/* * QEMU/MIPS pseudo-board * * emulates a simple machine with ISA-like bus. * ISA IO space mapped to the 0x14000000 (PHYS) and * ISA memory at the 0x10000000 (PHYS, 16Mb in size). * All peripherial devices are attached to this "bus" with * the standard PC ISA addresses. */ #include "hw.h" #include "mips.h" #include "pc.h" #include "isa.h" #include "net.h" #include "sysemu.h" #include "boards.h" #include "flash.h" #include "qemu-log.h" #include "mips-bios.h" #include "ide.h" #include "loader.h" #include "elf.h" #define PHYS_TO_VIRT(x) ((x) | ~(target_ulong)0x7fffffff) #define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000)) #define MAX_IDE_BUS 2 static const int ide_iobase[2] = { 0x1f0, 0x170 }; static const int ide_iobase2[2] = { 0x3f6, 0x376 }; static const int ide_irq[2] = { 14, 15 }; static PITState *pit; /* PIT i8254 */ /* i8254 PIT is attached to the IRQ0 at PIC i8259 */ static struct _loaderparams { int ram_size; const char *kernel_filename; const char *kernel_cmdline; const char *initrd_filename; } loaderparams; static void mips_qemu_writel (void *opaque, target_phys_addr_t addr, uint32_t val) { if ((addr & 0xffff) == 0 && val == 42) qemu_system_reset_request (); else if ((addr & 0xffff) == 4 && val == 42) qemu_system_shutdown_request (); } static uint32_t mips_qemu_readl (void *opaque, target_phys_addr_t addr) { return 0; } static CPUWriteMemoryFunc * const mips_qemu_write[] = { &mips_qemu_writel, &mips_qemu_writel, &mips_qemu_writel, }; static CPUReadMemoryFunc * const mips_qemu_read[] = { &mips_qemu_readl, &mips_qemu_readl, &mips_qemu_readl, }; static int mips_qemu_iomemtype = 0; typedef struct ResetData { CPUState *env; uint64_t vector; } ResetData; static int64_t load_kernel(void) { int64_t entry, kernel_low, kernel_high; long kernel_size, initrd_size; ram_addr_t initrd_offset; int ret; int big_endian; #ifdef TARGET_WORDS_BIGENDIAN big_endian = 1; #else big_endian = 0; #endif kernel_size = load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND, (uint64_t *)&entry, (uint64_t *)&kernel_low, (uint64_t *)&kernel_high, big_endian, ELF_MACHINE, 1); if (kernel_size >= 0) { if ((entry & ~0x7fffffffULL) == 0x80000000) entry = (int32_t)entry; } else { fprintf(stderr, "qemu: could not load kernel '%s'\n", loaderparams.kernel_filename); exit(1); } /* load initrd */ initrd_size = 0; initrd_offset = 0; if (loaderparams.initrd_filename) { initrd_size = get_image_size (loaderparams.initrd_filename); if (initrd_size > 0) { initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK; if (initrd_offset + initrd_size > ram_size) { fprintf(stderr, "qemu: memory too small for initial ram disk '%s'\n", loaderparams.initrd_filename); exit(1); } initrd_size = load_image_targphys(loaderparams.initrd_filename, initrd_offset, ram_size - initrd_offset); } if (initrd_size == (target_ulong) -1) { fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", loaderparams.initrd_filename); exit(1); } } /* Store command line. */ if (initrd_size > 0) { char buf[64]; ret = snprintf(buf, 64, "rd_start=0x" TARGET_FMT_lx " rd_size=%li ", PHYS_TO_VIRT((uint32_t)initrd_offset), initrd_size); cpu_physical_memory_write((16 << 20) - 256, (void *)buf, 64); } else { ret = 0; } pstrcpy_targphys("cmdline", (16 << 20) - 256 + ret, 256, loaderparams.kernel_cmdline); stl_phys((16 << 20) - 260, 0x12345678); stl_phys((16 << 20) - 264, ram_size); return entry; } static void main_cpu_reset(void *opaque) { ResetData *s = (ResetData *)opaque; CPUState *env = s->env; cpu_reset(env); env->active_tc.PC = s->vector; } static const int sector_len = 32 * 1024; static void mips_r4k_init (ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { char *filename; ram_addr_t ram_offset; ram_addr_t bios_offset; int bios_size; CPUState *env; ResetData *reset_info; RTCState *rtc_state; int i; qemu_irq *i8259; DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; DriveInfo *dinfo; /* init CPUs */ if (cpu_model == NULL) { #ifdef TARGET_MIPS64 cpu_model = "R4000"; #else cpu_model = "24Kf"; #endif } env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find CPU definition\n"); exit(1); } reset_info = qemu_mallocz(sizeof(ResetData)); reset_info->env = env; reset_info->vector = env->active_tc.PC; qemu_register_reset(main_cpu_reset, reset_info); /* allocate RAM */ if (ram_size > (256 << 20)) { fprintf(stderr, "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n", ((unsigned int)ram_size / (1 << 20))); exit(1); } ram_offset = qemu_ram_alloc(ram_size); cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM); if (!mips_qemu_iomemtype) { mips_qemu_iomemtype = cpu_register_io_memory(mips_qemu_read, mips_qemu_write, NULL); } cpu_register_physical_memory(0x1fbf0000, 0x10000, mips_qemu_iomemtype); /* Try to load a BIOS image. If this fails, we continue regardless, but initialize the hardware ourselves. When a kernel gets preloaded we also initialize the hardware, since the BIOS wasn't run. */ if (bios_name == NULL) bios_name = BIOS_FILENAME; filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); if (filename) { bios_size = get_image_size(filename); } else { bios_size = -1; } if ((bios_size > 0) && (bios_size <= BIOS_SIZE)) { bios_offset = qemu_ram_alloc(BIOS_SIZE); cpu_register_physical_memory(0x1fc00000, BIOS_SIZE, bios_offset | IO_MEM_ROM); load_image_targphys(filename, 0x1fc00000, BIOS_SIZE); } else if ((dinfo = drive_get(IF_PFLASH, 0, 0)) != NULL) { uint32_t mips_rom = 0x00400000; bios_offset = qemu_ram_alloc(mips_rom); if (!pflash_cfi01_register(0x1fc00000, bios_offset, dinfo->bdrv, sector_len, mips_rom / sector_len, 4, 0, 0, 0, 0)) { fprintf(stderr, "qemu: Error registering flash memory.\n"); } } else { /* not fatal */ fprintf(stderr, "qemu: Warning, could not load MIPS bios '%s'\n", bios_name); } if (filename) { qemu_free(filename); } if (kernel_filename) { loaderparams.ram_size = ram_size; loaderparams.kernel_filename = kernel_filename; loaderparams.kernel_cmdline = kernel_cmdline; loaderparams.initrd_filename = initrd_filename; reset_info->vector = load_kernel(); } /* Init CPU internal devices */ cpu_mips_irq_init_cpu(env); cpu_mips_clock_init(env); /* The PIC is attached to the MIPS CPU INT0 pin */ i8259 = i8259_init(env->irq[2]); isa_bus_new(NULL); isa_bus_irqs(i8259); rtc_state = rtc_init(2000); /* Register 64 KB of ISA IO space at 0x14000000 */ isa_mmio_init(0x14000000, 0x00010000); isa_mem_base = 0x10000000; pit = pit_init(0x40, i8259[0]); for(i = 0; i < MAX_SERIAL_PORTS; i++) { if (serial_hds[i]) { serial_isa_init(i, serial_hds[i]); } } isa_vga_init(); if (nd_table[0].vlan) isa_ne2000_init(0x300, 9, &nd_table[0]); if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) { fprintf(stderr, "qemu: too many IDE bus\n"); exit(1); } for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) { hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS); } for(i = 0; i < MAX_IDE_BUS; i++) isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i], hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]); isa_create_simple("i8042"); } static QEMUMachine mips_machine = { .name = "mips", .desc = "mips r4k platform", .init = mips_r4k_init, }; static void mips_machine_init(void) { qemu_register_machine(&mips_machine); } machine_init(mips_machine_init);