/* * NeXT Cube System Driver * * Copyright (c) 2011 Bryce Lanham * * This code is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published * by the Free Software Foundation; either version 2 of the License, * or (at your option) any later version. */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/hwaddr.h" #include "exec/address-spaces.h" #include "sysemu/sysemu.h" #include "sysemu/qtest.h" #include "hw/irq.h" #include "hw/m68k/next-cube.h" #include "hw/boards.h" #include "hw/loader.h" #include "hw/scsi/esp.h" #include "hw/sysbus.h" #include "qom/object.h" #include "hw/char/escc.h" /* ZILOG 8530 Serial Emulation */ #include "hw/block/fdc.h" #include "hw/qdev-properties.h" #include "qapi/error.h" #include "ui/console.h" #include "target/m68k/cpu.h" /* #define DEBUG_NEXT */ #ifdef DEBUG_NEXT #define DPRINTF(fmt, ...) \ do { printf("NeXT: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) do { } while (0) #endif #define TYPE_NEXT_MACHINE MACHINE_TYPE_NAME("next-cube") typedef struct NeXTState NeXTState; #define NEXT_MACHINE(obj) OBJECT_CHECK(NeXTState, (obj), TYPE_NEXT_MACHINE) #define ENTRY 0x0100001e #define RAM_SIZE 0x4000000 #define ROM_FILE "Rev_2.5_v66.bin" typedef struct next_dma { uint32_t csr; uint32_t saved_next; uint32_t saved_limit; uint32_t saved_start; uint32_t saved_stop; uint32_t next; uint32_t limit; uint32_t start; uint32_t stop; uint32_t next_initbuf; uint32_t size; } next_dma; typedef struct NextRtc { uint8_t ram[32]; uint8_t command; uint8_t value; uint8_t status; uint8_t control; uint8_t retval; } NextRtc; struct NeXTState { MachineState parent; uint32_t int_mask; uint32_t int_status; uint8_t scsi_csr_1; uint8_t scsi_csr_2; next_dma dma[10]; qemu_irq *scsi_irq; qemu_irq scsi_dma; qemu_irq scsi_reset; qemu_irq *fd_irq; uint32_t scr1; uint32_t scr2; NextRtc rtc; }; /* Thanks to NeXT forums for this */ /* static const uint8_t rtc_ram3[32] = { 0x94, 0x0f, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x7B, 0x00, 0x00, 0x00, 0x65, 0x6e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x13 }; */ static const uint8_t rtc_ram2[32] = { 0x94, 0x0f, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x4b, 0x00, 0x41, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x7e, }; #define SCR2_RTCLK 0x2 #define SCR2_RTDATA 0x4 #define SCR2_TOBCD(x) (((x / 10) << 4) + (x % 10)) static void nextscr2_write(NeXTState *s, uint32_t val, int size) { static int led; static int phase; static uint8_t old_scr2; uint8_t scr2_2; NextRtc *rtc = &s->rtc; if (size == 4) { scr2_2 = (val >> 8) & 0xFF; } else { scr2_2 = val & 0xFF; } if (val & 0x1) { DPRINTF("fault!\n"); led++; if (led == 10) { DPRINTF("LED flashing, possible fault!