/* * ColdFire Interrupt Controller emulation. * * Copyright (c) 2007 CodeSourcery. * * This code is licenced under the GPL */ #include "hw.h" #include "mcf.h" typedef struct { uint64_t ipr; uint64_t imr; uint64_t ifr; uint64_t enabled; uint8_t icr[64]; CPUState *env; int active_vector; } mcf_intc_state; static void mcf_intc_update(mcf_intc_state *s) { uint64_t active; int i; int best; int best_level; active = (s->ipr | s->ifr) & s->enabled & ~s->imr; best_level = 0; best = 64; if (active) { for (i = 0; i < 64; i++) { if ((active & 1) != 0 && s->icr[i] >= best_level) { best_level = s->icr[i]; best = i; } active >>= 1; } } s->active_vector = ((best == 64) ? 24 : (best + 64)); m68k_set_irq_level(s->env, best_level, s->active_vector); } static uint32_t mcf_intc_read(void *opaque, a_target_phys_addr addr) { int offset; mcf_intc_state *s = (mcf_intc_state *)opaque; offset = addr & 0xff; if (offset >= 0x40 && offset < 0x80) { return s->icr[offset - 0x40]; } switch (offset) { case 0x00: return (uint32_t)(s->ipr >> 32); case 0x04: return (uint32_t)s->ipr; case 0x08: return (uint32_t)(s->imr >> 32); case 0x0c: return (uint32_t)s->imr; case 0x10: return (uint32_t)(s->ifr >> 32); case 0x14: return (uint32_t)s->ifr; case 0xe0: /* SWIACK. */ return s->active_vector; case 0xe1: case 0xe2: case 0xe3: case 0xe4: case 0xe5: case 0xe6: case 0xe7: /* LnIACK */ hw_error("mcf_intc_read: LnIACK not implemented\n"); default: return 0; } } static void mcf_intc_write(void *opaque, a_target_phys_addr addr, uint32_t val) { int offset; mcf_intc_state *s = (mcf_intc_state *)opaque; offset = addr & 0xff; if (offset >= 0x40 && offset < 0x80) { int n = offset - 0x40; s->icr[n] = val; if (val == 0) s->enabled &= ~(1ull << n); else s->enabled |= (1ull << n); mcf_intc_update(s); return; } switch (offset) { case 0x00: case 0x04: /* Ignore IPR writes. */ return; case 0x08: s->imr = (s->imr & 0xffffffff) | ((uint64_t)val << 32); break; case 0x0c: s->imr = (s->imr & 0xffffffff00000000ull) | (uint32_t)val; break; default: hw_error("mcf_intc_write: Bad write offset %d\n", offset); break; } mcf_intc_update(s); } static void mcf_intc_set_irq(void *opaque, int irq, int level) { mcf_intc_state *s = (mcf_intc_state *)opaque; if (irq >= 64) return; if (level) s->ipr |= 1ull << irq; else s->ipr &= ~(1ull << irq); mcf_intc_update(s); } static void mcf_intc_reset(mcf_intc_state *s) { s->imr = ~0ull; s->ipr = 0; s->ifr = 0; s->enabled = 0; memset(s->icr, 0, 64); s->active_vector = 24; } static CPUReadMemoryFunc * const mcf_intc_readfn[] = { mcf_intc_read, mcf_intc_read, mcf_intc_read }; static CPUWriteMemoryFunc * const mcf_intc_writefn[] = { mcf_intc_write, mcf_intc_write, mcf_intc_write }; qemu_irq *mcf_intc_init(a_target_phys_addr base, CPUState *env) { mcf_intc_state *s; int iomemtype; s = qemu_mallocz(sizeof(mcf_intc_state)); s->env = env; mcf_intc_reset(s); iomemtype = cpu_register_io_memory(mcf_intc_readfn, mcf_intc_writefn, s); cpu_register_physical_memory(base, 0x100, iomemtype); return qemu_allocate_irqs(mcf_intc_set_irq, s, 64); }