/** * QEMU RTL8139 emulation * * Copyright (c) 2006 Igor Kovalenko * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * Modifications: * 2006-Jan-28 Mark Malakanov : TSAD and CSCR implementation (for Windows driver) * * 2006-Apr-28 Juergen Lock : EEPROM emulation changes for FreeBSD driver * HW revision ID changes for FreeBSD driver * * 2006-Jul-01 Igor Kovalenko : Implemented loopback mode for FreeBSD driver * Corrected packet transfer reassembly routine for 8139C+ mode * Rearranged debugging print statements * Implemented PCI timer interrupt (disabled by default) * Implemented Tally Counters, increased VM load/save version * Implemented IP/TCP/UDP checksum task offloading * * 2006-Jul-04 Igor Kovalenko : Implemented TCP segmentation offloading * Fixed MTU=1500 for produced ethernet frames * * 2006-Jul-09 Igor Kovalenko : Fixed TCP header length calculation while processing * segmentation offloading * Removed slirp.h dependency * Added rx/tx buffer reset when enabling rx/tx operation * * 2010-Feb-04 Frediano Ziglio: Rewrote timer support using QEMU timer only * when strictly needed (required for * Darwin) * 2011-Mar-22 Benjamin Poirier: Implemented VLAN offloading */ /* For crc32 */ #include "qemu/osdep.h" #include <zlib.h> #include "hw/hw.h" #include "hw/pci/pci.h" #include "sysemu/dma.h" #include "qemu/timer.h" #include "net/net.h" #include "net/eth.h" #include "hw/loader.h" #include "sysemu/sysemu.h" #include "qemu/iov.h" /* debug RTL8139 card */ //#define DEBUG_RTL8139 1 #define PCI_PERIOD 30 /* 30 ns period = 33.333333 Mhz frequency */ #define SET_MASKED(input, mask, curr) \ ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) ) /* arg % size for size which is a power of 2 */ #define MOD2(input, size) \ ( ( input ) & ( size - 1 ) ) #define ETHER_TYPE_LEN 2 #define ETH_MTU 1500 #define VLAN_TCI_LEN 2 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN) #if defined (DEBUG_RTL8139) # define DPRINTF(fmt, ...) \ do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0) #else static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...) { return 0; } #endif #define TYPE_RTL8139 "rtl8139" #define RTL8139(obj) \ OBJECT_CHECK(RTL8139State, (obj), TYPE_RTL8139) /* Symbolic offsets to registers. */ enum RTL8139_registers { MAC0 = 0, /* Ethernet hardware address. */ MAR0 = 8, /* Multicast filter. */ TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */ /* Dump Tally Conter control register(64bit). C+ mode only */ TxAddr0 = 0x20, /* Tx descriptors (also four 32bit). */ RxBuf = 0x30, ChipCmd = 0x37, RxBufPtr = 0x38, RxBufAddr = 0x3A, IntrMask = 0x3C, IntrStatus = 0x3E, TxConfig = 0x40, RxConfig = 0x44, Timer = 0x48, /* A general-purpose counter. */ RxMissed = 0x4C, /* 24 bits valid, write clears. */ Cfg9346 = 0x50, Config0 = 0x51, Config1 = 0x52, FlashReg = 0x54, MediaStatus = 0x58, Config3 = 0x59, Config4 = 0x5A, /* absent on RTL-8139A */ HltClk = 0x5B, MultiIntr = 0x5C, PCIRevisionID = 0x5E, TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/ BasicModeCtrl = 0x62, BasicModeStatus = 0x64, NWayAdvert = 0x66, NWayLPAR = 0x68, NWayExpansion = 0x6A, /* Undocumented registers, but required for proper operation. */ FIFOTMS = 0x70, /* FIFO Control and test. */ CSCR = 0x74, /* Chip Status and Configuration Register. */ PARA78 = 0x78, PARA7c = 0x7c, /* Magic transceiver parameter register. */ Config5 = 0xD8, /* absent on RTL-8139A */ /* C+ mode */ TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */ RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */ CpCmd = 0xE0, /* C+ Command register (C+ mode only) */ IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */ RxRingAddrLO = 0xE4, /* 64-bit start addr of Rx ring */ RxRingAddrHI = 0xE8, /* 64-bit start addr of Rx ring */ TxThresh = 0xEC, /* Early Tx threshold */ }; enum ClearBitMasks { MultiIntrClear = 0xF000, ChipCmdClear = 0xE2, Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1), }; enum ChipCmdBits { CmdReset = 0x10, CmdRxEnb = 0x08, CmdTxEnb = 0x04, RxBufEmpty = 0x01, }; /* C+ mode */ enum CplusCmdBits { CPlusRxVLAN = 0x0040, /* enable receive VLAN detagging */ CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */ CPlusRxEnb = 0x0002, CPlusTxEnb = 0x0001, }; /* Interrupt register bits, using my own meaningful names. */ enum IntrStatusBits { PCIErr = 0x8000, PCSTimeout = 0x4000, RxFIFOOver = 0x40, RxUnderrun = 0x20, /* Packet Underrun / Link Change */ RxOverflow = 0x10, TxErr = 0x08, TxOK = 0x04, RxErr = 0x02, RxOK = 0x01, RxAckBits = RxFIFOOver | RxOverflow | RxOK, }; enum TxStatusBits { TxHostOwns = 0x2000, TxUnderrun = 0x4000, TxStatOK = 0x8000, TxOutOfWindow = 0x20000000, TxAborted = 0x40000000, TxCarrierLost = 0x80000000, }; enum RxStatusBits { RxMulticast = 0x8000, RxPhysical = 0x4000, RxBroadcast = 0x2000, RxBadSymbol = 0x0020, RxRunt = 0x0010, RxTooLong = 0x0008, RxCRCErr = 0x0004, RxBadAlign = 0x0002, RxStatusOK = 0x0001, }; /* Bits in RxConfig. */ enum rx_mode_bits { AcceptErr = 0x20, AcceptRunt = 0x10, AcceptBroadcast = 0x08, AcceptMulticast = 0x04, AcceptMyPhys = 0x02, AcceptAllPhys = 0x01, }; /* Bits in TxConfig. */ enum tx_config_bits { /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */ TxIFGShift = 24, TxIFG84 = (0 << TxIFGShift), /* 8.4us / 840ns (10 / 100Mbps) */ TxIFG88 = (1 << TxIFGShift), /* 8.8us / 880ns (10 / 100Mbps) */ TxIFG92 = (2 << TxIFGShift), /* 9.2us / 920ns (10 / 100Mbps) */ TxIFG96 = (3 << TxIFGShift), /* 9.6us / 960ns (10 / 100Mbps) */ TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */ TxCRC = (1 << 16), /* DISABLE appending CRC to end of Tx packets */ TxClearAbt = (1 << 0), /* Clear abort (WO) */ TxDMAShift = 8, /* DMA burst value (0-7) is shifted this many bits */ TxRetryShift = 4, /* TXRR value (0-15) is shifted this many bits */ TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */ }; /* Transmit Status of All Descriptors (TSAD) Register */ enum TSAD_bits { TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3 TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2 TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1 TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0 TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3 TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2 TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1 TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0 TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3 TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2 TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1 TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0 TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3 TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2 TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1 TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0 }; /* Bits in Config1 */ enum Config1Bits { Cfg1_PM_Enable = 0x01, Cfg1_VPD_Enable = 0x02, Cfg1_PIO = 0x04, Cfg1_MMIO = 0x08, LWAKE = 0x10, /* not on 8139, 8139A */ Cfg1_Driver_Load = 0x20, Cfg1_LED0 = 0x40, Cfg1_LED1 = 0x80, SLEEP = (1 << 1), /* only on 8139, 8139A */ PWRDN = (1 << 0), /* only on 8139, 8139A */ }; /* Bits in Config3 */ enum Config3Bits { Cfg3_FBtBEn = (1 << 0), /* 1 = Fast Back to Back */ Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */ Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */ Cfg3_CardB_En = (1 << 3), /* 1 = enable CardBus registers */ Cfg3_LinkUp = (1 << 4), /* 1 = wake up on link up */ Cfg3_Magic = (1 << 5), /* 1 = wake up on Magic Packet (tm) */ Cfg3_PARM_En = (1 << 6), /* 0 = software can set twister parameters */ Cfg3_GNTSel = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */ }; /* Bits in Config4 */ enum Config4Bits { LWPTN = (1 << 2), /* not on 8139, 8139A */ }; /* Bits in Config5 */ enum Config5Bits { Cfg5_PME_STS = (1 << 0), /* 1 = PCI reset resets PME_Status */ Cfg5_LANWake = (1 << 1), /* 1 = enable LANWake signal */ Cfg5_LDPS = (1 << 2), /* 0 = save power when link is down */ Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */ Cfg5_UWF = (1 << 4), /* 1 = accept unicast wakeup frame */ Cfg5_MWF = (1 << 5), /* 1 = accept multicast wakeup frame */ Cfg5_BWF = (1 << 6), /* 1 = accept broadcast wakeup frame */ }; enum RxConfigBits { /* rx fifo threshold */ RxCfgFIFOShift = 13, RxCfgFIFONone = (7 << RxCfgFIFOShift), /* Max DMA burst */ RxCfgDMAShift = 8, RxCfgDMAUnlimited = (7 << RxCfgDMAShift), /* rx ring buffer length */ RxCfgRcv8K = 0, RxCfgRcv16K = (1 << 11), RxCfgRcv32K = (1 << 12), RxCfgRcv64K = (1 << 11) | (1 << 12), /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */ RxNoWrap = (1 << 7), }; /* Twister tuning parameters from RealTek. Completely undocumented, but required to tune bad links on some boards. */ /* enum CSCRBits { CSCR_LinkOKBit = 0x0400, CSCR_LinkChangeBit = 0x0800, CSCR_LinkStatusBits = 0x0f000, CSCR_LinkDownOffCmd = 0x003c0, CSCR_LinkDownCmd = 0x0f3c0, */ enum CSCRBits { CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */ CSCR_LD = 1<<9, /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/ CSCR_HEART_BIT = 1<<8, /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/ CSCR_JBEN = 1<<7, /* 1 = enable jabber function. 