/* * QEMU MC146818 RTC emulation * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "qemu-timer.h" #include "sysemu.h" #include "pc.h" #include "apic.h" #include "isa.h" #include "hpet_emul.h" #include "mc146818rtc.h" //#define DEBUG_CMOS #ifdef DEBUG_CMOS # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__) #else # define CMOS_DPRINTF(format, ...) do { } while (0) #endif #define RTC_REINJECT_ON_ACK_COUNT 20 #define RTC_SECONDS 0 #define RTC_SECONDS_ALARM 1 #define RTC_MINUTES 2 #define RTC_MINUTES_ALARM 3 #define RTC_HOURS 4 #define RTC_HOURS_ALARM 5 #define RTC_ALARM_DONT_CARE 0xC0 #define RTC_DAY_OF_WEEK 6 #define RTC_DAY_OF_MONTH 7 #define RTC_MONTH 8 #define RTC_YEAR 9 #define RTC_REG_A 10 #define RTC_REG_B 11 #define RTC_REG_C 12 #define RTC_REG_D 13 #define REG_A_UIP 0x80 #define REG_B_SET 0x80 #define REG_B_PIE 0x40 #define REG_B_AIE 0x20 #define REG_B_UIE 0x10 #define REG_B_SQWE 0x08 #define REG_B_DM 0x04 #define REG_C_UF 0x10 #define REG_C_IRQF 0x80 #define REG_C_PF 0x40 #define REG_C_AF 0x20 typedef struct RTCState { ISADevice dev; uint8_t cmos_data[128]; uint8_t cmos_index; struct tm current_tm; int32_t base_year; qemu_irq irq; qemu_irq sqw_irq; int it_shift; /* periodic timer */ QEMUTimer *periodic_timer; int64_t next_periodic_time; /* second update */ int64_t next_second_time; uint16_t irq_reinject_on_ack_count; uint32_t irq_coalesced; uint32_t period; QEMUTimer *coalesced_timer; QEMUTimer *second_timer; QEMUTimer *second_timer2; } RTCState; static void rtc_irq_raise(qemu_irq irq) { /* When HPET is operating in legacy mode, RTC interrupts are disabled * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy * mode is established while interrupt is raised. We want it to * be lowered in any case */ #if defined TARGET_I386 if (!hpet_in_legacy_mode()) #endif qemu_irq_raise(irq); } static void rtc_set_time(RTCState *s); static void rtc_copy_date(RTCState *s); #ifdef TARGET_I386 static void rtc_coalesced_timer_update(RTCState *s) { if (s->irq_coalesced == 0) { qemu_del_timer(s->coalesced_timer); } else { /* divide each RTC interval to 2 - 8 smaller intervals */ int c = MIN(s->irq_coalesced, 7) + 1; int64_t next_clock = qemu_get_clock(rtc_clock) + muldiv64(s->period / c, get_ticks_per_sec(), 32768); qemu_mod_timer(s->coalesced_timer, next_clock); } } static void rtc_coalesced_timer(void *opaque) { RTCState *s = opaque; if (s->irq_coalesced != 0) { apic_reset_irq_delivered(); s->cmos_data[RTC_REG_C] |= 0xc0; rtc_irq_raise(s->irq); if (apic_get_irq_delivered()) { s->irq_coalesced--; } } rtc_coalesced_timer_update(s); } #endif static void rtc_timer_update(RTCState *s, int64_t current_time) { int period_code, period; int64_t cur_clock, next_irq_clock; int enable_pie; period_code = s->cmos_data[RTC_REG_A] & 0x0f; #if defined TARGET_I386 /* disable periodic timer if hpet is in legacy mode, since interrupts are * disabled anyway. */ enable_pie = !hpet_in_legacy_mode(); #else enable_pie = 1; #endif if (period_code != 0 && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie) || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) { if (period_code <= 2) period_code += 7; /* period in 32 Khz cycles */ period = 1 << (period_code - 1); #ifdef TARGET_I386 if(period != s->period) s->irq_coalesced = (s->irq_coalesced * s->period) / period; s->period = period; #endif /* compute 32 khz clock */ cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec()); next_irq_clock = (cur_clock & ~(period - 1)) + period; s->next_periodic_time = muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1; qemu_mod_timer(s->periodic_timer, s->next_periodic_time); } else { #ifdef TARGET_I386 