\n"); led = 0; } } if (scr2_2 & 0x1) { /* DPRINTF("RTC %x phase %i\n", scr2_2, phase); */ if (phase == -1) { phase = 0; } /* If we are in going down clock... do something */ if (((old_scr2 & SCR2_RTCLK) != (scr2_2 & SCR2_RTCLK)) && ((scr2_2 & SCR2_RTCLK) == 0)) { if (phase < 8) { rtc->command = (rtc->command << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0); } if (phase >= 8 && phase < 16) { rtc->value = (rtc->value << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0); /* if we read RAM register, output RT_DATA bit */ if (rtc->command <= 0x1F) { scr2_2 = scr2_2 & (~SCR2_RTDATA); if (rtc->ram[rtc->command] & (0x80 >> (phase - 8))) { scr2_2 |= SCR2_RTDATA; } rtc->retval = (rtc->retval << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0); } /* read the status 0x30 */ if (rtc->command == 0x30) { scr2_2 = scr2_2 & (~SCR2_RTDATA); /* for now status = 0x98 (new rtc + FTU) */ if (rtc->status & (0x80 >> (phase - 8))) { scr2_2 |= SCR2_RTDATA; } rtc->retval = (rtc->retval << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0); } /* read the status 0x31 */ if (rtc->command == 0x31) { scr2_2 = scr2_2 & (~SCR2_RTDATA); if (rtc->control & (0x80 >> (phase - 8))) { scr2_2 |= SCR2_RTDATA; } rtc->retval = (rtc->retval << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0); } if ((rtc->command >= 0x20) && (rtc->command <= 0x2F)) { scr2_2 = scr2_2 & (~SCR2_RTDATA); /* for now 0x00 */ time_t time_h = time(NULL); struct tm *info = localtime(&time_h); int ret = 0; switch (rtc->command) { case 0x20: ret = SCR2_TOBCD(info->tm_sec); break; case 0x21: ret = SCR2_TOBCD(info->tm_min); break; case 0x22: ret = SCR2_TOBCD(info->tm_hour); break; case 0x24: ret = SCR2_TOBCD(info->tm_mday); break; case 0x25: ret = SCR2_TOBCD((info->tm_mon + 1)); break; case 0x26: ret = SCR2_TOBCD((info->tm_year - 100)); break; } if (ret & (0x80 >> (phase - 8))) { scr2_2 |= SCR2_RTDATA; } rtc->retval = (rtc->retval << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0); } } phase++; if (phase == 16) { if (rtc->command >= 0x80 && rtc->command <= 0x9F) { rtc->ram[rtc->command - 0x80] = rtc->value; } /* write to x30 register */ if (rtc->command == 0xB1) { /* clear FTU */ if (rtc->value & 0x04) { rtc->status = rtc->status & (~0x18); s->int_status = s->int_status & (~0x04); } } } } } else { /* else end or abort */ phase = -1; rtc->command = 0; rtc->value = 0; } s->scr2 = val & 0xFFFF00FF; s->scr2 |= scr2_2 << 8; old_scr2 = scr2_2; } static uint32_t mmio_readb(NeXTState *s, hwaddr addr) { switch (addr) { case 0xc000: return (s->scr1 >> 24) & 0xFF; case 0xc001: return (s->scr1 >> 16) & 0xFF; case 0xc002: return (s->scr1 >> 8) & 0xFF; case 0xc003: return (s->scr1 >> 0) & 0xFF; case 0xd000: return (s->scr2 >> 24) & 0xFF; case 0xd001: return (s->scr2 >> 16) & 0xFF; case 0xd002: return (s->scr2 >> 8) & 0xFF; case 0xd003: return (s->scr2 >> 0) & 0xFF; case 0x14020: DPRINTF("MMIO Read 0x4020\n"); return 0x7f; default: DPRINTF("MMIO Read B @ %"HWADDR_PRIx"\n", addr); return 0x0; } } static uint32_t mmio_readw(NeXTState *s, hwaddr addr) { switch (addr) { default: DPRINTF("MMIO Read W @ %"HWADDR_PRIx"\n", addr); return 0x0; } } static uint32_t mmio_readl(NeXTState *s, hwaddr addr) { switch (addr) { case 0x7000: /* DPRINTF("Read INT status: %x\n", s->int_status); */ return s->int_status; case 0x7800: DPRINTF("MMIO Read INT mask: %x\n", s->int_mask); return s->int_mask; case 0xc000: return