/* * QEMU/MIPS pseudo-board * * emulates a simple machine with ISA-like bus. * ISA IO space mapped to the 0x14000000 (PHYS) and * ISA memory at the 0x10000000 (PHYS, 16Mb in size). * All peripherial devices are attached to this "bus" with * the standard PC ISA addresses. */ #include "hw.h" #include "mips.h" #include "pc.h" #include "isa.h" #include "net.h" #include "sysemu.h" #include "boards.h" #include "flash.h" #ifdef TARGET_WORDS_BIGENDIAN #define BIOS_FILENAME "mips_bios.bin" #else #define BIOS_FILENAME "mipsel_bios.bin" #endif #define PHYS_TO_VIRT(x) ((x) | ~(target_ulong)0x7fffffff) #define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000)) #define MAX_IDE_BUS 2 static const int ide_iobase[2] = { 0x1f0, 0x170 }; static const int ide_iobase2[2] = { 0x3f6, 0x376 }; static const int ide_irq[2] = { 14, 15 }; static int serial_io[MAX_SERIAL_PORTS] = { 0x3f8, 0x2f8, 0x3e8, 0x2e8 }; static int serial_irq[MAX_SERIAL_PORTS] = { 4, 3, 4, 3 }; extern FILE *logfile; static PITState *pit; /* PIT i8254 */ /* i8254 PIT is attached to the IRQ0 at PIC i8259 */ static struct _loaderparams { int ram_size; const char *kernel_filename; const char *kernel_cmdline; const char *initrd_filename; } loaderparams; static void mips_qemu_writel (void *opaque, target_phys_addr_t addr, uint32_t val) { if ((addr & 0xffff) == 0 && val == 42) qemu_system_reset_request (); else if ((addr & 0xffff) == 4 && val == 42) qemu_system_shutdown_request (); } static uint32_t mips_qemu_readl (void *opaque, target_phys_addr_t addr) { return 0; } static CPUWriteMemoryFunc *mips_qemu_write[] = { &mips_qemu_writel, &mips_qemu_writel, &mips_qemu_writel, }; static CPUReadMemoryFunc *mips_qemu_read[] = { &mips_qemu_readl, &mips_qemu_readl, &mips_qemu_readl, }; static int mips_qemu_iomemtype = 0; static void load_kernel (CPUState *env) { int64_t entry, kernel_low, kernel_high; long kernel_size, initrd_size; ram_addr_t initrd_offset; kernel_size = load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND, &entry, &kernel_low, &kernel_high); if (kernel_size >= 0) { if ((entry & ~0x7fffffffULL) == 0x80000000) entry = (int32_t)entry; env->active_tc.PC = entry; } else { fprintf(stderr, "qemu: could not load kernel '%s'\n", loaderparams.kernel_filename); exit(1); } /* load initrd */ initrd_size = 0; initrd_offset = 0; if (loaderparams.initrd_filename) { initrd_size = get_image_size (loaderparams.initrd_filename); if (initrd_size > 0) { initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK; if (initrd_offset + initrd_size > ram_size) { fprintf(stderr, "qemu: memory too small for initial ram disk '%s'\n", loaderparams.initrd_filename); exit(1); } initrd_size = load_image(loaderparams.initrd_filename, phys_ram_base + initrd_offset); } if (initrd_size == (target_ulong) -1) { fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", loaderparams.initrd_filename); exit(1); } } /* Store command line. */ if (initrd_size > 0) { int ret; ret = sprintf(phys_ram_base + (16 << 20) - 256, "rd_start=0x" TARGET_FMT_lx " rd_size=%li ", PHYS_TO_VIRT((uint32_t)initrd_offset), initrd_size); strcpy (phys_ram_base + (16 << 20) - 256 + ret, loaderparams.kernel_cmdline); } else { strcpy (phys_ram_base + (16 << 20) - 256, loaderparams.kernel_cmdline); } *(int32_t *)(phys_ram_base + (16 << 20) - 260) = tswap32 (0x12345678); *(int32_t *)(phys_ram_base + (16 << 20) - 264) = tswap32 (ram_size); } static void main_cpu_reset(void *opaque) { CPUState *env = opaque; cpu_reset(env); if (loaderparams.kernel_filename) load_kernel (env); } static const int sector_len = 32 * 1024; static void mips_r4k_init (ram_addr_t