s->irq_coalesced = 0; #endif qemu_del_timer(s->periodic_timer); } } static void rtc_periodic_timer(void *opaque) { RTCState *s = opaque; rtc_timer_update(s, s->next_periodic_time); if (s->cmos_data[RTC_REG_B] & REG_B_PIE) { s->cmos_data[RTC_REG_C] |= 0xc0; #ifdef TARGET_I386 if(rtc_td_hack) { if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT) s->irq_reinject_on_ack_count = 0; apic_reset_irq_delivered(); rtc_irq_raise(s->irq); if (!apic_get_irq_delivered()) { s->irq_coalesced++; rtc_coalesced_timer_update(s); } } else #endif rtc_irq_raise(s->irq); } if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) { /* Not square wave at all but we don't want 2048Hz interrupts! Must be seen as a pulse. */ qemu_irq_raise(s->sqw_irq); } } static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data) { RTCState *s = opaque; if ((addr & 1) == 0) { s->cmos_index = data & 0x7f; } else { CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n", s->cmos_index, data); switch(s->cmos_index) { case RTC_SECONDS_ALARM: case RTC_MINUTES_ALARM: case RTC_HOURS_ALARM: /* XXX: not supported */ s->cmos_data[s->cmos_index] = data; break; case RTC_SECONDS: case RTC_MINUTES: case RTC_HOURS: case RTC_DAY_OF_WEEK: case RTC_DAY_OF_MONTH: case RTC_MONTH: case RTC_YEAR: s->cmos_data[s->cmos_index] = data; /* if in set mode, do not update the time */ if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { rtc_set_time(s); } break; case RTC_REG_A: /* UIP bit is read only */ s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | (s->cmos_data[RTC_REG_A] & REG_A_UIP); rtc_timer_update(s, qemu_get_clock(rtc_clock)); break; case RTC_REG_B: if (data & REG_B_SET) { /* set mode: reset UIP mode */ s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; data &= ~REG_B_UIE; } else { /* if disabling set mode, update the time */ if (s->cmos_data[RTC_REG_B] & REG_B_SET) { rtc_set_time(s); } } s->cmos_data[RTC_REG_B] = data; rtc_timer_update(s, qemu_get_clock(rtc_clock)); break; case RTC_REG_C: case RTC_REG_D: /* cannot write to them */ break; default: s->cmos_data[s->cmos_index] = data; break; } } } static inline int rtc_to_bcd(RTCState *s, int a) { if (s->cmos_data[RTC_REG_B] & REG_B_DM) { return a; } else { return ((a / 10) << 4) | (a % 10); } } static inline int rtc_from_bcd(RTCState *s, int a) { if (s->cmos_data[RTC_REG_B] & REG_B_DM) { return a; } else { return ((a >> 4) * 10) + (a & 0x0f); } } static void rtc_set_time(RTCState *s) { struct tm *tm = &s->current_tm; tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f); if (!(s->cmos_data[RTC_REG_B] & 0x02) && (s->cmos_data[RTC_HOURS] & 0x80)) { tm->tm_hour += 12; } tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1; tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]); tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1; tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900; rtc_change_mon_event(tm); } static void rtc_copy_date(RTCState *s) { const struct tm *tm = &s->current_tm; int year; s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec); s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min); if (s->cmos_data[RTC_REG_B] & 0x02) { /* 24 hour format */ s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour); } else { /* 12 hour format */ s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour % 12); if (tm->tm_hour >= 12) s->cmos_data[RTC_HOURS] |= 0x80; } s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1); s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday); s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1); year = (tm->tm_year - s->base_year) % 100; if (year < 0) year += 