/* * Motorola ColdFire MCF5206 SoC embedded peripheral emulation. * * Copyright (c) 2007 CodeSourcery. * * This code is licenced under the GPL */ #include "vl.h" /* General purpose timer module. */ typedef struct { uint16_t tmr; uint16_t trr; uint16_t tcr; uint16_t ter; ptimer_state *timer; qemu_irq irq; int irq_state; } m5206_timer_state; #define TMR_RST 0x01 #define TMR_CLK 0x06 #define TMR_FRR 0x08 #define TMR_ORI 0x10 #define TMR_OM 0x20 #define TMR_CE 0xc0 #define TER_CAP 0x01 #define TER_REF 0x02 static void m5206_timer_update(m5206_timer_state *s) { if ((s->tmr & TMR_ORI) != 0 && (s->ter & TER_REF)) qemu_irq_raise(s->irq); else qemu_irq_lower(s->irq); } static void m5206_timer_reset(m5206_timer_state *s) { s->tmr = 0; s->trr = 0; } static void m5206_timer_recalibrate(m5206_timer_state *s) { int prescale; int mode; ptimer_stop(s->timer); if ((s->tmr & TMR_RST) == 0) return; prescale = (s->tmr >> 8) + 1; mode = (s->tmr >> 1) & 3; if (mode == 2) prescale *= 16; if (mode == 3 || mode == 0) cpu_abort(cpu_single_env, "m5206_timer: mode %d not implemented\n", mode); if ((s->tmr & TMR_FRR) == 0) cpu_abort(cpu_single_env, "m5206_timer: free running mode not implemented\n"); /* Assume 66MHz system clock. */ ptimer_set_freq(s->timer, 66000000 / prescale); ptimer_set_limit(s->timer, s->trr, 0); ptimer_run(s->timer, 0); } static void m5206_timer_trigger(void *opaque) { m5206_timer_state *s = (m5206_timer_state *)opaque; s->ter |= TER_REF; m5206_timer_update(s); } static uint32_t m5206_timer_read(m5206_timer_state *s, uint32_t addr) { switch (addr) { case 0: return s->tmr; case 4: return s->trr; case 8: return s->tcr; case 0xc: return s->trr - ptimer_get_count(s->timer); case 0x11: return s->ter; default: return 0; } } static void m5206_timer_write(m5206_timer_state *s, uint32_t addr, uint32_t val) { switch (addr) { case 0: if ((s->tmr & TMR_RST) != 0 && (val & TMR_RST) == 0) { m5206_timer_reset(s); } s->tmr = val; m5206_timer_recalibrate(s); break; case 4: s->trr = val; m5206_timer_recalibrate(s); break; case 8: s->tcr = val; break; case 0xc: ptimer_set_count(s->timer, val); break; case 0x11: s->ter &= ~val; break; default: break; } m5206_timer_update(s); } static m5206_timer_state *m5206_timer_init(qemu_irq irq) { m5206_timer_state *s; QEMUBH *bh; s = (m5206_timer_state *)qemu_mallocz(sizeof(m5206_timer_state)); bh = qemu_bh_new(m5206_timer_trigger, s); s->timer = ptimer_init(bh); s->irq = irq; m5206_timer_reset(s); return s; } /* UART */ typedef struct { uint8_t mr[2]; uint8_t sr; uint8_t isr; uint8_t imr; uint8_t bg1; uint8_t bg2; uint8_t fifo[4]; uint8_t tb; int current_mr; int fifo_len; int tx_enabled; int rx_enabled; qemu_irq irq; CharDriverState *chr; } m5206_uart_state; /* UART Status Register bits. */ #define M5206_UART_RxRDY 0x01 #define M5206_UART_FFULL 0x02 #define M5206_UART_TxRDY 0x04 #define M5206_UART_TxEMP 0x08 #define M5206_UART_OE 0x10 #define M5206_UART_PE 0x20 #define M5206_UART_FE 0x40 #define M5206_UART_RB 0x80 /* Interrupt flags. */ #define M5206_UART_TxINT 0x01 #define M5206_UART_RxINT 0x02 #define M5206_UART_DBINT 0x04 #define M5206_UART_COSINT 0x80 /* UMR1 flags. */ #define M5206_UART_BC0 0x01 #define M5206_UART_BC1 0x02 #define M5206_UART_PT 0x04 #define M5206_UART_PM0 0x08 #define M5206_UART_PM1 0x10 #define M5206_UART_ERR 0x20 #define M5206_UART_RxIRQ 0x40 #define M5206_UART_RxRTS 