/* * QEMU PowerMac CUDA device support * * Copyright (c) 2004-2007 Fabrice Bellard * Copyright (c) 2007 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu-common.h" #include "hw/ppc/mac.h" #include "hw/qdev-properties.h" #include "migration/vmstate.h" #include "hw/input/adb.h" #include "hw/misc/mos6522.h" #include "hw/misc/macio/cuda.h" #include "qemu/timer.h" #include "sysemu/runstate.h" #include "qapi/error.h" #include "qemu/cutils.h" #include "qemu/log.h" #include "qemu/module.h" #include "trace.h" /* Bits in B data register: all active low */ #define TREQ 0x08 /* Transfer request (input) */ #define TACK 0x10 /* Transfer acknowledge (output) */ #define TIP 0x20 /* Transfer in progress (output) */ /* commands (1st byte) */ #define ADB_PACKET 0 #define CUDA_PACKET 1 #define ERROR_PACKET 2 #define TIMER_PACKET 3 #define POWER_PACKET 4 #define MACIIC_PACKET 5 #define PMU_PACKET 6 #define CUDA_TIMER_FREQ (4700000 / 6) /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */ #define RTC_OFFSET 2082844800 static void cuda_receive_packet_from_host(CUDAState *s, const uint8_t *data, int len); /* MacOS uses timer 1 for calibration on startup, so we use * the timebase frequency and cuda_get_counter_value() with * cuda_get_load_time() to steer MacOS to calculate calibrate its timers * correctly for both TCG and KVM (see commit b981289c49 "PPC: Cuda: Use cuda * timer to expose tbfreq to guest" for more information) */ static uint64_t cuda_get_counter_value(MOS6522State *s, MOS6522Timer *ti) { MOS6522CUDAState *mcs = container_of(s, MOS6522CUDAState, parent_obj); CUDAState *cs = container_of(mcs, CUDAState, mos6522_cuda); /* Reverse of the tb calculation algorithm that Mac OS X uses on bootup */ uint64_t tb_diff = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cs->tb_frequency, NANOSECONDS_PER_SECOND) - ti->load_time; return (tb_diff * 0xBF401675E5DULL) / (cs->tb_frequency << 24); } static uint64_t cuda_get_load_time(MOS6522State *s, MOS6522Timer *ti) { MOS6522CUDAState *mcs = container_of(s, MOS6522CUDAState, parent_obj); CUDAState *cs = container_of(mcs, CUDAState, mos6522_cuda); uint64_t load_time = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cs->tb_frequency, NANOSECONDS_PER_SECOND); return load_time; } static void cuda_set_sr_int(void *opaque) { CUDAState *s = opaque; MOS6522CUDAState *mcs = &s->mos6522_cuda; MOS6522State *ms = MOS6522(mcs); MOS6522DeviceClass *mdc = MOS6522_DEVICE_GET_CLASS(ms); mdc->set_sr_int(ms); } static void cuda_delay_set_sr_int(CUDAState *s) { int64_t expire; trace_cuda_delay_set_sr_int(); expire = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->sr_delay_ns; timer_mod(s->sr_delay_timer, expire); } /* NOTE: TIP and TREQ are negated */ static void cuda_update(CUDAState *s) { MOS6522CUDAState *mcs = &s->mos6522_cuda; MOS6522State *ms = MOS6522(mcs); int packet_received, len; packet_received = 0; if (!(ms->b & TIP)) { /* transfer requested from host */ if (ms->acr & SR_OUT) { /* data output */ if ((ms->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) { if (s->data_out_index < sizeof(s->data_out)) { trace_cuda_data_send(ms->sr); s->data_out[s->data_out_index++] = ms->sr; cuda_delay_set_sr_int(s); } } } else { if (s->data_in_index < s->data_in_size) { /* data input */ if ((ms->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) { ms->sr = s->data_in[s->data_in_index++]; trace_cuda_data_recv(ms->sr); /* indicate end of transfer */ if (s->data_in_index >= s->data_in_size) { ms->b = (ms->b | TREQ); } cuda_delay_set_sr_int(s); } } } } else { /* no transfer requested: handle sync case */ if ((s->last_b & TIP) && (ms->b & TACK) != (s->last_b & TACK)) { /* update TREQ state each time TACK change state */ if (ms->b & TACK) { ms->b = (ms->b | TREQ); } else { ms->b = (ms->b & ~TREQ); } cuda_delay_set_sr_int(s); } else { if (!