ram_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { char buf[1024]; unsigned long bios_offset; int bios_size; CPUState *env; RTCState *rtc_state; int i; qemu_irq *i8259; int index; BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; /* init CPUs */ if (cpu_model == NULL) { #ifdef TARGET_MIPS64 cpu_model = "R4000"; #else cpu_model = "24Kf"; #endif } env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find CPU definition\n"); exit(1); } register_savevm("cpu", 0, 3, cpu_save, cpu_load, env); qemu_register_reset(main_cpu_reset, env); /* allocate RAM */ cpu_register_physical_memory(0, ram_size, IO_MEM_RAM); if (!mips_qemu_iomemtype) { mips_qemu_iomemtype = cpu_register_io_memory(0, mips_qemu_read, mips_qemu_write, NULL); } cpu_register_physical_memory(0x1fbf0000, 0x10000, mips_qemu_iomemtype); /* Try to load a BIOS image. If this fails, we continue regardless, but initialize the hardware ourselves. When a kernel gets preloaded we also initialize the hardware, since the BIOS wasn't run. */ bios_offset = ram_size + vga_ram_size; if (bios_name == NULL) bios_name = BIOS_FILENAME; snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name); bios_size = load_image(buf, phys_ram_base + bios_offset); if ((bios_size > 0) && (bios_size <= BIOS_SIZE)) { cpu_register_physical_memory(0x1fc00000, BIOS_SIZE, bios_offset | IO_MEM_ROM); } else if ((index = drive_get_index(IF_PFLASH, 0, 0)) > -1) { uint32_t mips_rom = 0x00400000; cpu_register_physical_memory(0x1fc00000, mips_rom, qemu_ram_alloc(mips_rom) | IO_MEM_ROM); if (!pflash_cfi01_register(0x1fc00000, qemu_ram_alloc(mips_rom), drives_table[index].bdrv, sector_len, mips_rom / sector_len, 4, 0, 0, 0, 0)) { fprintf(stderr, "qemu: Error registering flash memory.\n"); } } else { /* not fatal */ fprintf(stderr, "qemu: Warning, could not load MIPS bios '%s'\n", buf); } if (kernel_filename) { loaderparams.ram_size = ram_size; loaderparams.kernel_filename = kernel_filename; loaderparams.kernel_cmdline = kernel_cmdline; loaderparams.initrd_filename = initrd_filename; load_kernel (env); } /* Init CPU internal devices */ cpu_mips_irq_init_cpu(env); cpu_mips_clock_init(env); cpu_mips_irqctrl_init(); /* The PIC is attached to the MIPS CPU INT0 pin */ i8259 = i8259_init(env->irq[2]); rtc_state = rtc_init(0x70, i8259[8]); /* Register 64 KB of ISA IO space at 0x14000000 */ isa_mmio_init(0x14000000, 0x00010000); isa_mem_base = 0x10000000; pit = pit_init(0x40, i8259[0]); for(i = 0; i < MAX_SERIAL_PORTS; i++) { if (serial_hds[i]) { serial_init(serial_io[i], i8259[serial_irq[i]], 115200, serial_hds[i]); } } isa_vga_init(ds, phys_ram_base + ram_size, ram_size, vga_ram_size); if (nd_table[0].vlan) { if (nd_table[0].model == NULL || strcmp(nd_table[0].model, "ne2k_isa") == 0) { isa_ne2000_init(0x300, i8259[9], &nd_table[0]); } else if (strcmp(nd_table[0].model, "?") == 0) { fprintf(stderr, "qemu: Supported NICs: ne2k_isa\n"); exit (1); } else { fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model); exit (1); } } if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) { fprintf(stderr, "qemu: too many IDE bus\n"); exit(1); } for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) { index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS); if (index != -1) hd[i] = drives_table[index].bdrv; else hd[i] = NULL; } for(i = 0; i < MAX_IDE_BUS; i++) isa_ide_init(ide_iobase[i], ide_iobase2[i], i8259[ide_irq[i]], hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]); i8042_init(i8259[1], i8259[12], 0x60); } QEMUMachine mips_machine = { "mips", "mips r4k platform", mips_r4k_init, VGA_RAM_SIZE + BIOS_SIZE, };