100; s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year); } /* month is between 0 and 11. */ static int get_days_in_month(int month, int year) { static const int days_tab[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; int d; if ((unsigned )month >= 12) return 31; d = days_tab[month]; if (month == 1) { if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0)) d++; } return d; } /* update 'tm' to the next second */ static void rtc_next_second(struct tm *tm) { int days_in_month; tm->tm_sec++; if ((unsigned)tm->tm_sec >= 60) { tm->tm_sec = 0; tm->tm_min++; if ((unsigned)tm->tm_min >= 60) { tm->tm_min = 0; tm->tm_hour++; if ((unsigned)tm->tm_hour >= 24) { tm->tm_hour = 0; /* next day */ tm->tm_wday++; if ((unsigned)tm->tm_wday >= 7) tm->tm_wday = 0; days_in_month = get_days_in_month(tm->tm_mon, tm->tm_year + 1900); tm->tm_mday++; if (tm->tm_mday < 1) { tm->tm_mday = 1; } else if (tm->tm_mday > days_in_month) { tm->tm_mday = 1; tm->tm_mon++; if (tm->tm_mon >= 12) { tm->tm_mon = 0; tm->tm_year++; } } } } } } static void rtc_update_second(void *opaque) { RTCState *s = opaque; int64_t delay; /* if the oscillator is not in normal operation, we do not update */ if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) { s->next_second_time += get_ticks_per_sec(); qemu_mod_timer(s->second_timer, s->next_second_time); } else { rtc_next_second(&s->current_tm); if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { /* update in progress bit */ s->cmos_data[RTC_REG_A] |= REG_A_UIP; } /* should be 244 us = 8 / 32768 seconds, but currently the timers do not have the necessary resolution. */ delay = (get_ticks_per_sec() * 1) / 100; if (delay < 1) delay = 1; qemu_mod_timer(s->second_timer2, s->next_second_time + delay); } } static void rtc_update_second2(void *opaque) { RTCState *s = opaque; if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { rtc_copy_date(s); } /* check alarm */ if (s->cmos_data[RTC_REG_B] & REG_B_AIE) { if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 || s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) && ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 || s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) && ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 || s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) { s->cmos_data[RTC_REG_C] |= 0xa0; rtc_irq_raise(s->irq); } } /* update ended interrupt */ s->cmos_data[RTC_REG_C] |= REG_C_UF; if (s->cmos_data[RTC_REG_B] & REG_B_UIE) { s->cmos_data[RTC_REG_C] |= REG_C_IRQF; rtc_irq_raise(s->irq); } /* clear update in progress bit */ s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; s->next_second_time += get_ticks_per_sec(); qemu_mod_timer(s->second_timer, s->next_second_time); } static uint32_t cmos_ioport_read(void *opaque, uint32_t addr) { RTCState *s = opaque; int ret; if ((addr & 1) == 0) { return 0xff; } else { switch(s->cmos_index) { case RTC_SECONDS: case RTC_MINUTES: case RTC_HOURS: case RTC_DAY_OF_WEEK: case RTC_DAY_OF_MONTH: case RTC_MONTH: case RTC_YEAR: ret = s->cmos_data[s->cmos_index]; break; case RTC_REG_A: ret = s->cmos_data[s->cmos_index]; break; case RTC_REG_C: ret = s->cmos_data[s->cmos_index]; qemu_irq_lower(s->irq); #ifdef TARGET_I386 if(s->irq_coalesced && s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) { s->irq_reinject_on_ack_count++; apic_reset_irq_delivered(); qemu_irq_raise(s->irq); if (apic_get_irq_delivered()) s->irq_coalesced--; break; } #endif s->cmos_data[RTC_REG_C] = 0x00; break; default: ret = s->cmos_data[s->cmos_index]; break; } CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n", s->cmos_index, ret); return ret; } } void rtc_set_memory(ISADevice *dev, int