s->scr1; case 0xd000: return s->scr2; default: DPRINTF("MMIO Read L @ %"HWADDR_PRIx"\n", addr); return 0x0; } } static void mmio_writeb(NeXTState *s, hwaddr addr, uint32_t val) { switch (addr) { case 0xd003: nextscr2_write(s, val, 1); break; default: DPRINTF("MMIO Write B @ %x with %x\n", (unsigned int)addr, val); } } static void mmio_writew(NeXTState *s, hwaddr addr, uint32_t val) { DPRINTF("MMIO Write W\n"); } static void mmio_writel(NeXTState *s, hwaddr addr, uint32_t val) { switch (addr) { case 0x7000: DPRINTF("INT Status old: %x new: %x\n", s->int_status, val); s->int_status = val; break; case 0x7800: DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, val); s->int_mask = val; break; case 0xc000: DPRINTF("SCR1 Write: %x\n", val); break; case 0xd000: nextscr2_write(s, val, 4); break; default: DPRINTF("MMIO Write l @ %x with %x\n", (unsigned int)addr, val); } } static uint64_t mmio_readfn(void *opaque, hwaddr addr, unsigned size) { NeXTState *ns = NEXT_MACHINE(opaque); switch (size) { case 1: return mmio_readb(ns, addr); case 2: return mmio_readw(ns, addr); case 4: return mmio_readl(ns, addr); default: g_assert_not_reached(); } } static void mmio_writefn(void *opaque, hwaddr addr, uint64_t value, unsigned size) { NeXTState *ns = NEXT_MACHINE(opaque); switch (size) { case 1: mmio_writeb(ns, addr, value); break; case 2: mmio_writew(ns, addr, value); break; case 4: mmio_writel(ns, addr, value); break; default: g_assert_not_reached(); } } static const MemoryRegionOps mmio_ops = { .read = mmio_readfn, .write = mmio_writefn, .valid.min_access_size = 1, .valid.max_access_size = 4, .endianness = DEVICE_NATIVE_ENDIAN, }; static uint32_t scr_readb(NeXTState *s, hwaddr addr) { switch (addr) { case 0x14108: DPRINTF("FD read @ %x\n", (unsigned int)addr); return 0x40 | 0x04 | 0x2 | 0x1; case 0x14020: DPRINTF("SCSI 4020 STATUS READ %X\n", s->scsi_csr_1); return s->scsi_csr_1; case 0x14021: DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2); return 0x40; /* * These 4 registers are the hardware timer, not sure which register * is the latch instead of data, but no problems so far */ case 0x1a000: return 0xff & (clock() >> 24); case 0x1a001: return 0xff & (clock() >> 16); case 0x1a002: return 0xff & (clock() >> 8); case 0x1a003: /* Hack: We need to have this change consistently to make it work */ return 0xFF & clock(); default: DPRINTF("BMAP Read B @ %x\n", (unsigned int)addr); return 0; } } static uint32_t scr_readw(NeXTState *s, hwaddr addr) { DPRINTF("BMAP Read W @ %x\n", (unsigned int)addr); return 0; } static uint32_t scr_readl(NeXTState *s, hwaddr addr) { DPRINTF("BMAP Read L @ %x\n", (unsigned int)addr); return 0; } #define SCSICSR_ENABLE 0x01 #define SCSICSR_RESET 0x02 /* reset scsi dma */ #define SCSICSR_FIFOFL 0x04 #define SCSICSR_DMADIR 0x08 /* if set, scsi to mem */ #define SCSICSR_CPUDMA 0x10 /* if set, dma enabled */ #define SCSICSR_INTMASK 0x20 /* if set, interrupt enabled */ static void scr_writeb(NeXTState *s, hwaddr addr, uint32_t value) { switch (addr) { case 0x14108: DPRINTF("FDCSR