0 = disable jabber function, def 1*/ CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/ CSCR_F_Connect = 1<<5, /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/ CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/ CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/ CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/ }; enum Cfg9346Bits { Cfg9346_Normal = 0x00, Cfg9346_Autoload = 0x40, Cfg9346_Programming = 0x80, Cfg9346_ConfigWrite = 0xC0, }; typedef enum { CH_8139 = 0, CH_8139_K, CH_8139A, CH_8139A_G, CH_8139B, CH_8130, CH_8139C, CH_8100, CH_8100B_8139D, CH_8101, } chip_t; enum chip_flags { HasHltClk = (1 << 0), HasLWake = (1 << 1), }; #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \ (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22) #define HW_REVID_MASK HW_REVID(1, 1, 1, 1, 1, 1, 1) #define RTL8139_PCI_REVID_8139 0x10 #define RTL8139_PCI_REVID_8139CPLUS 0x20 #define RTL8139_PCI_REVID RTL8139_PCI_REVID_8139CPLUS /* Size is 64 * 16bit words */ #define EEPROM_9346_ADDR_BITS 6 #define EEPROM_9346_SIZE (1 << EEPROM_9346_ADDR_BITS) #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1) enum Chip9346Operation { Chip9346_op_mask = 0xc0, /* 10 zzzzzz */ Chip9346_op_read = 0x80, /* 10 AAAAAA */ Chip9346_op_write = 0x40, /* 01 AAAAAA D(15)..D(0) */ Chip9346_op_ext_mask = 0xf0, /* 11 zzzzzz */ Chip9346_op_write_enable = 0x30, /* 00 11zzzz */ Chip9346_op_write_all = 0x10, /* 00 01zzzz */ Chip9346_op_write_disable = 0x00, /* 00 00zzzz */ }; enum Chip9346Mode { Chip9346_none = 0, Chip9346_enter_command_mode, Chip9346_read_command, Chip9346_data_read, /* from output register */ Chip9346_data_write, /* to input register, then to contents at specified address */ Chip9346_data_write_all, /* to input register, then filling contents */ }; typedef struct EEprom9346 { uint16_t contents[EEPROM_9346_SIZE]; int mode; uint32_t tick; uint8_t address; uint16_t input; uint16_t output; uint8_t eecs; uint8_t eesk; uint8_t eedi; uint8_t eedo; } EEprom9346; typedef struct RTL8139TallyCounters { /* Tally counters */ uint64_t TxOk; uint64_t RxOk; uint64_t TxERR; uint32_t RxERR; uint16_t MissPkt; uint16_t FAE; uint32_t Tx1Col; uint32_t TxMCol; uint64_t RxOkPhy; uint64_t RxOkBrd; uint32_t RxOkMul; uint16_t TxAbt; uint16_t TxUndrn; } RTL8139TallyCounters; /* Clears all tally counters */ static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters); typedef struct RTL8139State { /*< private >*/ PCIDevice parent_obj; /*< public >*/ uint8_t phys[8]; /* mac address */ uint8_t mult[8]; /* multicast mask array */ uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */ uint32_t TxAddr[4]; /* TxAddr0 */ uint32_t RxBuf; /* Receive buffer */ uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */ uint32_t RxBufPtr; uint32_t RxBufAddr; uint16_t IntrStatus; uint16_t IntrMask; uint32_t TxConfig; uint32_t RxConfig; uint32_t RxMissed; uint16_t CSCR; uint8_t Cfg9346; uint8_t Config0; uint8_t Config1; uint8_t Config3; uint8_t Config4; uint8_t Config5; uint8_t clock_enabled; uint8_t bChipCmdState; uint16_t MultiIntr; uint16_t BasicModeCtrl; uint16_t BasicModeStatus; uint16_t NWayAdvert; uint16_t NWayLPAR; uint16_t NWayExpansion; uint16_t CpCmd; uint8_t TxThresh; NICState *nic; NICConf conf; /* C ring mode */ uint32_t currTxDesc; /* C+ mode */ uint32_t cplus_enabled; uint32_t currCPlusRxDesc; uint32_t currCPlusTxDesc; uint32_t RxRingAddrLO; uint32_t RxRingAddrHI; EEprom9346 eeprom; uint32_t TCTR; uint32_t TimerInt; int64_t TCTR_base; /* Tally counters */ RTL8139TallyCounters tally_counters; /* Non-persistent data */ uint8_t *cplus_txbuffer; int cplus_txbuffer_len; int cplus_txbuffer_offset; /* PCI interrupt timer */ QEMUTimer *timer; MemoryRegion bar_io; MemoryRegion bar_mem; /* Support migration to/from old versions */ int rtl8139_mmio_io_addr_dummy; } RTL8139State; /* Writes tally counters to memory via DMA */ static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr); static void rtl8139_set_next_tctr_time(RTL8139State *s); static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command) { DPRINTF("eeprom command 0x%02x\n", command); switch (command & Chip9346_op_mask) { case Chip9346_op_read: { eeprom->address = command & EEPROM_9346_ADDR_MASK; eeprom->output = eeprom->contents[eeprom->address]; eeprom->eedo = 0; eeprom->tick = 0; eeprom->mode = Chip9346_data_read; DPRINTF("eeprom read from address 0x%02x data=0x%04x\n", eeprom->address, eeprom->output); } break; case Chip9346_op_write: { eeprom->address = command & EEPROM_9346_ADDR_MASK; eeprom->input = 0; eeprom->tick = 0; eeprom->mode = Chip9346_none; /* Chip9346_data_write */ DPRINTF("eeprom begin write to address 0x%02x\n", eeprom->address); } break; default: eeprom->mode = Chip9346_none; switch (command & Chip9346_op_ext_mask) { case Chip9346_op_write_enable: DPRINTF("eeprom write enabled\n"); break; case Chip9346_op_write_all: DPRINTF("eeprom begin write all\n"); break; case Chip9346_op_write_disable: DPRINTF("eeprom write disabled\n"); break; } break; } } static void prom9346_shift_clock(EEprom9346 *eeprom) { int bit = eeprom->eedi?1:0; ++ eeprom->tick; DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi, eeprom->eedo); switch (eeprom->mode) { case Chip9346_enter_command_mode: if (bit) { eeprom->mode = Chip9346_read_command; eeprom->tick = 0; eeprom->input = 0; DPRINTF("eeprom: +++ synchronized, begin command read\n"); } break; case Chip9346_read_command: eeprom->input = (eeprom->input << 1) | (bit & 1); if (eeprom->tick == 8) { prom9346_decode_command(eeprom, eeprom->input & 0xff); } break; case Chip9346_data_read: eeprom->eedo = (eeprom->output & 0x8000)?1:0; eeprom->output <<= 1; if (eeprom->tick == 16) { #if 1 // the FreeBSD drivers (rl and re) don't explicitly toggle // CS between reads (or does setting Cfg9346 to 0 count too?), // so we need to enter wait-for-command state here eeprom->mode = Chip9346_enter_command_mode; eeprom->input = 0; eeprom->tick = 0; DPRINTF("eeprom: +++ end of read, awaiting next command\n"); #else // original behaviour ++eeprom->address; eeprom->address &= EEPROM_9346_ADDR_MASK; eeprom->output = eeprom->contents[eeprom->address]; eeprom->tick = 0; DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n", eeprom->address, eeprom->output); #endif } break; case Chip9346_data_write: eeprom->input = (eeprom->input << 1) | (bit & 1); if (eeprom->tick == 16) { DPRINTF("eeprom write to address 0x%02x data=0x%04x\n", eeprom->address, eeprom->input); eeprom->contents[eeprom->address] = eeprom->input; eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */ eeprom->tick = 0; eeprom->input = 0; } break; case Chip9346_data_write_all: eeprom->input = (eeprom->input << 1) | (bit & 1); if (eeprom->tick == 16) { int i; for (i = 0; i < EEPROM_9346_SIZE; i++) { eeprom->contents[i] = eeprom->input; } DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input); eeprom->mode = Chip9346_enter_command_mode; eeprom->tick = 0; eeprom->input = 0; } break; default: break; } } static int prom9346_get_wire(RTL8139State *s) { EEprom9346 *eeprom = &s->eeprom; if (!eeprom->eecs) return 0; return eeprom->eedo; } /* FIXME: This should be merged into/replaced by eeprom93xx.c. */ static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi) { EEprom9346 *eeprom = &s->eeprom; uint8_t old_eecs = eeprom->eecs; uint8_t old_eesk = eeprom->eesk; eeprom->eecs = eecs; eeprom->eesk = eesk; eeprom->eedi = eedi; DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs, eeprom->eesk, eeprom->eedi, eeprom->eedo); if (!old_eecs && eecs) { /* Synchronize start */ eeprom->tick = 0; eeprom->input = 0; eeprom->output = 0; eeprom->mode = Chip9346_enter_command_mode; DPRINTF("=== eeprom: begin access, enter command mode\n"); } if (!eecs) { DPRINTF("=== eeprom: end access\n"); return; } if (!old_eesk && eesk) { /* SK front rules */ prom9346_shift_clock(eeprom); } } static void rtl8139_update_irq(RTL8139State *s) { PCIDevice *d = PCI_DEVICE(s); int isr; isr = (s->IntrStatus & s->IntrMask) & 0xffff; DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus, s->IntrMask); pci_set_irq(d, (isr != 0)); } static int rtl8139_RxWrap(RTL8139State *s) { /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */ return (s->RxConfig & (1 << 7)); } static int rtl8139_receiver_enabled(RTL8139State *s) { return s->bChipCmdState & CmdRxEnb; } static int rtl8139_transmitter_enabled(RTL8139State *s) { return s->bChipCmdState & CmdTxEnb; } static int rtl8139_cp_receiver_enabled(RTL8139State *s) { return s->CpCmd & CPlusRxEnb; } static int rtl8139_cp_transmitter_enabled(RTL8139State *s) { return s->CpCmd & CPlusTxEnb; } static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size) { PCIDevice *d = PCI_DEVICE(s); if (s->RxBufAddr + size > s->RxBufferSize) { int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize); /* write packet data */ if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s))) { DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped); if (size > wrapped) { pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size-wrapped); } /* reset buffer pointer */ s->RxBufAddr = 0; pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf + (size-wrapped), wrapped); s->RxBufAddr = wrapped; return; } } /* non-wrapping path or overwrapping enabled */ pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size); s->RxBufAddr += size; } #define MIN_BUF_SIZE 60 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high) { return low | ((uint64_t)high << 32); } /* Workaround for buggy guest driver such as linux who allocates rx * rings after the receiver were enabled. */ static bool rtl8139_cp_rx_valid(RTL8139State *s) { return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0); } static int rtl8139_can_receive(NetClientState *nc) { RTL8139State *s = qemu_get_nic_opaque(nc); int avail; /* Receive (drop) packets if card is disabled. */ if (!s->clock_enabled) return 1; if (!rtl8139_receiver_enabled(s)) return 1; if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) { /* ??? Flow control not implemented in c+ mode. This is a hack to work around slirp deficiencies anyway. */ return 1; } else { avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize); return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow)); } } static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt) { RTL8139State *s = qemu_get_nic_opaque(nc); PCIDevice *d = PCI_DEVICE(s); /* size is the length of the buffer passed to the driver */ int size = size_; const uint8_t *dot1q_buf = NULL; uint32_t packet_header = 0; uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN]; static const uint8_t broadcast_macaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; DPRINTF(">>> received len=%d\n", size); /* test if board clock is stopped */ if (!s->clock_enabled) { DPRINTF("stopped ==========================\n"); return -1; } /* first check if receiver is enabled */ if (!rtl8139_receiver_enabled(s)) { DPRINTF("receiver disabled ================\n"); return -1; } /* XXX: check this */ if (s->RxConfig & AcceptAllPhys) { /* promiscuous: receive all */ DPRINTF(">>> packet received in promiscuous mode\n"); } else { if (!memcmp(buf, broadcast_macaddr, 6)) { /* broadcast address */ if (!