(s->last_b & TIP)) { /* handle end of host to cuda transfer */ packet_received = (s->data_out_index > 0); /* always an IRQ at the end of transfer */ cuda_delay_set_sr_int(s); } /* signal if there is data to read */ if (s->data_in_index < s->data_in_size) { ms->b = (ms->b & ~TREQ); } } } s->last_acr = ms->acr; s->last_b = ms->b; /* NOTE: cuda_receive_packet_from_host() can call cuda_update() recursively */ if (packet_received) { len = s->data_out_index; s->data_out_index = 0; cuda_receive_packet_from_host(s, s->data_out, len); } } static void cuda_send_packet_to_host(CUDAState *s, const uint8_t *data, int len) { int i; trace_cuda_packet_send(len); for (i = 0; i < len; i++) { trace_cuda_packet_send_data(i, data[i]); } memcpy(s->data_in, data, len); s->data_in_size = len; s->data_in_index = 0; cuda_update(s); cuda_delay_set_sr_int(s); } static void cuda_adb_poll(void *opaque) { CUDAState *s = opaque; uint8_t obuf[ADB_MAX_OUT_LEN + 2]; int olen; olen = adb_poll(&s->adb_bus, obuf + 2, s->adb_poll_mask); if (olen > 0) { obuf[0] = ADB_PACKET; obuf[1] = 0x40; /* polled data */ cuda_send_packet_to_host(s, obuf, olen + 2); } timer_mod(s->adb_poll_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms))); } /* description of commands */ typedef struct CudaCommand { uint8_t command; const char *name; bool (*handler)(CUDAState *s, const uint8_t *in_args, int in_len, uint8_t *out_args, int *out_len); } CudaCommand; static bool cuda_cmd_autopoll(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { int autopoll; if (in_len != 1) { return false; } autopoll = (in_data[0] != 0); if (autopoll != s->autopoll) { s->autopoll = autopoll; if (autopoll) { timer_mod(s->adb_poll_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms))); } else { timer_del(s->adb_poll_timer); } } return true; } static bool cuda_cmd_set_autorate(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { if (in_len != 1) { return false; } /* we don't want a period of 0 ms */ /* FIXME: check what real hardware does */ if (in_data[0] == 0) { return false; } s->autopoll_rate_ms = in_data[0]; if (s->autopoll) { timer_mod(s->adb_poll_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms))); } return true; } static bool cuda_cmd_set_device_list(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { if (in_len != 2) { return false; } s->adb_poll_mask = (((uint16_t)in_data[0]) << 8) | in_data[1]; return true; } static bool cuda_cmd_powerdown(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { if (in_len != 0) { return false; } qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); return true; } static bool cuda_cmd_reset_system(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { if (in_len != 0) { return false; } qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); return true; } static bool cuda_cmd_set_file_server_flag(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { if (in_len != 1) { return false; } qemu_log_mask(LOG_UNIMP, "CUDA: unimplemented command FILE_SERVER_FLAG %d\n", in_data[0]); return true; } static bool cuda_cmd_set_power_message(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { if (in_len != 1) { return false; } qemu_log_mask(LOG_UNIMP, "CUDA: unimplemented command SET_POWER_MESSAGE %d\n", in_data[0]); return true; } static bool cuda_cmd_get_time(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { uint32_t ti; if (in_len != 0) { return false; } ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / NANOSECONDS_PER_SECOND); out_data[0] = ti >> 24; out_data[1] = ti >> 16; out_data[2] = ti >> 8; out_data[3] = ti; *out_len = 4; return true; } static bool cuda_cmd_set_time(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { uint32_t ti; if (in_len != 4) { return false; } ti = (((uint32_t)in_data[0]) << 24) + (((uint32_t)in_data[1]) << 16) + (((uint32_t)in_data[2]) << 8) + in_data[3]; s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / NANOSECONDS_PER_SECOND); return true; } static const CudaCommand handlers[] = { { CUDA_AUTOPOLL, "AUTOPOLL", cuda_cmd_autopoll }, { CUDA_SET_AUTO_RATE, "SET_AUTO_RATE", cuda_cmd_set_autorate }, { CUDA_SET_DEVICE_LIST, "SET_DEVICE_LIST", cuda_cmd_set_device_list }, { CUDA_POWERDOWN, "POWERDOWN", cuda_cmd_powerdown }, { CUDA_RESET_SYSTEM, "RESET_SYSTEM", cuda_cmd_reset_system }, { CUDA_FILE_SERVER_FLAG, "FILE_SERVER_FLAG", cuda_cmd_set_file_server_flag }, { CUDA_SET_POWER_MESSAGES, "SET_POWER_MESSAGES", cuda_cmd_set_power_message }, { CUDA_GET_TIME, "GET_TIME", cuda_cmd_get_time }, { CUDA_SET_TIME, "SET_TIME", cuda_cmd_set_time }, }; static void cuda_receive_packet(CUDAState *s, const uint8_t *data, int len) { uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] }; int i, out_len = 0; for (i = 0; i < ARRAY_SIZE(handlers); i++) { const CudaCommand *desc = &handlers[i]; if (desc->command == data[0]) { trace_cuda_receive_packet_cmd(desc->name); out_len = 0; if (desc->handler(s, data + 1, len - 1, obuf + 3, &out_len)) { cuda_send_packet_to_host(s, obuf, 3 + out_len); } else { qemu_log_mask(LOG_GUEST_ERROR, "CUDA: %s: wrong parameters %d\n", desc->name, len); obuf[0] = ERROR_PACKET; obuf[1] = 0x5; /* bad parameters */ obuf[2] = CUDA_PACKET; obuf[3] = data[0]; cuda_send_packet_to_host(s, obuf, 4); } return; } } qemu_log_mask(LOG_GUEST_ERROR, "CUDA: unknown command 0x%02x\n", data[0]); obuf[0] = ERROR_PACKET; obuf[1] = 0x2; /* unknown command */ obuf[2] = CUDA_PACKET; obuf[3] = data[0]; cuda_send_packet_to_host(s, obuf, 4); } static void cuda_receive_packet_from_host(CUDAState *s, const uint8_t *data, int len) { int i; trace_cuda_packet_receive(len); for (i = 0; i < len; i++) { trace_cuda_packet_receive_data(i, data[i]); } switch(data[0]) { case ADB_PACKET: { uint8_t obuf[ADB_MAX_OUT_LEN + 3]; int olen; olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1); if (olen > 0) { obuf[0] = ADB_PACKET; obuf[1] = 0x00; cuda_send_packet_to_host(s, obuf, olen + 2); } else { /* error */ obuf[0] = ADB_PACKET; obuf[1] = -olen; obuf[2] = data[1]; olen = 0; cuda_send_packet_to_host(s, obuf, olen + 3); } } break; case CUDA_PACKET: cuda_receive_packet(s, data + 1, len - 1); break; } } static uint64_t mos6522_cuda_read(void *opaque, hwaddr addr, unsigned size) { CUDAState *s = opaque; MOS6522CUDAState *mcs = &s->mos6522_cuda; MOS6522State *ms = MOS6522(mcs); addr = (addr >> 9) & 0xf; return mos6522_read(ms, addr, size); } static void mos6522_cuda_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { CUDAState *s = opaque; MOS6522CUDAState *mcs = &s->mos6522_cuda; MOS6522State *ms = MOS6522(mcs); addr = (addr >> 9) & 0xf; mos6522_write(ms, addr, val, size); } static const MemoryRegionOps mos6522_cuda_ops = { .read = mos6522_cuda_read, .write = mos6522_cuda_write, .endianness = DEVICE_BIG_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 1, }, }; static const VMStateDescription vmstate_cuda = { .name = "cuda", .version_id = 5, .minimum_version_id = 5, .fields = (VMStateField[]) { VMSTATE_STRUCT(mos6522_cuda.parent_obj, CUDAState, 