_enet_state), VMSTATE_UINT32(tx_fifo_len, stellaris_enet_state), VMSTATE_UINT8_ARRAY(tx_fifo, stellaris_enet_state, 2048), VMSTATE_STRUCT_ARRAY(rx, stellaris_enet_state, 31, 1, vmstate_rx_frame, StellarisEnetRxFrame), VMSTATE_UINT32(rx_fifo_offset, stellaris_enet_state), VMSTATE_UINT32(next_packet, stellaris_enet_state), VMSTATE_END_OF_LIST() } }; static void stellaris_enet_update(stellaris_enet_state *s) { qemu_set_irq(s->irq, (s->ris & s->im) != 0); } /* Return the data length of the packet currently being assembled * in the TX fifo. */ static inline int stellaris_txpacket_datalen(stellaris_enet_state *s) { return s->tx_fifo[0] | (s->tx_fifo[1] << 8); } /* Return true if the packet currently in the TX FIFO is complete, * ie the FIFO holds enough bytes for the data length, ethernet header, * payload and optionally CRC. */ static inline bool stellaris_txpacket_complete(stellaris_enet_state *s) { int framelen = stellaris_txpacket_datalen(s); framelen += 16; if (!(s->tctl & SE_TCTL_CRC)) { framelen += 4; } /* Cover the corner case of a 2032 byte payload with auto-CRC disabled: * this requires more bytes than will fit in the FIFO. It's not totally * clear how the h/w handles this, but if using threshold-based TX * it will definitely try to transmit something. */ framelen = MIN(framelen, ARRAY_SIZE(s->tx_fifo)); return s->tx_fifo_len >= framelen; } /* Return true if the TX FIFO threshold is enabled and the FIFO * has filled enough to reach it. */ static inline bool stellaris_tx_thr_reached(stellaris_enet_state *s) { return (s->thr < 0x3f && (s->tx_fifo_len >= 4 * (s->thr * 8 + 1))); } /* Send the packet currently in the TX FIFO */ static void stellaris_enet_send(stellaris_enet_state *s) { int framelen = stellaris_txpacket_datalen(s); /* Ethernet header is in the FIFO but not in the datacount. * We don't implement explicit CRC, so just ignore any * CRC value in the FIFO. */ framelen += 14; if ((s->tctl & SE_TCTL_PADEN) && framelen < 60) { memset(&s->tx_fifo[framelen + 2], 0, 60 - framelen); framelen = 60; } /* This MIN will have no effect unless the FIFO data is corrupt * (eg bad data from an incoming migration); otherwise the check * on the datalen at the start of writing the data into the FIFO * will have caught this. Silently write a corrupt half-packet, * which is what the hardware does in FIFO underrun situations. */ framelen = MIN(framelen, ARRAY_SIZE(s->tx_fifo) - 2); qemu_send_packet(qemu_get_queue(s->nic), s->tx_fifo + 2, framelen); s->tx_fifo_len = 0; s->ris |= SE_INT_TXEMP; stellaris_enet_update(s); DPRINTF("Done TX\n"); } /* TODO: Implement MAC address filtering. */ static ssize_t stellaris_enet_receive(NetClientState *nc, const uint8_t *buf, size_t size) { stellaris_enet_state *s = qemu_get_nic_opaque(nc); int n; uint8_t *p; uint32_t crc; if ((s->rctl & SE_RCTL_RXEN) == 0) return -1; if (s->np >= 31) { return 0; } DPRINTF("Received packet len=%zu\n", size); n = s->next_packet + s->np; if (n >= 31) n -= 31; if (size >= sizeof(s->rx[n].data) - 6) { /* If the packet won't fit into the * emulated 2K RAM, this is reported * as a FIFO overrun error. */ s->ris |= SE_INT_FOV; stellaris_enet_update(s); return -1; } s->np++; s->rx[n].len = size + 6; p = s->rx[n].data; *(p++) = (size + 6); *(p++) = (size + 6) >> 8; memcpy (p, buf, size); p += size; crc = crc32(~0, buf, size); *(p++) = crc; *(p++) = crc >> 8; *(p++) = crc >> 16; *(p++) = crc >> 24; /* Clear the remaining bytes in the last word. */ if ((size & 3) != 2) { memset(p, 0, (6 - size) & 3); } s->ris |= SE_INT_RX; stellaris_enet_update(s); return size; } static int stellaris_enet_can_receive(stellaris_enet_state *s) { return (s->np < 31); } static uint64_t stellaris_enet_read(void *opaque, hwaddr offset, unsigned size) { stellaris_enet_state *s = (stellaris_enet_state *)opaque; uint32_t val; switch (offset) { case 0x00: /* RIS */ DPRINTF("IRQ status %02x\n", s->ris); return s->ris; case 0x04: /* IM */ return s->im; case 0x08: /* RCTL */ return s->rctl; case 0x0c: /* TCTL */ return s->tctl; case 0x10: /* DATA */ { uint8_t *rx_fifo; if (s->np == 0) { BADF("RX underflow\n"); return 0; } rx_fifo = s->rx[s->next_packet].data + s->rx_fifo_offset; val = rx_fifo[0] | (rx_fifo[1] << 8) | (rx_fifo[2] << 16) | (rx_fifo[3] << 24); s->rx_fifo_offset += 4; if (s->rx_fifo_offset >= s->rx[s->next_packet].len) { s->rx_fifo_offset = 0; s->next_packet++; if (s->next_packet >= 31) s->next_packet = 0; s->np--; DPRINTF("RX done np=%d\n", s->np); if (!s->np && stellaris_enet_can_receive(s)) { qemu_flush_queued_packets(qemu_get_queue(s->nic)); } } return val; } case 0x14: /* IA0 */ return s->conf.macaddr.a[0] | (s->conf.macaddr.a[1] << 8) | (s->conf.macaddr.a[2] << 16) | ((uint32_t)s->conf.macaddr.a[3] << 24); case 0x18: /* IA1 */ return s->conf.macaddr.a[4] | (s->conf.macaddr.a[5] << 8); case 0x1c: /* THR */ return s->thr; case 0x20: /* MCTL */ return s->mctl; case 0x24: /* MDV */ return s->mdv; case 0x28: /* MADD */ return 0; case 0x2c: /* MTXD */ return s->mtxd; case 0x30: /* MRXD */ return s->mrxd; case 0x34: /* NP */ return s->np; case 0x38: /* TR */ return 0; case 0x3c: /* Undocumented: Timestamp? */ return 0; default: qemu_log_mask(LOG_GUEST_ERROR, "stellaris_enet_rd%d: Illegal register" " 0x02%" HWADDR_PRIx "\n", size * 8, offset); return 0; } } static void stellaris_enet_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { stellaris_enet_state *s = (stellaris_enet_state *)opaque; switch (offset) { case 0x00: /* IACK */ s->ris &= ~value; DPRINTF("IRQ ack %02" PRIx64 "/%02x\n", value, s->ris); stellaris_enet_update(s); /* Clearing TXER also resets the TX fifo. */ if (value & SE_INT_TXER) { s->tx_fifo_len = 0; } break; case 0x04: /* IM */ DPRINTF("IRQ mask %02" PRIx64 "/%02x\n", value, s->ris); s->im = value; stellaris_enet_update(s); break; case 0x08: /* RCTL */ s->rctl = value; if (value & SE_RCTL_RSTFIFO) { s->np = 0; s->rx_fifo_offset = 0; stellaris_enet_update(s); } break; case 0x0c: /* TCTL */ s->tctl = value; break; case 0x10: /* DATA */ if (s->tx_fifo_len == 0) { /* The first word is special, it contains the data length */ int framelen = value & 0xffff; if (framelen > 2032) { DPRINTF("TX frame too long (%d)\n", framelen); s->ris |= SE_INT_TXER; stellaris_enet_update(s); break; } } if (s->tx_fifo_len + 4 <= ARRAY_SIZE(s->tx_fifo)) { s->tx_fifo[s->tx_fifo_len++] = value; s->tx_fifo[s->tx_fifo_len++] = value >> 8; s->tx_fifo[s->tx_fifo_len++] = value >> 16; s->tx_fifo[s->tx_fifo_len++] = value >> 24; } if (stellaris_tx_thr_reached(s) && stellaris_txpacket_complete(s)) { stellaris_enet_send(s); } break; case 0x14: /* IA0 */ s->conf.macaddr.a[0] = value; s->conf.macaddr.a[1] = value >> 8; s->conf.macaddr.a[2] = value >> 16; s->conf.macaddr.a[3] = value >> 24; break; case 0x18: /* IA1 */ s->conf.macaddr.a[4] = value; s->conf.macaddr.a[5] = value >> 8; break; case 0x1c: /* THR */ s->thr = value; break; case 0x20: /* MCTL */ /* TODO: MII registers aren't modelled. * Clear START, indicating that the operation completes immediately. */ s->mctl = value & ~1; break; case 0x24: /* MDV */ s->mdv = value; break; case 0x28: /* MADD */ /* ignored. */ break; case 0x2c: /* MTXD */ s->mtxd = value & 0xff; break; case 0x38: /* TR */ if (value & 1) { stellaris_enet_send(s); } break; case 0x30: /* MRXD */ case 0x34: /* NP */ /* Ignored. */ case 0x3c: /* Undocuented: Timestamp? */ /* Ignored. */ break; default: qemu_log_mask(LOG_GUEST_ERROR, "stellaris_enet_wr%d: Illegal register " "0x02%" HWADDR_PRIx " = 0x%" PRIx64 "\n", size * 8, offset, value); } } static const MemoryRegionOps stellaris_enet_ops = { .read = stellaris_enet_read, .write = stellaris_enet_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void stellaris_enet_reset(DeviceState *dev) { stellaris_enet_state *s = STELLARIS_ENET(dev); s->mdv = 0x80; s->rctl = SE_RCTL_BADCRC; s->im = SE_INT_PHY | SE_INT_MD | SE_INT_RXER | SE_INT_FOV | SE_INT_TXEMP | SE_INT_TXER | SE_INT_RX; s->thr = 0x3f; s->tx_fifo_len = 0; } static NetClientInfo net_stellaris_enet_info = { .type = NET_CLIENT_DRIVER_NIC, .size = sizeof(NICState), .receive = stellaris_enet_receive, }; static void stellaris_enet_realize(DeviceState *dev, Error **errp) { SysBusDevice *sbd = SYS_BUS_DEVICE(dev); stellaris_enet_state *s = STELLARIS_ENET(dev); memory_region_init_io(&s->mmio, OBJECT(s), &stellaris_enet_ops, s, "stellaris_enet", 0x1000); sysbus_init_mmio(sbd, &s->mmio); sysbus_init_irq(sbd, &s->irq); qemu_macaddr_default_if_unset(&s->conf.macaddr); s->nic = qemu_new_nic(&net_stellaris_enet_info, &s->conf, object_get_typename(OBJECT(dev)), dev->id, &dev->mem_reentrancy_guard, s); qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); } static Property stellaris_enet_properties[] = { DEFINE_NIC_PROPERTIES(stellaris_enet_state, conf), DEFINE_PROP_END_OF_LIST(), }; static void stellaris_enet_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = stellaris_enet_realize; device_class_set_legacy_reset(dc, stellaris_enet_reset); device_class_set_props(dc, stellaris_enet_properties); dc->vmsd = &vmstate_stellaris_enet; } static const TypeInfo stellaris_enet_info = { .name = TYPE_STELLARIS_ENET, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(stellaris_enet_state), .class_init = stellaris_enet_class_init, }; static void stellaris_enet_register_types(void) { type_register_static(&stellaris_enet_info); } type_init(stellaris_enet_register_types)