(s->RxConfig & AcceptBroadcast)) { DPRINTF(">>> broadcast packet rejected\n"); /* update tally counter */ ++s->tally_counters.RxERR; return size; } packet_header |= RxBroadcast; DPRINTF(">>> broadcast packet received\n"); /* update tally counter */ ++s->tally_counters.RxOkBrd; } else if (buf[0] & 0x01) { /* multicast */ if (!(s->RxConfig & AcceptMulticast)) { DPRINTF(">>> multicast packet rejected\n"); /* update tally counter */ ++s->tally_counters.RxERR; return size; } int mcast_idx = compute_mcast_idx(buf); if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) { DPRINTF(">>> multicast address mismatch\n"); /* update tally counter */ ++s->tally_counters.RxERR; return size; } packet_header |= RxMulticast; DPRINTF(">>> multicast packet received\n"); /* update tally counter */ ++s->tally_counters.RxOkMul; } else if (s->phys[0] == buf[0] && s->phys[1] == buf[1] && s->phys[2] == buf[2] && s->phys[3] == buf[3] && s->phys[4] == buf[4] && s->phys[5] == buf[5]) { /* match */ if (!(s->RxConfig & AcceptMyPhys)) { DPRINTF(">>> rejecting physical address matching packet\n"); /* update tally counter */ ++s->tally_counters.RxERR; return size; } packet_header |= RxPhysical; DPRINTF(">>> physical address matching packet received\n"); /* update tally counter */ ++s->tally_counters.RxOkPhy; } else { DPRINTF(">>> unknown packet\n"); /* update tally counter */ ++s->tally_counters.RxERR; return size; } } /* if too small buffer, then expand it * Include some tailroom in case a vlan tag is later removed. */ if (size < MIN_BUF_SIZE + VLAN_HLEN) { memcpy(buf1, buf, size); memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size); buf = buf1; if (size < MIN_BUF_SIZE) { size = MIN_BUF_SIZE; } } if (rtl8139_cp_receiver_enabled(s)) { if (!rtl8139_cp_rx_valid(s)) { return size; } DPRINTF("in C+ Rx mode ================\n"); /* begin C+ receiver mode */ /* w0 ownership flag */ #define CP_RX_OWN (1<<31) /* w0 end of ring flag */ #define CP_RX_EOR (1<<30) /* w0 bits 0...12 : buffer size */ #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1) /* w1 tag available flag */ #define CP_RX_TAVA (1<<16) /* w1 bits 0...15 : VLAN tag */ #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1) /* w2 low 32bit of Rx buffer ptr */ /* w3 high 32bit of Rx buffer ptr */ int descriptor = s->currCPlusRxDesc; dma_addr_t cplus_rx_ring_desc; cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI); cplus_rx_ring_desc += 16 * descriptor; DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at " "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI, s->RxRingAddrLO, cplus_rx_ring_desc); uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI; pci_dma_read(d, cplus_rx_ring_desc, &val, 4); rxdw0 = le32_to_cpu(val); pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4); rxdw1 = le32_to_cpu(val); pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4); rxbufLO = le32_to_cpu(val); pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4); rxbufHI = le32_to_cpu(val); DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n", descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI); if (!(rxdw0 & CP_RX_OWN)) { DPRINTF("C+ Rx mode : descriptor %d is owned by host\n", descriptor); s->IntrStatus |= RxOverflow; ++s->RxMissed; /* update tally counter */ ++s->tally_counters.RxERR; ++s->tally_counters.MissPkt; rtl8139_update_irq(s); return size_; } uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK; /* write VLAN info to descriptor variables. */ if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *) &buf[ETH_ALEN * 2]) == ETH_P_VLAN) { dot1q_buf = &buf[ETH_ALEN * 2]; size -= VLAN_HLEN; /* if too small buffer, use the tailroom added duing expansion */ if (size < MIN_BUF_SIZE) { size = MIN_BUF_SIZE; } rxdw1 &= ~CP_RX_VLAN_TAG_MASK; /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */ rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *) &dot1q_buf[ETHER_TYPE_LEN]); DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n", be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN])); } else { /* reset VLAN tag flag */ rxdw1 &= ~CP_RX_TAVA; } /* TODO: scatter the packet over available receive ring descriptors space */ if (size+4 > rx_space) { DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n", descriptor, rx_space, size); s->IntrStatus |= RxOverflow; ++s->RxMissed; /* update tally counter */ ++s->tally_counters.RxERR; ++s->tally_counters.MissPkt; rtl8139_update_irq(s); return size_; } dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI); /* receive/copy to target memory */ if (dot1q_buf) { pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN); pci_dma_write(d, rx_addr + 2 * ETH_ALEN, buf + 2 * ETH_ALEN + VLAN_HLEN, size - 2 * ETH_ALEN); } else { pci_dma_write(d, rx_addr, buf, size); } if (s->CpCmd & CPlusRxChkSum) { /* do some packet checksumming */ } /* write checksum */ val = cpu_to_le32(crc32(0, buf, size_)); pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4); /* first segment of received packet flag */ #define CP_RX_STATUS_FS (1<<29) /* last segment of received packet flag */ #define CP_RX_STATUS_LS (1<<28) /* multicast packet flag */ #define CP_RX_STATUS_MAR (1<<26) /* physical-matching packet flag */ #define CP_RX_STATUS_PAM (1<<25) /* broadcast packet flag */ #define CP_RX_STATUS_BAR (1<<24) /* runt packet flag */ #define CP_RX_STATUS_RUNT (1<<19) /* crc error flag */ #define CP_RX_STATUS_CRC (1<<18) /* IP checksum error flag */ #define CP_RX_STATUS_IPF (1<<15) /* UDP checksum error flag */ #define CP_RX_STATUS_UDPF (1<<14) /* TCP checksum error flag */ #define CP_RX_STATUS_TCPF (1<<13) /* transfer ownership to target */ rxdw0 &= ~CP_RX_OWN; /* set first segment bit */ rxdw0 |= CP_RX_STATUS_FS; /* set last segment bit */ rxdw0 |= CP_RX_STATUS_LS; /* set received packet type flags */ if (packet_header & RxBroadcast) rxdw0 |= CP_RX_STATUS_BAR; if (packet_header & RxMulticast) rxdw0 |= CP_RX_STATUS_MAR; if (packet_header & RxPhysical) rxdw0 |= CP_RX_STATUS_PAM; /* set received size */ rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK; rxdw0 |= (size+4); /* update ring data */ val = cpu_to_le32(rxdw0); pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4); val = cpu_to_le32(rxdw1); pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4); /* update tally counter */ ++s->tally_counters.RxOk; /* seek to next Rx descriptor */ if (rxdw0 & CP_RX_EOR) { s->currCPlusRxDesc = 0; } else { ++s->currCPlusRxDesc; } DPRINTF("done C+ Rx mode ----------------\n"); } else { DPRINTF("in ring Rx mode ================\n"); /* begin ring receiver mode */ int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize); /* if receiver buffer is empty then avail == 0 */ #define RX_ALIGN(x) (((x) + 3) & ~0x3) if (avail != 0 && RX_ALIGN(size + 8) >= avail) { DPRINTF("rx overflow: rx buffer length %d head 0x%04x " "read 0x%04x === available 0x%04x need 0x%04x\n", s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8); s->IntrStatus |= RxOverflow; ++s->RxMissed; rtl8139_update_irq(s); return 0; } packet_header |= RxStatusOK; packet_header |= (((size+4) << 16) & 0xffff0000); /* write header */ uint32_t val = cpu_to_le32(packet_header); rtl8139_write_buffer(s, (uint8_t *)&val, 4); rtl8139_write_buffer(s, buf, size); /* write checksum */ val = cpu_to_le32(crc32(0, buf, size)); rtl8139_write_buffer(s, (uint8_t *)&val, 4); /* correct buffer write pointer */ s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize); /* now we can signal we have received something */ DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n", s->RxBufferSize, s->RxBufAddr, s->RxBufPtr); } s->IntrStatus |= RxOK; if (do_interrupt) { rtl8139_update_irq(s); } return size_; } static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size) { return rtl8139_do_receive(nc, buf, size, 1); } static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize) { s->RxBufferSize = bufferSize; s->RxBufPtr = 0; s->RxBufAddr = 0; } static void rtl8139_reset(DeviceState *d) { RTL8139State *s = RTL8139(d); int i; /* restore MAC address */ memcpy(s->phys, s->conf.macaddr.a, 6); qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys); /* reset interrupt mask */ s->IntrStatus = 0; s->IntrMask = 0; rtl8139_update_irq(s); /* mark all status registers as owned by host */ for (i = 0; i < 4; ++i) { s->TxStatus[i] = TxHostOwns; } s->currTxDesc = 0; s->currCPlusRxDesc = 0; s->currCPlusTxDesc = 0; s->RxRingAddrLO = 0; s->RxRingAddrHI = 0; s->RxBuf = 0; rtl8139_reset_rxring(s, 8192); /* ACK the reset */ s->TxConfig = 0; #if 0 // s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139 HasHltClk s->clock_enabled = 0; #else s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake s->clock_enabled = 1; #endif s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */; /* set initial state data */ s->Config0 = 0x0; /* No boot ROM */ s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */ s->Config3 = 0x1; /* fast back-to-back compatible */ s->Config5 = 0x0; s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD; s->CpCmd = 0x0; /* reset C+ mode */ s->cplus_enabled = 0; // s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation // s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex s->BasicModeCtrl = 0x1000; // autonegotiation s->BasicModeStatus = 0x7809; //s->BasicModeStatus |= 0x0040; /* UTP medium */ s->BasicModeStatus |= 0x0020; /* autonegotiation completed */ /* preserve link