0x80 static void m5206_uart_update(m5206_uart_state *s) { s->isr &= ~(M5206_UART_TxINT | M5206_UART_RxINT); if (s->sr & M5206_UART_TxRDY) s->isr |= M5206_UART_TxINT; if ((s->sr & ((s->mr[0] & M5206_UART_RxIRQ) ? M5206_UART_FFULL : M5206_UART_RxRDY)) != 0) s->isr |= M5206_UART_RxINT; qemu_set_irq(s->irq, (s->isr & s->imr) != 0); } static uint32_t m5206_uart_read(m5206_uart_state *s, uint32_t addr) { switch (addr) { case 0x00: return s->mr[s->current_mr]; case 0x04: return s->sr; case 0x0c: { uint8_t val; int i; if (s->fifo_len == 0) return 0; val = s->fifo[0]; s->fifo_len--; for (i = 0; i < s->fifo_len; i++) s->fifo[i] = s->fifo[i + 1]; s->sr &= ~M5206_UART_FFULL; if (s->fifo_len == 0) s->sr &= ~M5206_UART_RxRDY; m5206_uart_update(s); return val; } case 0x10: /* TODO: Implement IPCR. */ return 0; case 0x14: return s->isr; case 0x18: return s->bg1; case 0x1c: return s->bg2; default: return 0; } } /* Update TxRDY flag and set data if present and enabled. */ static void m5206_uart_do_tx(m5206_uart_state *s) { if (s->tx_enabled && (s->sr & M5206_UART_TxEMP) == 0) { if (s->chr) qemu_chr_write(s->chr, (unsigned char *)&s->tb, 1); s->sr |= M5206_UART_TxEMP; } if (s->tx_enabled) { s->sr |= M5206_UART_TxRDY; } else { s->sr &= ~M5206_UART_TxRDY; } } static void m5206_do_command(m5206_uart_state *s, uint8_t cmd) { /* Misc command. */ switch ((cmd >> 4) & 3) { case 0: /* No-op. */ break; case 1: /* Reset mode register pointer. */ s->current_mr = 0; break; case 2: /* Reset receiver. */ s->rx_enabled = 0; s->fifo_len = 0; s->sr &= ~(M5206_UART_RxRDY | M5206_UART_FFULL); break; case 3: /* Reset transmitter. */ s->tx_enabled = 0; s->sr |= M5206_UART_TxEMP; s->sr &= ~M5206_UART_TxRDY; break; case 4: /* Reset error status. */ break; case 5: /* Reset break-change interrupt. */ s->isr &= ~M5206_UART_DBINT; break; case 6: /* Start break. */ case 7: /* Stop break. */ break; } /* Transmitter command. */ switch ((cmd >> 2) & 3) { case 0: /* No-op. */ break; case 1: /* Enable. */ s->tx_enabled = 1; m5206_uart_do_tx(s); break; case 2: /* Disable. */ s->tx_enabled = 0; m5206_uart_do_tx(s); break; case 3: /* Reserved. */ fprintf(stderr, "m5206_uart: Bad TX command\n"); break; } /* Receiver command. */ switch (cmd & 3) { case 0: /* No-op. */ break; case 1: /* Enable. */ s->rx_enabled = 1; break; case 2: s->rx_enabled = 0; break; case 3: /* Reserved. */ fprintf(stderr, "m5206_uart: Bad RX command\n"); break; } } static void m5206_uart_write(m5206_uart_state *s, uint32_t addr, uint32_t val) { switch (addr) { case 0x00: s->mr[s->current_mr] = val; s->current_mr = 1; break; case 0x04: /* CSR is ignored. */ break; case 0x08: /* Command Register. */ m5206_do_command(s, val); break; case 0x0c: /* Transmit Buffer. */ s->sr &= ~M5206_UART_TxEMP; s->tb = val; m5206_uart_do_tx(s); break; case 0x10: /* ACR is ignored. */ break; case 0x14: s->imr = val; break; default: break; } m5206_uart_update(s); } static void m5206_uart_reset(m5206_uart_state *s) { s->fifo_len = 0; s->mr[0] = 0; s->mr[1] = 0; s->sr = M5206_UART_TxEMP; s->tx_enabled = 0; s->rx_enabled = 0; s->isr = 0; s->imr = 0; } static void m5206_uart_push_byte(m5206_uart_state *s, uint8_t data) { /* Break events overwrite the last byte if the fifo is full. */ if (s->fifo_len == 4) s->fifo_len--; s->fifo[s->fifo_len] = data; s->fifo_len++; s->sr |= M5206_UART_RxRDY; if (s->fifo_len == 4) s->sr |= M5206_UART_FFULL; m5206_uart_update(s); } static void m5206_uart_event(void *opaque, int event) { m5206_uart_state *s = (m5206_uart_state *)opaque; switch (event) { case CHR_EVENT_BREAK: s->isr |= M5206_UART_DBINT; m5206_uart_push_byte(s, 0); break; default: break; } } static int m5206_uart_can_receive(void *opaque) { m5206_uart_state *s = (m5206_uart_state *)opaque; return s->rx_enabled && (s->sr & M5206_UART_FFULL) == 0; } static void m5206_uart_receive(void *opaque, const uint8_t *buf, int size) { m5206_uart_state *s = (m5206_uart_state *)opaque; m5206_uart_push_byte(s, buf[0]); } static m5206_uart_state *m5206_uart_init(qemu_irq irq, CharDriverState *chr) { m5206_uart_state *s; s = qemu_mallocz(sizeof(m5206_uart_state)); s->chr = chr; s->irq = irq; if (chr) { qemu_chr_add_handlers(chr, m5206_uart_can_receive, m5206_uart_receive, m5206_uart_event, s); } m5206_uart_reset(s); return s; } /* System Integration Module. */ typedef struct { CPUState *env; m5206_timer_state *timer[2]; m5206_uart_state *uart[2]; uint8_t scr; uint8_t icr[14]; uint16_t imr; /* 1 == interrupt is masked. */ uint16_t ipr; uint8_t rsr; uint8_t swivr; uint8_t par; /* Include the UART vector registers here. */ uint8_t uivr[2]; } m5206_mbar_state; /* Interrupt controller. */ static int m5206_find_pending_irq(m5206_mbar_state *s) { int level; int vector; uint16_t active; int i; level = 0; vector = 0; active = s->ipr & ~s->imr; if (!active) return 0; for (i = 1; i < 14; i++) { if (active & (1 << i)) { if ((s->icr[i] & 0x1f) > level) { level = s->icr[i] & 0x1f; vector = i; } } } if (level < 4) vector = 0; return vector; } static void m5206_mbar_update(m5206_mbar_state *s) { int irq; int vector; int level; irq = m5206_find_pending_irq(s); if (irq) { int tmp; tmp = s->icr[irq]; level = (tmp >> 2) & 7; if (tmp & 0x80) { /* Autovector. */ vector = 24 + level; } else { switch (irq) { case 8: /* SWT */ vector = s->swivr; break; case 12: /* UART1 */ vector = s->uivr[0]; break; case 13: /* UART2 */ vector = s->uivr[1]; break; default: /* Unknown vector. */ fprintf(stderr, "Unhandled vector for IRQ %d\n", irq); vector = 0xf; break; } } } else { level = 0; vector = 0; } m68k_set_irq_level(s->env, level, vector); } static void m5206_mbar_set_irq(void *opaque, int irq, int level) { m5206_mbar_state *s = (m5206_mbar_state *)opaque; if (level) { s->ipr |= 1 << irq; } else { s->ipr &= ~(1 << irq); } m5206_mbar_update(s); } /* System Integration Module. */ static void m5206_mbar_reset(m5206_mbar_state *s) { s->scr = 0xc0; s->icr[1] = 0x04; s->icr[2] = 0x08; s->icr[3] = 0x0c; s->icr[4] = 0x10; s->icr[5] = 0x14; s->icr[6] = 0x18; s->icr[7] = 0x1c; s->icr[8] = 0x1c; s->icr[9] = 0x80; s->icr[10] = 0x80; s->icr[11] = 0x80; s->icr[12] = 0x00; s->icr[13] = 0x00; s->imr = 0x3ffe; s->rsr = 0x80; s->swivr = 0x0f; s->par = 0; } static uint32_t m5206_mbar_read(m5206_mbar_state *s, uint32_t offset) { if (offset >= 0x100 && offset < 0x120) { return m5206_timer_read(s->timer[0], offset - 0x100); } else if (offset >= 0x120 && offset < 0x140) { return m5206_timer_read(s->timer[1], offset - 0x120); } else if (offset >= 0x140 && offset < 0x160) { return m5206_uart_read(s->uart[0], offset - 0x140); } else if (offset >= 0x180 && offset < 0x1a0) { return m5206_uart_read(s->uart[1], offset - 0x180); } switch (offset) { case 0x03: return s->scr; case 0x14 ... 