addr, int val) { RTCState *s = DO_UPCAST(RTCState, dev, dev); if (addr >= 0 && addr <= 127) s->cmos_data[addr] = val; } void rtc_set_date(ISADevice *dev, const struct tm *tm) { RTCState *s = DO_UPCAST(RTCState, dev, dev); s->current_tm = *tm; rtc_copy_date(s); } /* PC cmos mappings */ #define REG_IBM_CENTURY_BYTE 0x32 #define REG_IBM_PS2_CENTURY_BYTE 0x37 static void rtc_set_date_from_host(ISADevice *dev) { RTCState *s = DO_UPCAST(RTCState, dev, dev); struct tm tm; int val; /* set the CMOS date */ qemu_get_timedate(&tm, 0); rtc_set_date(dev, &tm); val = rtc_to_bcd(s, (tm.tm_year / 100) + 19); rtc_set_memory(dev, REG_IBM_CENTURY_BYTE, val); rtc_set_memory(dev, REG_IBM_PS2_CENTURY_BYTE, val); } static int rtc_post_load(void *opaque, int version_id) { #ifdef TARGET_I386 RTCState *s = opaque; if (version_id >= 2) { if (rtc_td_hack) { rtc_coalesced_timer_update(s); } } #endif return 0; } static const VMStateDescription vmstate_rtc = { .name = "mc146818rtc", .version_id = 2, .minimum_version_id = 1, .minimum_version_id_old = 1, .post_load = rtc_post_load, .fields = (VMStateField []) { VMSTATE_BUFFER(cmos_data, RTCState), VMSTATE_UINT8(cmos_index, RTCState), VMSTATE_INT32(current_tm.tm_sec, RTCState), VMSTATE_INT32(current_tm.tm_min, RTCState), VMSTATE_INT32(current_tm.tm_hour, RTCState), VMSTATE_INT32(current_tm.tm_wday, RTCState), VMSTATE_INT32(current_tm.tm_mday, RTCState), VMSTATE_INT32(current_tm.tm_mon, RTCState), VMSTATE_INT32(current_tm.tm_year, RTCState), VMSTATE_TIMER(periodic_timer, RTCState), VMSTATE_INT64(next_periodic_time, RTCState), VMSTATE_INT64(next_second_time, RTCState), VMSTATE_TIMER(second_timer, RTCState), VMSTATE_TIMER(second_timer2, RTCState), VMSTATE_UINT32_V(irq_coalesced, RTCState, 2), VMSTATE_UINT32_V(period, RTCState, 2), VMSTATE_END_OF_LIST() } }; static void rtc_reset(void *opaque) { RTCState *s = opaque; s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE); s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF); qemu_irq_lower(s->irq); #ifdef TARGET_I386 if (rtc_td_hack) s->irq_coalesced = 0; #endif } static int rtc_initfn(ISADevice *dev) { RTCState *s = DO_UPCAST(RTCState, dev, dev); int base = 0x70; int isairq = 8; isa_init_irq(dev, &s->irq, isairq); s->cmos_data[RTC_REG_A] = 0x26; s->cmos_data[RTC_REG_B] = 0x02; s->cmos_data[RTC_REG_C] = 0x00; s->cmos_data[RTC_REG_D] = 0x80; rtc_set_date_from_host(dev); s->periodic_timer = qemu_new_timer(rtc_clock, rtc_periodic_timer, s); #ifdef TARGET_I386 if (rtc_td_hack) s->coalesced_timer = qemu_new_timer(rtc_clock, rtc_coalesced_timer, s); #endif s->second_timer = qemu_new_timer(rtc_clock, rtc_update_second, s); s->second_timer2 = qemu_new_timer(rtc_clock, rtc_update_second2, s); s->next_second_time = qemu_get_clock(rtc_clock) + (get_ticks_per_sec() * 99) / 100; qemu_mod_timer(s->second_timer2, s->next_second_time); register_ioport_write(base, 2, 1, cmos_ioport_write, s); register_ioport_read(base, 2, 1, cmos_ioport_read, s); qdev_set_legacy_instance_id(&dev->qdev, base, 2); qemu_register_reset(rtc_reset, s); return 0; } ISADevice *rtc_init(int base_year) { ISADevice *dev; dev = isa_create("mc146818rtc"); qdev_prop_set_int32(&dev->qdev, "base_year", base_year); qdev_init_nofail(&dev->qdev); return dev; } static ISADeviceInfo mc146818rtc_info = { .qdev.name = "mc146818rtc", .qdev.size = sizeof(RTCState), .qdev.no_user = 1, .qdev.vmsd = &vmstate_rtc, .init = rtc_initfn, .qdev.props = (Property[]) { DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980), DEFINE_PROP_END_OF_LIST(), } }; static void mc146818rtc_register(void) { isa_qdev_register(&mc146818rtc_info); } device_init(mc146818rtc_register)