state */ s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04; s->NWayAdvert = 0x05e1; /* all modes, full duplex */ s->NWayLPAR = 0x05e1; /* all modes, full duplex */ s->NWayExpansion = 0x0001; /* autonegotiation supported */ /* also reset timer and disable timer interrupt */ s->TCTR = 0; s->TimerInt = 0; s->TCTR_base = 0; rtl8139_set_next_tctr_time(s); /* reset tally counters */ RTL8139TallyCounters_clear(&s->tally_counters); } static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters) { counters->TxOk = 0; counters->RxOk = 0; counters->TxERR = 0; counters->RxERR = 0; counters->MissPkt = 0; counters->FAE = 0; counters->Tx1Col = 0; counters->TxMCol = 0; counters->RxOkPhy = 0; counters->RxOkBrd = 0; counters->RxOkMul = 0; counters->TxAbt = 0; counters->TxUndrn = 0; } static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr) { PCIDevice *d = PCI_DEVICE(s); RTL8139TallyCounters *tally_counters = &s->tally_counters; uint16_t val16; uint32_t val32; uint64_t val64; val64 = cpu_to_le64(tally_counters->TxOk); pci_dma_write(d, tc_addr + 0, (uint8_t *)&val64, 8); val64 = cpu_to_le64(tally_counters->RxOk); pci_dma_write(d, tc_addr + 8, (uint8_t *)&val64, 8); val64 = cpu_to_le64(tally_counters->TxERR); pci_dma_write(d, tc_addr + 16, (uint8_t *)&val64, 8); val32 = cpu_to_le32(tally_counters->RxERR); pci_dma_write(d, tc_addr + 24, (uint8_t *)&val32, 4); val16 = cpu_to_le16(tally_counters->MissPkt); pci_dma_write(d, tc_addr + 28, (uint8_t *)&val16, 2); val16 = cpu_to_le16(tally_counters->FAE); pci_dma_write(d, tc_addr + 30, (uint8_t *)&val16, 2); val32 = cpu_to_le32(tally_counters->Tx1Col); pci_dma_write(d, tc_addr + 32, (uint8_t *)&val32, 4); val32 = cpu_to_le32(tally_counters->TxMCol); pci_dma_write(d, tc_addr + 36, (uint8_t *)&val32, 4); val64 = cpu_to_le64(tally_counters->RxOkPhy); pci_dma_write(d, tc_addr + 40, (uint8_t *)&val64, 8); val64 = cpu_to_le64(tally_counters->RxOkBrd); pci_dma_write(d, tc_addr + 48, (uint8_t *)&val64, 8); val32 = cpu_to_le32(tally_counters->RxOkMul); pci_dma_write(d, tc_addr + 56, (uint8_t *)&val32, 4); val16 = cpu_to_le16(tally_counters->TxAbt); pci_dma_write(d, tc_addr + 60, (uint8_t *)&val16, 2); val16 = cpu_to_le16(tally_counters->TxUndrn); pci_dma_write(d, tc_addr + 62, (uint8_t *)&val16, 2); } /* Loads values of tally counters from VM state file */ static const VMStateDescription vmstate_tally_counters = { .name = "tally_counters", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT64(TxOk, RTL8139TallyCounters), VMSTATE_UINT64(RxOk, RTL8139TallyCounters), VMSTATE_UINT64(TxERR, RTL8139TallyCounters), VMSTATE_UINT32(RxERR, RTL8139TallyCounters), VMSTATE_UINT16(MissPkt, RTL8139TallyCounters), VMSTATE_UINT16(FAE, RTL8139TallyCounters), VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters), VMSTATE_UINT32(TxMCol, RTL8139TallyCounters), VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters), VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters), VMSTATE_UINT16(TxAbt, RTL8139TallyCounters), VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters), VMSTATE_END_OF_LIST() } }; static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val) { DeviceState *d = DEVICE(s); val &= 0xff; DPRINTF("ChipCmd write val=0x%08x\n", val); if (val & CmdReset) { DPRINTF("ChipCmd reset\n"); rtl8139_reset(d); } if (val & CmdRxEnb) { DPRINTF("ChipCmd enable receiver\n"); s->currCPlusRxDesc = 0; } if (val & CmdTxEnb) { DPRINTF("ChipCmd enable transmitter\n"); s->currCPlusTxDesc = 0; } /* mask unwritable bits */ val = SET_MASKED(val, 0xe3, s->bChipCmdState); /* Deassert reset pin before next read */ val &= ~CmdReset; s->bChipCmdState = val; } static int rtl8139_RxBufferEmpty(RTL8139State *s) { int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize); if (unread != 0) { DPRINTF("receiver buffer data available 0x%04x\n", unread); return 0; } DPRINTF("receiver buffer is empty\n"); return 1; } static uint32_t rtl8139_ChipCmd_read(RTL8139State *s) { uint32_t ret = s->bChipCmdState; if (rtl8139_RxBufferEmpty(s)) ret |= RxBufEmpty; DPRINTF("ChipCmd read val=0x%04x\n", ret); return ret; } static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val) { val &= 0xffff; DPRINTF("C+ command register write(w) val=0x%04x\n", val); s->cplus_enabled = 1; /* mask unwritable bits */ val = SET_MASKED(val, 0xff84, s->CpCmd); s->CpCmd = val; } static uint32_t rtl8139_CpCmd_read(RTL8139State *s) { uint32_t ret = s->CpCmd; DPRINTF("C+ command register read(w) val=0x%04x\n", ret); return ret; } static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val) { DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val); } static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s) { uint32_t ret = 0; DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret); return ret; } static int rtl8139_config_writable(RTL8139State *s) { if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite) { return 1; } DPRINTF("Configuration registers are write-protected\n"); return 0; } static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val) { val &= 0xffff; DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val); /* mask unwritable bits */ uint32_t mask = 0x4cff; if (1 || !rtl8139_config_writable(s)) { /* Speed setting and autonegotiation enable bits are read-only */ mask |= 0x3000; /* Duplex mode setting is read-only */ mask |= 0x0100; } val = SET_MASKED(val, mask, s->BasicModeCtrl); s->BasicModeCtrl = val; } static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s) { uint32_t ret = s->BasicModeCtrl; DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret); return ret; } static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val) { val &= 0xffff; DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val); /* mask unwritable bits */ val = SET_MASKED(val, 0xff3f, s->BasicModeStatus); s->BasicModeStatus = val; } static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s) { uint32_t ret = s->BasicModeStatus; DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret); return ret; } static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val) { DeviceState *d = DEVICE(s); val &= 0xff; DPRINTF("Cfg9346 write val=0x%02x\n", val); /* mask unwritable bits */ val = SET_MASKED(val, 0x31, s->Cfg9346); uint32_t opmode = val & 0xc0; uint32_t eeprom_val = val & 0xf; if (opmode == 0x80) { /* eeprom access */ int eecs = (eeprom_val & 0x08)?1:0; int eesk = (eeprom_val & 0x04)?1:0; int eedi = (eeprom_val & 0x02)?1:0; prom9346_set_wire(s, eecs, eesk, eedi); } else if (opmode == 0x40) { /* Reset. */ val = 0; rtl8139_reset(d); } s->Cfg9346 = val; } static uint32_t rtl8139_Cfg9346_read(RTL8139State *s) { uint32_t ret = s->Cfg9346; uint32_t opmode = ret & 0xc0; if (opmode == 0x80) { /* eeprom access */ int eedo = prom9346_get_wire(s); if (eedo) { ret |= 0x01; } else { ret &= ~0x01; } } DPRINTF("Cfg9346 read val=0x%02x\n", ret); return ret; } static void rtl8139_Config0_write(RTL8139State *s, uint32_t val) { val &= 0xff; DPRINTF("Config0 write val=0x%02x\n", val); if (!rtl8139_config_writable(s)) { return; } /* mask unwritable bits */ val = SET_MASKED(val, 0xf8, s->Config0); s->Config0 = val; } static uint32_t rtl8139_Config0_read(RTL8139State *s) { uint32_t ret = s->Config0; DPRINTF("Config0 read val=0x%02x\n", ret); return ret; } static void rtl8139_Config1_write(RTL8139State *s, uint32_t val) { val &= 0xff; DPRINTF("Config1 write val=0x%02x\n", val); if (!rtl8139_config_writable(s)) { return; } /* mask unwritable bits */ val = SET_MASKED(val, 0xC, s->Config1); s->Config1 = val; } static uint32_t rtl8139_Config1_read(RTL8139State *s) { uint32_t ret = s->Config1; DPRINTF("Config1 read val=0x%02x\n", ret); return ret; } static void rtl8139_Config3_write(RTL8139State *s, uint32_t val) { val &= 0xff; DPRINTF("Config3 write val=0x%02x\n", val); if (!rtl8139_config_writable(s)) { return; } /* mask unwritable bits */ val = SET_MASKED(val, 0x8F, s->Config3); s->Config3 = val; } static uint32_t rtl8139_Config3_read(RTL8139State *s) { uint32_t ret = s->Config3; DPRINTF("Config3 read val=0x%02x\n", ret); return ret; } static void rtl8139_Config4_write(RTL8139State *s, uint32_t val) { val &= 0xff; DPRINTF("Config4 write val=0x%02x\n", val); if (!rtl8139_config_writable(s)) { return; } /* mask unwritable bits */ val = SET_MASKED(val, 0x0a, s->Config4); s->Config4 = val; } static uint32_t rtl8139_Config4_read(RTL8139State *s) { uint32_t ret = s->Config4; DPRINTF("Config4 read val=0x%02x\n", ret); return ret; } static void rtl8139_Config5_write(RTL8139State *s, uint32_t val) { val &= 0xff; DPRINTF("Config5 write val=0x%02x\n", val); /* mask unwritable bits */ val = SET_MASKED(val, 0x80, s->Config5); s->Config5 = val; } static uint32_t rtl8139_Config5_read(RTL8139State *s) { uint32_t ret = s->Config5; DPRINTF("Config5 read val=0x%02x\n", ret); return ret; } static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val) { if (!rtl8139_transmitter_enabled(s)) { DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val); return; } DPRINTF("TxConfig write val=0x%08x\n", val); val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig); s->TxConfig = val; } static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val) { DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val); uint32_t tc = s->TxConfig; tc &= 0xFFFFFF00; tc |= (val & 0x000000FF); rtl8139_TxConfig_write(s, tc); } static uint32_t rtl8139_TxConfig_read(RTL8139State *s) { uint32_t ret = s->TxConfig; DPRINTF("TxConfig read val=0x%04x\n", ret); return ret; } static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val) { DPRINTF("RxConfig write val=0x%08x\n", val); /* mask unwritable bits */ val = SET_MASKED(val, 0xf0fc0040, s->RxConfig); s->RxConfig = val; /* reset buffer size and read/write pointers */ rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3)); DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize); } static uint32_t rtl8139_RxConfig_read(RTL8139State *s) { uint32_t ret = s->RxConfig; DPRINTF("RxConfig read val=0x%08x\n", ret); return ret; } static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size, int do_interrupt, const uint8_t *dot1q_buf) { struct iovec *iov = NULL; struct iovec vlan_iov[3]; if (!size) { DPRINTF("+++ empty ethernet frame\n"); return; } if (dot1q_buf && size >= ETH_ALEN * 2) { iov = (struct iovec[3]) { { .iov_base = buf, .iov_len = ETH_ALEN * 2 }, { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN }, { .iov_base = buf + ETH_ALEN * 2, .iov_len = size - ETH_ALEN * 2 }, }; memcpy(vlan_iov, iov, sizeof(vlan_iov)); iov = vlan_iov; } if (TxLoopBack == (s->TxConfig & TxLoopBack)) { size_t buf2_size; uint8_t *buf2; if (iov) { buf2_size = iov_size(iov, 3); buf2 = g_malloc(buf2_size); iov_to_buf(iov, 3, 0, buf2, buf2_size); buf = buf2; } DPRINTF("+++ transmit loopback mode\n"); rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt); if (iov) { g_free(buf2); } } else { if (iov) { qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3); } else { qemu_send_packet(qemu_get_queue(s->nic), buf, size); } } } static int rtl8139_transmit_one(RTL8139State *s, int descriptor) { if (!rtl8139_transmitter_enabled(s)) { DPRINTF("+++ cannot transmit from descriptor %d: transmitter " "disabled\n", descriptor); return 0; } if (s->TxStatus[descriptor] & TxHostOwns) { DPRINTF("+++ cannot transmit from descriptor %d: owned by host " "(%08x)\n", descriptor, s->TxStatus[descriptor]); return 0; } DPRINTF("+++ transmitting from descriptor %d\n", descriptor); PCIDevice *d = PCI_DEVICE(s); int txsize = s->TxStatus[descriptor] & 0x1fff; uint8_t txbuffer[0x2000]; DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n", txsize, s->TxAddr[descriptor]); pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize); /* Mark descriptor as transferred */ s->TxStatus[descriptor] |= TxHostOwns; s->TxStatus[descriptor] |= TxStatOK; rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL); DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize, descriptor); /* update interrupt */ s->IntrStatus |= TxOK; rtl8139_update_irq(s); return 1; } /* structures and macros for task offloading */ #define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2) #define TCP_FLAGS_ONLY(flags) ((flags)&0x3f) #define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags)) #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off))) /* produces ones' complement sum of data */ static uint16_t ones_complement_sum(uint8_t *data, size_t len) { uint32_t result = 0; for (; len > 1; data+=2, len-=2) { result += *(uint16_t*)data; } /* add the remainder byte */ if (len) { uint8_t odd[2] = {*data, 0}; result += *(uint16_t*)odd; } while (result>>16) result = (result & 0xffff) + (result >> 16); return result; } static uint16_t ip_checksum(void *data, size_t len) { return ~ones_complement_sum((uint8_t*)data, len); } static int rtl8139_cplus_transmit_one(RTL8139State *s) { if (!rtl8139_transmitter_enabled(s)) { DPRINTF("+++ C+ mode: transmitter disabled\n"); return 0; } if (!rtl8139_cp_transmitter_enabled(s)) { DPRINTF("+++ C+ mode: C+ transmitter disabled\n"); return 0 ; } PCIDevice *d = PCI_DEVICE(s); int descriptor = s->currCPlusTxDesc; dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]); /* Normal priority ring */ cplus_tx_ring_desc += 16 * descriptor; DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at " "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1], s->TxAddr[0], cplus_tx_ring_desc); uint32_t val, txdw0,txdw1,txbufLO,txbufHI; pci_dma_read(d, cplus_tx_ring_desc, (uint8_t *)&val, 4); txdw0 = le32_to_cpu(val); pci_dma_read(d, cplus_tx_ring_desc+4, (uint8_t *)&val, 4); txdw1 = le32_to_cpu(val); pci_dma_read(d, cplus_tx_ring_desc+8, (uint8_t *)&val, 4); txbufLO = le32_to_cpu(val); pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4); txbufHI = le32_to_cpu(val); DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor, txdw0, txdw1, txbufLO, txbufHI); /* w0 ownership flag */ #define CP_TX_OWN (1<<31) /* w0 end of ring flag */ #define CP_TX_EOR (1<<30) /* first segment of received packet flag */ #define CP_TX_FS (1<<29) /* last segment of received packet flag */ #define CP_TX_LS (1<<28) /* large send packet flag */ #define CP_TX_LGSEN (1<<27) /* large send MSS mask, bits 16...25 */ #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1) /* IP checksum offload flag */ #define CP_TX_IPCS (1<<18) /* UDP checksum offload flag */ #define CP_TX_UDPCS (1<<17) /* TCP checksum offload flag */ #define CP_TX_TCPCS (1<<16) /* w0 bits 0...15 : buffer size */ #define CP_TX_BUFFER_SIZE (1<<16) #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1) /* w1 add tag flag */ #define CP_TX_TAGC (1<<17) /* w1 bits 0...15 : VLAN tag (big endian) */ #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1) /* w2 low 32bit of Rx buffer ptr */ /* w3 high 32bit of Rx buffer ptr */ /* set after transmission */ /* FIFO underrun flag */ #define CP_TX_STATUS_UNF (1<<25) /* transmit error summary flag, valid if set any of three below */ #define CP_TX_STATUS_TES (1<<23) /* out-of-window collision flag */ #define CP_TX_STATUS_OWC (1<<22) /* link failure flag */ #define CP_TX_STATUS_LNKF (1<<21) /* excessive collisions flag */ #define CP_TX_STATUS_EXC (1<<20) if (!(txdw0 & CP_TX_OWN)) { DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor); return 0 ; } DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor); if (txdw0 & CP_TX_FS) { DPRINTF("+++ C+ Tx mode : descriptor %d is first segment " "descriptor\n", descriptor); /* reset internal buffer offset */ s->cplus_txbuffer_offset = 0; } int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK; dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI); /* make sure we have enough space to assemble the packet */ if (!s->cplus_txbuffer) { s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE; s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len); s->cplus_txbuffer_offset = 0; DPRINTF("+++ C+ mode transmission buffer allocated space %d\n", s->cplus_txbuffer_len); } if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len) { /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */ txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset; DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor" "length to %d\n", txsize); } /* append more data to the packet */ DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at " DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr, s->cplus_txbuffer_offset); pci_dma_read(d, tx_addr, s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize); s->cplus_txbuffer_offset += txsize; /* seek to next Rx descriptor */ if (txdw0 & CP_TX_EOR) { s->currCPlusTxDesc = 0; } else { ++s->currCPlusTxDesc; if (s->currCPlusTxDesc >= 64) s->currCPlusTxDesc = 0; } /* transfer ownership to target */ txdw0 &= ~CP_TX_OWN; /* reset error indicator bits */ txdw0 &= ~CP_TX_STATUS_UNF; txdw0 &= ~CP_TX_STATUS_TES; txdw0 &= ~CP_TX_STATUS_OWC; txdw0 &= ~CP_TX_STATUS_LNKF; txdw0 &= ~CP_TX_STATUS_EXC; /* update ring data */ val = cpu_to_le32(txdw0); pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4); /* Now decide if descriptor being processed is holding the last segment of packet */ if (txdw0 & CP_TX_LS) { uint8_t dot1q_buffer_space[VLAN_HLEN]; uint16_t *dot1q_buffer; DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n", descriptor); /* can transfer fully assembled packet */ uint8_t *saved_buffer = s->cplus_txbuffer; int saved_size = s->cplus_txbuffer_offset; int saved_buffer_len = s->cplus_txbuffer_len; /* create vlan tag */ if (txdw1 & CP_TX_TAGC) { /* the vlan tag is in BE byte order in the descriptor * BE + le_to_cpu() + ~swap()~ = cpu */ DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n", bswap16(txdw1 & CP_TX_VLAN_TAG_MASK)); dot1q_buffer = (uint16_t *) dot1q_buffer_space; dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN); /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */ dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK); } else { dot1q_buffer = NULL; } /* reset the card space to protect from recursive call */ s->cplus_txbuffer = NULL; s->cplus_txbuffer_offset = 0; s->cplus_txbuffer_len = 0; if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN)) { DPRINTF("+++ C+ mode offloaded task checksum\n"); /* Large enough for Ethernet and IP headers? */ if (saved_size < ETH_HLEN + sizeof(struct ip_header)) { goto skip_offload; } /* ip packet header */ struct ip_header *ip = NULL; int hlen = 0; uint8_t ip_protocol = 0; uint16_t ip_data_len = 0; uint8_t *eth_payload_data = NULL; size_t eth_payload_len = 0; int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12)); if (proto != ETH_P_IP) { goto skip_offload; } DPRINTF("+++ C+ mode has IP packet\n"); /* Note on memory alignment: eth_payload_data is 16-bit aligned * since saved_buffer is allocated with g_malloc() and ETH_HLEN is * even. 32-bit accesses must use ldl/stl wrappers to avoid * unaligned accesses. */ eth_payload_data = saved_buffer + ETH_HLEN; eth_payload_len = saved_size - ETH_HLEN; ip = (struct ip_header*)eth_payload_data; if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) { DPRINTF("+++ C+ mode packet has bad IP version %d " "expected %d\n", IP_HEADER_VERSION(ip), IP_HEADER_VERSION_4); goto skip_offload; } hlen = IP_HDR_GET_LEN(ip); if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) { goto skip_offload; } ip_protocol = ip->ip_p; ip_data_len = be16_to_cpu(ip->ip_len); if (ip_data_len < hlen || ip_data_len > eth_payload_len) { goto skip_offload; } ip_data_len -= hlen; if (txdw0 & CP_TX_IPCS) { DPRINTF("+++ C+ mode need IP checksum\n"); ip->ip_sum = 0; ip->ip_sum = ip_checksum(ip, hlen); DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n", hlen, ip->ip_sum); } if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP) { /* Large enough for the TCP header? */ if (ip_data_len < sizeof(tcp_header)) { goto