0x20: return s->icr[offset - 0x13]; case 0x36: return s->imr; case 0x3a: return s->ipr; case 0x40: return s->rsr; case 0x41: return 0; case 0x42: return s->swivr; case 0x50: /* DRAM mask register. */ /* FIXME: currently hardcoded to 128Mb. */ { uint32_t mask = ~0; while (mask > ram_size) mask >>= 1; return mask & 0x0ffe0000; } case 0x5c: return 1; /* DRAM bank 1 empty. */ case 0xcb: return s->par; case 0x170: return s->uivr[0]; case 0x1b0: return s->uivr[1]; } cpu_abort(cpu_single_env, "Bad MBAR read offset 0x%x", (int)offset); return 0; } static void m5206_mbar_write(m5206_mbar_state *s, uint32_t offset, uint32_t value) { if (offset >= 0x100 && offset < 0x120) { m5206_timer_write(s->timer[0], offset - 0x100, value); return; } else if (offset >= 0x120 && offset < 0x140) { m5206_timer_write(s->timer[1], offset - 0x120, value); return; } else if (offset >= 0x140 && offset < 0x160) { m5206_uart_write(s->uart[0], offset - 0x140, value); return; } else if (offset >= 0x180 && offset < 0x1a0) { m5206_uart_write(s->uart[1], offset - 0x180, value); return; } switch (offset) { case 0x03: s->scr = value; break; case 0x14 ... 0x20: s->icr[offset - 0x13] = value; m5206_mbar_update(s); break; case 0x36: s->imr = value; m5206_mbar_update(s); break; case 0x40: s->rsr &= ~value; break; case 0x41: /* TODO: implement watchdog. */ break; case 0x42: s->swivr = value; break; case 0xcb: s->par = value; break; case 0x170: s->uivr[0] = value; break; case 0x178: case 0x17c: case 0x1c8: case 0x1bc: /* Not implemented: UART Output port bits. */ break; case 0x1b0: s->uivr[1] = value; break; default: cpu_abort(cpu_single_env, "Bad MBAR write offset 0x%x", (int)offset); break; } } /* Internal peripherals use a variety of register widths. This lookup table allows a single routine to handle all of them. */ static const int m5206_mbar_width[] = { /* 000-040 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, /* 040-080 */ 1, 2, 2, 2, 4, 1, 2, 4, 1, 2, 4, 2, 2, 4, 2, 2, /* 080-0c0 */ 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, /* 0c0-100 */ 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 100-140 */ 2, 2, 2, 2, 1, 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0, /* 140-180 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 180-1c0 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 1c0-200 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, }; static uint32_t m5206_mbar_readw(void *opaque, target_phys_addr_t offset); static uint32_t m5206_mbar_readl(void *opaque, target_phys_addr_t offset); static uint32_t m5206_mbar_readb(void *opaque, target_phys_addr_t offset) { m5206_mbar_state *s = (m5206_mbar_state *)opaque; offset &= 0x3ff; if (offset > 0x200) { cpu_abort(cpu_single_env, "Bad MBAR read offset 0x%x", (int)offset); } if (m5206_mbar_width[offset >> 2] > 1) { uint16_t val; val = m5206_mbar_readw(opaque, offset & ~1); if ((offset & 1) == 0) { val >>= 8; } return val & 0xff; } return m5206_mbar_read(s, offset); } static uint32_t m5206_mbar_readw(void *opaque, target_phys_addr_t offset) { m5206_mbar_state *s = (m5206_mbar_state *)opaque; int width; offset &= 0x3ff; if (offset > 0x200) { cpu_abort(cpu_single_env, "Bad MBAR read offset 0x%x", (int)offset); } width = m5206_mbar_width[offset >> 2]; if (width > 2) { uint32_t val; val = m5206_mbar_readl(opaque, offset & ~3); if ((offset & 3) == 0) val >>= 16; return val & 0xffff; } else