0, vmstate_mos6522, MOS6522State), VMSTATE_UINT8(last_b, CUDAState), VMSTATE_UINT8(last_acr, CUDAState), VMSTATE_INT32(data_in_size, CUDAState), VMSTATE_INT32(data_in_index, CUDAState), VMSTATE_INT32(data_out_index, CUDAState), VMSTATE_UINT8(autopoll, CUDAState), VMSTATE_UINT8(autopoll_rate_ms, CUDAState), VMSTATE_UINT16(adb_poll_mask, CUDAState), VMSTATE_BUFFER(data_in, CUDAState), VMSTATE_BUFFER(data_out, CUDAState), VMSTATE_UINT32(tick_offset, CUDAState), VMSTATE_TIMER_PTR(adb_poll_timer, CUDAState), VMSTATE_TIMER_PTR(sr_delay_timer, CUDAState), VMSTATE_END_OF_LIST() } }; static void cuda_reset(DeviceState *dev) { CUDAState *s = CUDA(dev); s->data_in_size = 0; s->data_in_index = 0; s->data_out_index = 0; s->autopoll = 0; } static void cuda_realize(DeviceState *dev, Error **errp) { CUDAState *s = CUDA(dev); Error *err = NULL; SysBusDevice *sbd; struct tm tm; object_property_set_bool(OBJECT(&s->mos6522_cuda), true, "realized", &err); if (err) { error_propagate(errp, err); return; } /* Pass IRQ from 6522 */ sbd = SYS_BUS_DEVICE(s); sysbus_pass_irq(sbd, SYS_BUS_DEVICE(&s->mos6522_cuda)); qemu_get_timedate(&tm, 0); s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET; s->sr_delay_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_set_sr_int, s); s->sr_delay_ns = 20 * SCALE_US; s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s); s->adb_poll_mask = 0xffff; s->autopoll_rate_ms = 20; } static void cuda_init(Object *obj) { CUDAState *s = CUDA(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(obj); sysbus_init_child_obj(obj, "mos6522-cuda", &s->mos6522_cuda, sizeof(s->mos6522_cuda), TYPE_MOS6522_CUDA); memory_region_init_io(&s->mem, obj, &mos6522_cuda_ops, s, "cuda", 0x2000); sysbus_init_mmio(sbd, &s->mem); qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS, DEVICE(obj), "adb.0"); } static Property cuda_properties[] = { DEFINE_PROP_UINT64("timebase-frequency", CUDAState, tb_frequency, 0), DEFINE_PROP_END_OF_LIST() }; static void cuda_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); dc->realize = cuda_realize; dc->reset = cuda_reset; dc->vmsd = &vmstate_cuda; device_class_set_props(dc, cuda_properties); set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); } static const TypeInfo cuda_type_info = { .name = TYPE_CUDA, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(CUDAState), .instance_init = cuda_init, .class_init = cuda_class_init, }; static void mos6522_cuda_portB_write(MOS6522State *s) { MOS6522CUDAState *mcs = container_of(s, MOS6522CUDAState, parent_obj); CUDAState *cs = container_of(mcs, CUDAState, mos6522_cuda); cuda_update(cs); } static void mos6522_cuda_reset(DeviceState *dev) { MOS6522State *ms = MOS6522(dev); MOS6522DeviceClass *mdc = MOS6522_DEVICE_GET_CLASS(ms); mdc->parent_reset(dev); ms->timers[0].frequency = CUDA_TIMER_FREQ; ms->timers[1].frequency = (SCALE_US * 6000) / 4700; } static void mos6522_cuda_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); MOS6522DeviceClass *mdc = MOS6522_DEVICE_CLASS(oc); dc->reset = mos6522_cuda_reset; mdc->portB_write = mos6522_cuda_portB_write; mdc->get_timer1_counter_value = cuda_get_counter_value; mdc->get_timer2_counter_value = cuda_get_counter_value; mdc->get_timer1_load_time = cuda_get_load_time; mdc->get_timer2_load_time = cuda_get_load_time; } static const TypeInfo mos6522_cuda_type_info = { .name = TYPE_MOS6522_CUDA, .parent = TYPE_MOS6522, .instance_size = sizeof(MOS6522CUDAState), .class_init = mos6522_cuda_class_init, }; static void cuda_register_types(void) { type_register_static(&mos6522_cuda_type_info); type_register_static(&cuda_type_info); } type_init(cuda_register_types)