skip_offload; } int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK; DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d " "frame data %d specified MSS=%d\n", ETH_MTU, ip_data_len, saved_size - ETH_HLEN, large_send_mss); int tcp_send_offset = 0; int send_count = 0; /* maximum IP header length is 60 bytes */ uint8_t saved_ip_header[60]; /* save IP header template; data area is used in tcp checksum calculation */ memcpy(saved_ip_header, eth_payload_data, hlen); /* a placeholder for checksum calculation routine in tcp case */ uint8_t *data_to_checksum = eth_payload_data + hlen - 12; // size_t data_to_checksum_len = eth_payload_len - hlen + 12; /* pointer to TCP header */ tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen); int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr); /* Invalid TCP data offset? */ if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) { goto skip_offload; } /* ETH_MTU = ip header len + tcp header len + payload */ int tcp_data_len = ip_data_len - tcp_hlen; int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen; DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP " "data len %d TCP chunk size %d\n", ip_data_len, tcp_hlen, tcp_data_len, tcp_chunk_size); /* note the cycle below overwrites IP header data, but restores it from saved_ip_header before sending packet */ int is_last_frame = 0; for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size) { uint16_t chunk_size = tcp_chunk_size; /* check if this is the last frame */ if (tcp_send_offset + tcp_chunk_size >= tcp_data_len) { is_last_frame = 1; chunk_size = tcp_data_len - tcp_send_offset; } DPRINTF("+++ C+ mode TSO TCP seqno %08x\n", ldl_be_p(&p_tcp_hdr->th_seq)); /* add 4 TCP pseudoheader fields */ /* copy IP source and destination fields */ memcpy(data_to_checksum, saved_ip_header + 12, 8); DPRINTF("+++ C+ mode TSO calculating TCP checksum for " "packet with %d bytes data\n", tcp_hlen + chunk_size); if (tcp_send_offset) { memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size); } /* keep PUSH and FIN flags only for the last frame */ if (!is_last_frame) { TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN); } /* recalculate TCP checksum */ ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum; p_tcpip_hdr->zeros = 0; p_tcpip_hdr->ip_proto = IP_PROTO_TCP; p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size); p_tcp_hdr->th_sum = 0; int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12); DPRINTF("+++ C+ mode TSO TCP checksum %04x\n", tcp_checksum); p_tcp_hdr->th_sum = tcp_checksum; /* restore IP header */ memcpy(eth_payload_data, saved_ip_header, hlen); /* set IP data length and recalculate IP checksum */ ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size); /* increment IP id for subsequent frames */ ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id)); ip->ip_sum = 0; ip->ip_sum = ip_checksum(eth_payload_data, hlen); DPRINTF("+++ C+ mode TSO IP header len=%d " "checksum=%04x\n", hlen, ip->ip_sum); int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size; DPRINTF("+++ C+ mode TSO transferring packet size " "%d\n", tso_send_size); rtl8139_transfer_frame(s, saved_buffer, tso_send_size, 0, (uint8_t *) dot1q_buffer); /* add transferred count to TCP sequence number */ stl_be_p(&p_tcp_hdr->th_seq, chunk_size + ldl_be_p(&p_tcp_hdr->th_seq)); ++send_count; } /* Stop sending this frame */ saved_size = 0; } else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS)) { DPRINTF("+++ C+ mode need TCP or UDP checksum\n"); /* maximum IP header length is 60 bytes */ uint8_t saved_ip_header[60]; memcpy(saved_ip_header, eth_payload_data, hlen); uint8_t *data_to_checksum = eth_payload_data + hlen - 12; // size_t data_to_checksum_len = eth_payload_len - hlen + 12; /* add 4 TCP pseudoheader fields */ /* copy IP source and destination fields */ memcpy(data_to_checksum, saved_ip_header + 12, 8); if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP) { DPRINTF("+++ C+ mode calculating TCP checksum for " "packet with %d bytes data\n", ip_data_len); ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum; p_tcpip_hdr->zeros = 0; p_tcpip_hdr->ip_proto = IP_PROTO_TCP; p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len); tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12); p_tcp_hdr->th_sum = 0; int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12); DPRINTF("+++ C+ mode TCP checksum %04x\n", tcp_checksum); p_tcp_hdr->th_sum = tcp_checksum; } else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP) { DPRINTF("+++ C+ mode calculating UDP checksum for " "packet with %d bytes data\n", ip_data_len); ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum; p_udpip_hdr->zeros = 0; p_udpip_hdr->ip_proto = IP_PROTO_UDP; p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len); udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12); p_udp_hdr->uh_sum = 0; int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12); DPRINTF("+++ C+ mode UDP checksum %04x\n", udp_checksum); p_udp_hdr->uh_sum = udp_checksum; } /* restore IP header */ memcpy(eth_payload_data, saved_ip_header, hlen); } } skip_offload: /* update tally counter */ ++s->tally_counters.TxOk; DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size); rtl8139_transfer_frame(s, saved_buffer, saved_size, 1, (uint8_t *) dot1q_buffer); /* restore card space if there was no recursion and reset offset */ if (!s->cplus_txbuffer) { s->cplus_txbuffer = saved_buffer; s->cplus_txbuffer_len = saved_buffer_len; s->cplus_txbuffer_offset = 0; } else { g_free(saved_buffer); } } else { DPRINTF("+++ C+ mode transmission continue to next descriptor\n"); } return 1; } static void rtl8139_cplus_transmit(RTL8139State *s) { int txcount = 0; while (rtl8139_cplus_transmit_one(s)) { ++txcount; } /* Mark transfer completed */ if (!txcount) { DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n", s->currCPlusTxDesc); } else { /* update interrupt status */ s->IntrStatus |= TxOK; rtl8139_update_irq(s); } } static void rtl8139_transmit(RTL8139State *s) { int descriptor = s->currTxDesc, txcount = 0; /*while*/ if (rtl8139_transmit_one(s, descriptor)) { ++s->currTxDesc; s->currTxDesc %= 4; ++txcount; } /* Mark transfer completed */ if (!txcount) { DPRINTF("transmitter queue stalled, current TxDesc = %d\n", s->currTxDesc); } } static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val) { int descriptor = txRegOffset/4; /* handle C+ transmit mode register configuration */ if (s->cplus_enabled) { DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x " "descriptor=%d\n", txRegOffset, val, descriptor); /* handle Dump Tally Counters command */ s->TxStatus[descriptor] = val; if (descriptor == 0 && (val & 0x8)) { hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]); /* dump tally counters to specified memory location */ RTL8139TallyCounters_dma_write(s, tc_addr); /* mark dump completed */ s->TxStatus[0] &= ~0x8; } return; } DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n", txRegOffset, val, descriptor); /* mask only reserved bits */ val &= ~0xff00c000; /* these bits are reset on write */ val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]); s->TxStatus[descriptor] = val; /* attempt to start transmission */ rtl8139_transmit(s); } static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[], uint32_t base, uint8_t addr, int size) { uint32_t reg = (addr - base) / 4; uint32_t offset = addr & 0x3; uint32_t ret = 0; if (addr & (size - 1)) { DPRINTF("not implemented read for TxStatus/TxAddr " "addr=0x%x size=0x%x\n", addr, size); return ret; } switch (size) { case 1: /* fall through */ case 2: /* fall through */ case 4: ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1); DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n", reg, addr, size, ret); break; default: DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size); break; } return ret; } static uint16_t rtl8139_TSAD_read(RTL8139State *s) { uint16_t ret = 0; /* Simulate TSAD, it is read only anyway */ ret = ((s->TxStatus[3] & TxStatOK )?TSAD_TOK3:0) |((s->TxStatus[2] & TxStatOK )?TSAD_TOK2:0) |((s->TxStatus[1] & TxStatOK )?TSAD_TOK1:0) |((s->TxStatus[0] & TxStatOK )?TSAD_TOK0:0) |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0) |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0) |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0) |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0) |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0) |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0) |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0) |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0) |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0) |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0) |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0) |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ; DPRINTF("TSAD read val=0x%04x\n", ret); return ret; } static uint16_t rtl8139_CSCR_read(RTL8139State *s) { uint16_t ret = s->CSCR; DPRINTF("CSCR read val=0x%04x\n", ret); return ret; } static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val) { DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val); s->TxAddr[txAddrOffset/4] = val; } static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset) { uint32_t ret = s->TxAddr[txAddrOffset/4]; DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret); return ret; } static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val) { DPRINTF("RxBufPtr write val=0x%04x\n", val); /* this value is off by 16 */ s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize); /* more buffer space may be available so try to receive */ qemu_flush_queued_packets(qemu_get_queue(s->nic)); DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n", s->RxBufferSize, s->RxBufAddr, s->RxBufPtr); } static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s) { /* this value is off by 16 */ uint32_t ret = s->RxBufPtr - 0x10; DPRINTF("RxBufPtr read val=0x%04x\n", ret); return ret; } static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s) { /* this value is NOT off by 16 */ uint32_t ret = s->RxBufAddr; DPRINTF("RxBufAddr read val=0x%04x\n", ret); return ret; } static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val) { DPRINTF("RxBuf write val=0x%08x\n", val); s->RxBuf = val; /* may need to reset rxring here */ } static uint32_t rtl8139_RxBuf_read(RTL8139State *s) { uint32_t ret = s->RxBuf; DPRINTF("RxBuf read val=0x%08x\n", ret); return ret; } static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val) { DPRINTF("IntrMask write(w) val=0x%04x\n", val); /* mask unwritable bits */ val = SET_MASKED(val, 0x1e00, s->IntrMask); s->IntrMask = val; rtl8139_update_irq(s); } static uint32_t rtl8139_IntrMask_read(RTL8139State *s) { uint32_t ret = s->IntrMask; DPRINTF("IntrMask read(w) val=0x%04x\n", ret); return ret; } static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val) { DPRINTF("IntrStatus write(w) val=0x%04x\n", val); #if 0 /* writing to ISR has no effect */ return; #else uint16_t newStatus = s->IntrStatus & ~val; /* mask unwritable bits */ newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus); /* writing 1 to interrupt status register bit clears it */ s->IntrStatus = 0; rtl8139_update_irq(s); s->IntrStatus = newStatus; rtl8139_set_next_tctr_time(s); rtl8139_update_irq(s); #endif } static uint32_t rtl8139_IntrStatus_read(RTL8139State *s) { uint32_t ret = s->IntrStatus; DPRINTF("IntrStatus read(w) val=0x%04x\n", ret); #if 0 /* reading ISR clears all interrupts */ s->IntrStatus = 0; rtl8139_update_irq(s); #endif return ret; } static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val) { DPRINTF("MultiIntr write(w) val=0x%04x\n", val); /* mask unwritable bits */ val = SET_MASKED(val, 0xf000, s->MultiIntr); s->MultiIntr = val; } static uint32_t rtl8139_MultiIntr_read(RTL8139State *s) { uint32_t ret = s->MultiIntr; DPRINTF("MultiIntr read(w) val=0x%04x\n", ret); return ret; } static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val) { RTL8139State *s = opaque; switch (addr) { case MAC0 ... MAC0+4: s->phys[addr - MAC0] = val; break; case MAC0+5: s->phys[addr - MAC0] = val; qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys); break; case MAC0+6 ... MAC0+7: /* reserved */ break; case MAR0 ... MAR0+7: s->mult[addr - MAR0] = val; break; case ChipCmd: rtl8139_ChipCmd_write(s, val); break; case Cfg9346: rtl8139_Cfg9346_write(s, val); break; case TxConfig: /* windows driver sometimes writes using byte-lenth call */ rtl8139_TxConfig_writeb(s, val); break; case Config0: rtl8139_Config0_write(s, val); break; case Config1: rtl8139_Config1_write(s, val); break; case Config3: rtl8139_Config3_write(s, val); break; case Config4: rtl8139_Config4_write(s, val); break; case Config5: rtl8139_Config5_write(s, val); break; case MediaStatus: /* ignore */ DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n", val); break; case HltClk: DPRINTF("HltClk write val=0x%08x\n", val); if (val == 'R') { s->clock_enabled = 1; } else if (val == 'H') { s->clock_enabled = 0; } break; case TxThresh: DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val); s->TxThresh = val; break; case TxPoll: DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val); if (val & (1 << 7)) { DPRINTF("C+ TxPoll high priority transmission (not " "implemented)\n"); //rtl8139_cplus_transmit(s); } if (val & (1 << 6)) { DPRINTF("C+ TxPoll normal priority transmission\n"); rtl8139_cplus_transmit(s); } break; default: DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr, val); break; } } static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val) { RTL8139State *s = opaque; switch (addr) { case IntrMask: rtl8139_IntrMask_write(s, val); break; case IntrStatus: rtl8139_IntrStatus_write(s, val); break; case MultiIntr: rtl8139_MultiIntr_write(s, val); break; case RxBufPtr: rtl8139_RxBufPtr_write(s, val); break; case BasicModeCtrl: rtl8139_BasicModeCtrl_write(s, val); break; case BasicModeStatus: rtl8139_BasicModeStatus_write(s, val); break; case NWayAdvert: DPRINTF("NWayAdvert write(w) val=0x%04x\n", val); s->NWayAdvert = val; break; case NWayLPAR: DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val); break; case NWayExpansion: DPRINTF("NWayExpansion write(w) val=0x%04x\n", val); s->NWayExpansion = val; break; case CpCmd: rtl8139_CpCmd_write(s, val); break; case IntrMitigate: rtl8139_IntrMitigate_write(s, val); break; default: DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n", addr, val); rtl8139_io_writeb(opaque, addr, val & 0xff); rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff); break; } } static void rtl8139_set_next_tctr_time(RTL8139State *s) { const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32; DPRINTF("entered rtl8139_set_next_tctr_time\n"); /* This function is called at least once per period, so it is a good * place to update the timer base. * * After one iteration of this loop the value in the Timer register does * not change, but the device model is counting up by 2^32 ticks (approx. * 130 seconds). */ while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) { s->TCTR_base += ns_per_period; } if (!s->TimerInt) { timer_del(s->timer); } else { uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD; if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) { delta += ns_per_period; } timer_mod(s->timer, s->TCTR_base + delta); } } static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val) { RTL8139State *s = opaque; switch (addr) { case RxMissed: DPRINTF("RxMissed clearing on write\n"); s->RxMissed = 0; break; case TxConfig: rtl8139_TxConfig_write(s, val); break; case RxConfig: rtl8139_RxConfig_write(s, val); break; case TxStatus0 ... TxStatus0+4*4-1: rtl8139_TxStatus_write(s, addr-TxStatus0, val); break; case TxAddr0 ... TxAddr0+4*4-1: rtl8139_TxAddr_write(s, addr-TxAddr0, val); break; case RxBuf: rtl8139_RxBuf_write(s, val); break; case RxRingAddrLO: DPRINTF("C+ RxRing low bits write val=0x%08x\n", val); s->RxRingAddrLO = val; break; case RxRingAddrHI: DPRINTF("C+ RxRing high bits write val=0x%08x\n", val); s->RxRingAddrHI = val; break; case Timer: DPRINTF("TCTR Timer reset on write\n"); s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); rtl8139_set_next_tctr_time(s); break; case FlashReg: DPRINTF("FlashReg TimerInt write val=0x%08x\n", val); if (s->TimerInt != val) { s->TimerInt = val; rtl8139_set_next_tctr_time(s); } break; default: DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n", addr, val); rtl8139_io_writeb(opaque, addr, val & 0xff); rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff); rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff); rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff); break; } } static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr) { RTL8139State *s = opaque; int ret; switch (addr) { case MAC0 ... MAC0+5: ret = s->phys[addr - MAC0]; break; case MAC0+6 ... MAC0+7: ret = 0; break; case MAR0 ... MAR0+7: ret = s->mult[addr - MAR0]; break; case TxStatus0 ... TxStatus0+4*4-1: ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0, addr, 1); break; case ChipCmd: ret = rtl8139_ChipCmd_read(s); break; case Cfg9346: ret = rtl8139_Cfg9346_read(s); break; case Config0: ret = rtl8139_Config0_read(s); break; case Config1: ret = rtl8139_Config1_read(s); break; case Config3: ret = rtl8139_Config3_read(s); break; case Config4: ret = rtl8139_Config4_read(s); break; case Config5: ret = rtl8139_Config5_read(s); break; case MediaStatus: /* The LinkDown bit of MediaStatus is inverse with link status */ ret = 0xd0 | (~s->BasicModeStatus & 0x04); DPRINTF("MediaStatus read 0x%x\n", ret); break; case HltClk: ret = s->clock_enabled; DPRINTF("HltClk read 0x%x\n", ret); break; case PCIRevisionID: ret = RTL8139_PCI_REVID; DPRINTF("PCI Revision ID read 0x%x\n", ret); break; case TxThresh: ret = s->TxThresh; DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret); break; case 0x43: /* Part of TxConfig register. Windows driver tries to read it */ ret = s->TxConfig >> 24; DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret); break; default: DPRINTF("not implemented read(b) addr=0x%x\n", addr); ret = 0; break; } return ret; } static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr) { RTL8139State *s = opaque; uint32_t ret; switch (addr) { case TxAddr0 ... TxAddr0+4*4-1: ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2); break; case IntrMask: ret = rtl8139_IntrMask_read(s); break; case IntrStatus: ret = rtl8139_IntrStatus_read(s); break; case MultiIntr: ret = rtl8139_MultiIntr_read(s); break; case RxBufPtr: ret = rtl8139_RxBufPtr_read(s); break; case RxBufAddr: ret = rtl8139_RxBufAddr_read(s); break; case BasicModeCtrl: ret = rtl8139_BasicModeCtrl_read(s); break; case BasicModeStatus: ret = rtl8139_BasicModeStatus_read(s); break; case NWayAdvert: ret = s->NWayAdvert; DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret); break; case NWayLPAR: ret = s->NWayLPAR; DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret); break; case NWayExpansion: ret = s->NWayExpansion; DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret); break; case CpCmd: ret = rtl8139_CpCmd_read(s); break; case IntrMitigate: ret = rtl8139_IntrMitigate_read(s); break; case TxSummary: ret = rtl8139_TSAD_read(s); break; case CSCR: ret = rtl8139_CSCR_read(s); break; default: DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr); ret = rtl8139_io_readb(opaque, addr); ret |= rtl8139_io_readb(opaque, addr + 1) << 8; DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret); break; } return ret; } static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr) { RTL8139State *s = opaque; uint32_t ret; switch (addr) { case RxMissed: ret = s->RxMissed; DPRINTF("RxMissed read val=0x%08x\n", ret); break; case TxConfig: ret = rtl8139_TxConfig_read(s); break; case