if (width < 2) { uint16_t val; val = m5206_mbar_readb(opaque, offset) << 8; val |= m5206_mbar_readb(opaque, offset + 1); return val; } return m5206_mbar_read(s, offset); } static uint32_t m5206_mbar_readl(void *opaque, target_phys_addr_t offset) { m5206_mbar_state *s = (m5206_mbar_state *)opaque; int width; offset &= 0x3ff; if (offset > 0x200) { cpu_abort(cpu_single_env, "Bad MBAR read offset 0x%x", (int)offset); } width = m5206_mbar_width[offset >> 2]; if (width < 4) { uint32_t val; val = m5206_mbar_readw(opaque, offset) << 16; val |= m5206_mbar_readw(opaque, offset + 2); return val; } return m5206_mbar_read(s, offset); } static void m5206_mbar_writew(void *opaque, target_phys_addr_t offset, uint32_t value); static void m5206_mbar_writel(void *opaque, target_phys_addr_t offset, uint32_t value); static void m5206_mbar_writeb(void *opaque, target_phys_addr_t offset, uint32_t value) { m5206_mbar_state *s = (m5206_mbar_state *)opaque; int width; offset &= 0x3ff; if (offset > 0x200) { cpu_abort(cpu_single_env, "Bad MBAR write offset 0x%x", (int)offset); } width = m5206_mbar_width[offset >> 2]; if (width > 1) { uint32_t tmp; tmp = m5206_mbar_readw(opaque, offset & ~1); if (offset & 1) { tmp = (tmp & 0xff00) | value; } else { tmp = (tmp & 0x00ff) | (value << 8); } m5206_mbar_writew(opaque, offset & ~1, tmp); return; } m5206_mbar_write(s, offset, value); } static void m5206_mbar_writew(void *opaque, target_phys_addr_t offset, uint32_t value) { m5206_mbar_state *s = (m5206_mbar_state *)opaque; int width; offset &= 0x3ff; if (offset > 0x200) { cpu_abort(cpu_single_env, "Bad MBAR write offset 0x%x", (int)offset); } width = m5206_mbar_width[offset >> 2]; if (width > 2) { uint32_t tmp; tmp = m5206_mbar_readl(opaque, offset & ~3); if (offset & 3) { tmp = (tmp & 0xffff0000) | value; } else { tmp = (tmp & 0x0000ffff) | (value << 16); } m5206_mbar_writel(opaque, offset & ~3, tmp); return; } else if (width < 2) { m5206_mbar_writeb(opaque, offset, value >> 8); m5206_mbar_writeb(opaque, offset + 1, value & 0xff); return; } m5206_mbar_write(s, offset, value); } static void m5206_mbar_writel(void *opaque, target_phys_addr_t offset, uint32_t value) { m5206_mbar_state *s = (m5206_mbar_state *)opaque; int width; offset &= 0x3ff; if (offset > 0x200) { cpu_abort(cpu_single_env, "Bad MBAR write offset 0x%x", (int)offset); } width = m5206_mbar_width[offset >> 2]; if (width < 4) { m5206_mbar_writew(opaque, offset, value >> 16); m5206_mbar_writew(opaque, offset + 2, value & 0xffff); return; } m5206_mbar_write(s, offset, value); } static CPUReadMemoryFunc *m5206_mbar_readfn[] = { m5206_mbar_readb, m5206_mbar_readw, m5206_mbar_readl }; static CPUWriteMemoryFunc *m5206_mbar_writefn[] = { m5206_mbar_writeb, m5206_mbar_writew, m5206_mbar_writel }; qemu_irq *mcf5206_init(uint32_t base, CPUState *env) { m5206_mbar_state *s; qemu_irq *pic; int iomemtype; s = (m5206_mbar_state *)qemu_mallocz(sizeof(m5206_mbar_state)); iomemtype = cpu_register_io_memory(0, m5206_mbar_readfn, m5206_mbar_writefn, s); cpu_register_physical_memory(base, 0x00000fff, iomemtype); pic = qemu_allocate_irqs(m5206_mbar_set_irq, s, 14); s->timer[0] = m5206_timer_init(pic[9]); s->timer[1] = m5206_timer_init(pic[10]); s->uart[0] = m5206_uart_init(pic[12], serial_hds[0]); s->uart[1] = m5206_uart_init(pic[13], serial_hds[1]); s->env = env; m5206_mbar_reset(s); return pic; }