RxConfig: ret = rtl8139_RxConfig_read(s); break; case TxStatus0 ... TxStatus0+4*4-1: ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0, addr, 4); break; case TxAddr0 ... TxAddr0+4*4-1: ret = rtl8139_TxAddr_read(s, addr-TxAddr0); break; case RxBuf: ret = rtl8139_RxBuf_read(s); break; case RxRingAddrLO: ret = s->RxRingAddrLO; DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret); break; case RxRingAddrHI: ret = s->RxRingAddrHI; DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret); break; case Timer: ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) / PCI_PERIOD; DPRINTF("TCTR Timer read val=0x%08x\n", ret); break; case FlashReg: ret = s->TimerInt; DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret); break; default: DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr); ret = rtl8139_io_readb(opaque, addr); ret |= rtl8139_io_readb(opaque, addr + 1) << 8; ret |= rtl8139_io_readb(opaque, addr + 2) << 16; ret |= rtl8139_io_readb(opaque, addr + 3) << 24; DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret); break; } return ret; } /* */ static void rtl8139_mmio_writeb(void *opaque, hwaddr addr, uint32_t val) { rtl8139_io_writeb(opaque, addr & 0xFF, val); } static void rtl8139_mmio_writew(void *opaque, hwaddr addr, uint32_t val) { rtl8139_io_writew(opaque, addr & 0xFF, val); } static void rtl8139_mmio_writel(void *opaque, hwaddr addr, uint32_t val) { rtl8139_io_writel(opaque, addr & 0xFF, val); } static uint32_t rtl8139_mmio_readb(void *opaque, hwaddr addr) { return rtl8139_io_readb(opaque, addr & 0xFF); } static uint32_t rtl8139_mmio_readw(void *opaque, hwaddr addr) { uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF); return val; } static uint32_t rtl8139_mmio_readl(void *opaque, hwaddr addr) { uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF); return val; } static int rtl8139_post_load(void *opaque, int version_id) { RTL8139State* s = opaque; rtl8139_set_next_tctr_time(s); if (version_id < 4) { s->cplus_enabled = s->CpCmd != 0; } /* nc.link_down can't be migrated, so infer link_down according * to link status bit in BasicModeStatus */ qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0; return 0; } static bool rtl8139_hotplug_ready_needed(void *opaque) { return qdev_machine_modified(); } static const VMStateDescription vmstate_rtl8139_hotplug_ready ={ .name = "rtl8139/hotplug_ready", .version_id = 1, .minimum_version_id = 1, .needed = rtl8139_hotplug_ready_needed, .fields = (VMStateField[]) { VMSTATE_END_OF_LIST() } }; static void rtl8139_pre_save(void *opaque) { RTL8139State* s = opaque; int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); /* for migration to older versions */ s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD; s->rtl8139_mmio_io_addr_dummy = 0; } static const VMStateDescription vmstate_rtl8139 = { .name = "rtl8139", .version_id = 4, .minimum_version_id = 3, .post_load = rtl8139_post_load, .pre_save = rtl8139_pre_save, .fields = (VMStateField[]) { VMSTATE_PCI_DEVICE(parent_obj, RTL8139State), VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6), VMSTATE_BUFFER(mult, RTL8139State), VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4), VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4), VMSTATE_UINT32(RxBuf, RTL8139State), VMSTATE_UINT32(RxBufferSize, RTL8139State), VMSTATE_UINT32(RxBufPtr, RTL8139State), VMSTATE_UINT32(RxBufAddr, RTL8139State), VMSTATE_UINT16(IntrStatus, RTL8139State), VMSTATE_UINT16(IntrMask, RTL8139State), VMSTATE_UINT32(TxConfig, RTL8139State), VMSTATE_UINT32(RxConfig, RTL8139State), VMSTATE_UINT32(RxMissed, RTL8139State), VMSTATE_UINT16(CSCR, RTL8139State), VMSTATE_UINT8(Cfg9346, RTL8139State), VMSTATE_UINT8(Config0, RTL8139State), VMSTATE_UINT8(Config1, RTL8139State), VMSTATE_UINT8(Config3, RTL8139State), VMSTATE_UINT8(Config4, RTL8139State), VMSTATE_UINT8(Config5, RTL8139State), VMSTATE_UINT8(clock_enabled, RTL8139State), VMSTATE_UINT8(bChipCmdState, RTL8139State), VMSTATE_UINT16(MultiIntr, RTL8139State), VMSTATE_UINT16(BasicModeCtrl, RTL8139State), VMSTATE_UINT16(BasicModeStatus, RTL8139State), VMSTATE_UINT16(NWayAdvert, RTL8139State), VMSTATE_UINT16(NWayLPAR, RTL8139State), VMSTATE_UINT16(NWayExpansion, RTL8139State), VMSTATE_UINT16(CpCmd, RTL8139State), VMSTATE_UINT8(TxThresh, RTL8139State), VMSTATE_UNUSED(4), VMSTATE_MACADDR(conf.macaddr, RTL8139State), VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State), VMSTATE_UINT32(currTxDesc, RTL8139State), VMSTATE_UINT32(currCPlusRxDesc, RTL8139State), VMSTATE_UINT32(currCPlusTxDesc, RTL8139State), VMSTATE_UINT32(RxRingAddrLO, RTL8139State), VMSTATE_UINT32(RxRingAddrHI, RTL8139State), VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE), VMSTATE_INT32(eeprom.mode, RTL8139State), VMSTATE_UINT32(eeprom.tick, RTL8139State), VMSTATE_UINT8(eeprom.address, RTL8139State), VMSTATE_UINT16(eeprom.input, RTL8139State), VMSTATE_UINT16(eeprom.output, RTL8139State), VMSTATE_UINT8(eeprom.eecs, RTL8139State), VMSTATE_UINT8(eeprom.eesk, RTL8139State), VMSTATE_UINT8(eeprom.eedi, RTL8139State), VMSTATE_UINT8(eeprom.eedo, RTL8139State), VMSTATE_UINT32(TCTR, RTL8139State), VMSTATE_UINT32(TimerInt, RTL8139State), VMSTATE_INT64(TCTR_base, RTL8139State), VMSTATE_STRUCT(tally_counters, RTL8139State, 0, vmstate_tally_counters, RTL8139TallyCounters), VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_rtl8139_hotplug_ready, NULL } }; /***********************************************************/ /* PCI RTL8139 definitions */ static void rtl8139_ioport_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { switch (size) { case 1: rtl8139_io_writeb(opaque, addr, val); break; case 2: rtl8139_io_writew(opaque, addr, val); break; case 4: rtl8139_io_writel(opaque, addr, val); break; } } static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr, unsigned size) { switch (size) { case 1: return rtl8139_io_readb(opaque, addr); case 2: return rtl8139_io_readw(opaque, addr); case 4: return rtl8139_io_readl(opaque, addr); } return -1; } static const MemoryRegionOps rtl8139_io_ops = { .read = rtl8139_ioport_read, .write = rtl8139_ioport_write, .impl = { .min_access_size = 1, .max_access_size = 4, }, .endianness = DEVICE_LITTLE_ENDIAN, }; static const MemoryRegionOps rtl8139_mmio_ops = { .old_mmio = { .read = { rtl8139_mmio_readb, rtl8139_mmio_readw, rtl8139_mmio_readl, }, .write = { rtl8139_mmio_writeb, rtl8139_mmio_writew, rtl8139_mmio_writel, }, }, .endianness = DEVICE_LITTLE_ENDIAN, }; static void rtl8139_timer(void *opaque) { RTL8139State *s = opaque; if (!s->clock_enabled) { DPRINTF(">>> timer: clock is not running\n"); return; } s->IntrStatus |= PCSTimeout; rtl8139_update_irq(s); rtl8139_set_next_tctr_time(s); } static void pci_rtl8139_uninit(PCIDevice *dev) { RTL8139State *s = RTL8139(dev); g_free(s->cplus_txbuffer); s->cplus_txbuffer = NULL; timer_del(s->timer); timer_free(s->timer); qemu_del_nic(s->nic); } static void rtl8139_set_link_status(NetClientState *nc) { RTL8139State *s = qemu_get_nic_opaque(nc); if (nc->link_down) { s->BasicModeStatus &= ~0x04; } else { s->BasicModeStatus |= 0x04; } s->IntrStatus |= RxUnderrun; rtl8139_update_irq(s); } static NetClientInfo net_rtl8139_info = { .type = NET_CLIENT_OPTIONS_KIND_NIC, .size = sizeof(NICState), .can_receive = rtl8139_can_receive, .receive = rtl8139_receive, .link_status_changed = rtl8139_set_link_status, }; static void pci_rtl8139_realize(PCIDevice *dev, Error **errp) { RTL8139State *s = RTL8139(dev); DeviceState *d = DEVICE(dev); uint8_t *pci_conf; pci_conf = dev->config; pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ /* TODO: start of capability list, but no capability * list bit in status register, and offset 0xdc seems unused. */ pci_conf[PCI_CAPABILITY_LIST] = 0xdc; memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s, "rtl8139", 0x100); memory_region_init_io(&s->bar_mem, OBJECT(s), &rtl8139_mmio_ops, s, "rtl8139", 0x100); pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io); pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem); qemu_macaddr_default_if_unset(&s->conf.macaddr); /* prepare eeprom */ s->eeprom.contents[0] = 0x8129; #if 1 /* PCI vendor and device ID should be mirrored here */ s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK; s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139; #endif s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8; s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8; s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8; s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf, object_get_typename(OBJECT(dev)), d->id, s); qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); s->cplus_txbuffer = NULL; s->cplus_txbuffer_len = 0; s->cplus_txbuffer_offset = 0; s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s); } static void rtl8139_instance_init(Object *obj) { RTL8139State *s = RTL8139(obj); device_add_bootindex_property(obj, &s->conf.bootindex, "bootindex", "/ethernet-phy@0", DEVICE(obj), NULL); } static Property rtl8139_properties[] = { DEFINE_NIC_PROPERTIES(RTL8139State, conf), DEFINE_PROP_END_OF_LIST(), }; static void rtl8139_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); k->realize = pci_rtl8139_realize; k->exit = pci_rtl8139_uninit; k->romfile = "efi-rtl8139.rom"; k->vendor_id = PCI_VENDOR_ID_REALTEK; k->device_id = PCI_DEVICE_ID_REALTEK_8139; k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */ k->class_id = PCI_CLASS_NETWORK_ETHERNET; dc->reset = rtl8139_reset; dc->vmsd = &vmstate_rtl8139; dc->props = rtl8139_properties; set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); } static const TypeInfo rtl8139_info = { .name = TYPE_RTL8139, .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(RTL8139State), .class_init = rtl8139_class_init, .instance_init = rtl8139_instance_init, }; static void rtl8139_register_types(void) { type_register_static(&rtl8139_info); } type_init(rtl8139_register_types)