Write: %x\n", value); if (value == 0x0) { /* qemu_irq_raise(s->fd_irq[0]); */ } break; case 0x14020: /* SCSI Control Register */ if (value & SCSICSR_FIFOFL) { DPRINTF("SCSICSR FIFO Flush\n"); /* will have to add another irq to the esp if this is needed */ /* esp_puflush_fifo(esp_g); */ /* qemu_irq_pulse(s->scsi_dma); */ } if (value & SCSICSR_ENABLE) { DPRINTF("SCSICSR Enable\n"); /* * qemu_irq_raise(s->scsi_dma); * s->scsi_csr_1 = 0xc0; * s->scsi_csr_1 |= 0x1; * qemu_irq_pulse(s->scsi_dma); */ } /* * else * s->scsi_csr_1 &= ~SCSICSR_ENABLE; */ if (value & SCSICSR_RESET) { DPRINTF("SCSICSR Reset\n"); /* I think this should set DMADIR. CPUDMA and INTMASK to 0 */ /* qemu_irq_raise(s->scsi_reset); */ /* s->scsi_csr_1 &= ~(SCSICSR_INTMASK |0x80|0x1); */ } if (value & SCSICSR_DMADIR) { DPRINTF("SCSICSR DMAdir\n"); } if (value & SCSICSR_CPUDMA) { DPRINTF("SCSICSR CPUDMA\n"); /* qemu_irq_raise(s->scsi_dma); */ s->int_status |= 0x4000000; } else { s->int_status &= ~(0x4000000); } if (value & SCSICSR_INTMASK) { DPRINTF("SCSICSR INTMASK\n"); /* * int_mask &= ~0x1000; * s->scsi_csr_1 |= value; * s->scsi_csr_1 &= ~SCSICSR_INTMASK; * if (s->scsi_queued) { * s->scsi_queued = 0; * next_irq(s, NEXT_SCSI_I, level); * } */ } else { /* int_mask |= 0x1000; */ } if (value & 0x80) { /* int_mask |= 0x1000; */ /* s->scsi_csr_1 |= 0x80; */ } DPRINTF("SCSICSR Write: %x\n", value); /* s->scsi_csr_1 = value; */ return; /* Hardware timer latch - not implemented yet */ case 0x1a000: default: DPRINTF("BMAP Write B @ %x with %x\n", (unsigned int)addr, value); } } static void scr_writew(NeXTState *s, hwaddr addr, uint32_t value) { DPRINTF("BMAP Write W @ %x with %x\n", (unsigned int)addr, value); } static void scr_writel(NeXTState *s, hwaddr addr, uint32_t value) { DPRINTF("BMAP Write L @ %x with %x\n", (unsigned int)addr, value); } static uint64_t scr_readfn(void *opaque, hwaddr addr, unsigned size) { NeXTState *ns = NEXT_MACHINE(opaque); switch (size) { case 1: return scr_readb(ns, addr); case 2: return scr_readw(ns, addr); case 4: return scr_readl(ns, addr); default: g_assert_not_reached(); } } static void scr_writefn(void *opaque, hwaddr addr, uint64_t value, unsigned size) { NeXTState *ns = NEXT_MACHINE(opaque); switch (size) { case 1: scr_writeb(ns, addr, value); break; case 2: scr_writew(ns, addr, value); break; case 4: scr_writel(ns, addr, value); break; default: g_assert_not_reached(); } } static const MemoryRegionOps scr_ops = { .read = scr_readfn, .write = scr_writefn, .valid.min_access_size = 1, .valid.max_access_size = 4, .endianness = DEVICE_NATIVE_ENDIAN, }; #define NEXTDMA_SCSI(x) (0x10 + x) #define NEXTDMA_FD(x) (0x10 + x) #define NEXTDMA_ENTX(x) (0x110 + x) #define NEXTDMA_ENRX(x) (0x150 + x) #define NEXTDMA_CSR 0x0 #define NEXTDMA_NEXT 0x4000 #define NEXTDMA_LIMIT 0x4004 #define NEXTDMA_START 0x4008 #define NEXTDMA_STOP 0x400c #define NEXTDMA_NEXT_INIT 0x4200 #define NEXTDMA_SIZE 0x4204 static void dma_writel(void *opaque, hwaddr addr, uint64_t value, unsigned int size) { NeXTState *next_state = NEXT_MACHINE(opaque); switch (addr) { case NEXTDMA_ENRX(NEXTDMA_CSR): if (value & DMA_DEV2M) { next_state->dma[NEXTDMA_ENRX].csr |= DMA_DEV2M; } if (value & DMA_SETENABLE) { /* DPRINTF("SCSI DMA ENABLE\n"); */ next_state->dma[NEXTDMA_ENRX].csr |= DMA_ENABLE; } if (value & DMA_SETSUPDATE) { next_state->dma[NEXTDMA_ENRX].csr |= DMA_SUPDATE; } if (value & DMA_CLRCOMPLETE) { next_state->dma[NEXTDMA_ENRX].csr &= ~DMA_COMPLETE; } if (value & DMA_RESET) { next_state->dma[NEXTDMA_ENRX].csr &= ~(DMA_COMPLETE | DMA_SUPDATE | DMA_ENABLE | DMA_DEV2M); } /* DPRINTF("RXCSR \tWrite: %x\n",value); */ break; case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT): next_state->dma[NEXTDMA_ENRX].next_initbuf = value; break; case NEXTDMA_ENRX(NEXTDMA_NEXT): next_state->dma[NEXTDMA_ENRX].next = value; break; case NEXTDMA_ENRX(NEXTDMA_LIMIT): next_state->dma[NEXTDMA_ENRX].limit = value; break; case NEXTDMA_SCSI(NEXTDMA_CSR): if (value & DMA_DEV2M) { next_state->dma[NEXTDMA_SCSI].csr |= DMA_DEV2M; } if (value & DMA_SETENABLE) { /* DPRINTF("SCSI DMA ENABLE\n"); */ next_state->dma[NEXTDMA_SCSI].csr |= DMA_ENABLE; } if (value & DMA_SETSUPDATE) { next_state->dma[NEXTDMA_SCSI].csr |= DMA_SUPDATE; } if (value & DMA_CLRCOMPLETE) { next_state->dma[NEXTDMA_SCSI].csr &= ~DMA_COMPLETE; } if (value & DMA_RESET) { next_state->dma[NEXTDMA_SCSI].csr &= ~(DMA_COMPLETE | DMA_SUPDATE | DMA_ENABLE | DMA_DEV2M); /* DPRINTF("SCSI DMA RESET\n"); */ } /* DPRINTF("RXCSR \tWrite: %x\n",value); */ break; case NEXTDMA_SCSI(NEXTDMA_NEXT): next_state->dma[NEXTDMA_SCSI].next = value; break; case NEXTDMA_SCSI(NEXTDMA_LIMIT): next_state->dma[NEXTDMA_SCSI].limit = value; break; case NEXTDMA_SCSI(NEXTDMA_START): next_state->dma[NEXTDMA_SCSI].start = value; break; case NEXTDMA_SCSI(NEXTDMA_STOP): next_state->dma[NEXTDMA_SCSI].stop = value; break; case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT): next_state->dma[NEXTDMA_SCSI].next_initbuf = value; break; default: DPRINTF("DMA write @ %x w/ %x\n", (unsigned)addr, (unsigned)value); } } static uint64_t dma_readl(void *opaque, hwaddr addr, unsigned int size) { NeXTState *next_state = NEXT_MACHINE(opaque); switch (addr) { case NEXTDMA_SCSI(NEXTDMA_CSR): DPRINTF("SCSI DMA CSR READ\n"); return next_state->dma[NEXTDMA_SCSI].csr; case NEXTDMA_ENRX(NEXTDMA_CSR): return next_state->dma[NEXTDMA_ENRX].csr; case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT): return next_state->dma[NEXTDMA_ENRX].next_initbuf; case NEXTDMA_ENRX(NEXTDMA_NEXT): return next_state->dma[NEXTDMA_ENRX].next; case NEXTDMA_ENRX(NEXTDMA_LIMIT): return next_state->dma[NEXTDMA_ENRX].limit; case NEXTDMA_SCSI(NEXTDMA_NEXT): return next_state->dma[NEXTDMA_SCSI].next; case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT): return next_state->dma[NEXTDMA_SCSI].next_initbuf; case NEXTDMA_SCSI(NEXTDMA_LIMIT): return next_state->dma[NEXTDMA_SCSI].limit; case NEXTDMA_SCSI(NEXTDMA_START): return next_state->dma[NEXTDMA_SCSI].start; case NEXTDMA_SCSI(NEXTDMA_STOP): return next_state->dma[NEXTDMA_SCSI].stop; default: DPRINTF("DMA read @ %x\n", (unsigned int)addr); return 0; } /* * once the csr's are done, subtract 0x3FEC from the addr, and that will * normalize the upper registers */ } static const MemoryRegionOps dma_ops = { .read = dma_readl, .write = dma_writel, .impl.min_access_size = 4, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_NATIVE_ENDIAN, }; /* * TODO: set the shift numbers as values in the enum, so the first switch * will not be needed */ void next_irq(void *opaque, int number, int level) { M68kCPU *cpu = opaque; int shift = 0; NeXTState *ns = NEXT_MACHINE(qdev_get_machine()); /* first switch sets interupt status */ /* DPRINTF("IRQ %i\n",number); */ switch (number) { /* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */ case NEXT_FD_I: shift = 7; break; case NEXT_KBD_I: shift = 3; break; case NEXT_PWR_I: shift = 2; break; case NEXT_ENRX_I: shift = 9; break; case NEXT_ENTX_I: shift = 10; break; case NEXT_SCSI_I: shift = 12; break; case NEXT_CLK_I: shift = 5; break; /* level 5 - scc (serial) */ case NEXT_SCC_I: shift = 17; break; /* level 6 - audio etherrx/tx dma */ case NEXT_ENTX_DMA_I: shift = 28; break; case NEXT_ENRX_DMA_I: shift = 27; break; case NEXT_SCSI_DMA_I: shift = 26; break; case NEXT_SND_I: shift = 23; break; case NEXT_SCC_DMA_I: shift = 21; break; } /* * this HAS to be wrong, the interrupt handlers in mach and together * int_status and int_mask and return if there is a hit */ if (ns->int_mask & (1 << shift)) { DPRINTF("%x interrupt masked @ %x\n", 1 << shift, cpu->env.pc); /* return; */ } /* second switch triggers the correct interrupt */ if (level) { ns->int_status |= 1 << shift; switch (number) { /* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */ case NEXT_FD_I: case NEXT_KBD_I: case NEXT_PWR_I: case NEXT_ENRX_I: case NEXT_ENTX_I: case NEXT_SCSI_I: case NEXT_CLK_I: m68k_set_irq_level(cpu, 3, 27); break; /* level 5 - scc (serial) */ case NEXT_SCC_I: m68k_set_irq_level(cpu, 5, 29); break; /* level 6 - audio etherrx/tx dma */ case NEXT_ENTX_DMA_I: case NEXT_ENRX_DMA_I: case NEXT_SCSI_DMA_I: case NEXT_SND_I: case NEXT_SCC_DMA_I: m68k_set_irq_level(cpu, 6, 30); break; } } else { ns->int_status &= ~(1 << shift); cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD); } } static void next_serial_irq(void *opaque, int n, int level) { /* DPRINTF("SCC IRQ NUM %i\n",n); */ if (n) { next_irq(opaque, NEXT_SCC_DMA_I, level); } else { next_irq(opaque, NEXT_SCC_I, level); } } static void next_escc_init(M68kCPU *cpu) { qemu_irq *ser_irq = qemu_allocate_irqs(next_serial_irq, cpu, 2); DeviceState *dev; SysBusDevice *s; dev = qdev_new(TYPE_ESCC); qdev_prop_set_uint32(dev, "disabled", 0); qdev_prop_set_uint32(dev, "frequency", 9600 * 384); qdev_prop_set_uint32(dev, "it_shift", 0); qdev_prop_set_bit(dev, "bit_swap", true); qdev_prop_set_chr(dev, "chrB", serial_hd(1)); qdev_prop_set_chr(dev, "chrA", serial_hd(0)); qdev_prop_set_uint32(dev, "chnBtype", escc_serial); qdev_prop_set_uint32(dev, "chnAtype", escc_serial); s = SYS_BUS_DEVICE(dev); sysbus_realize_and_unref(s, &error_fatal); sysbus_connect_irq(s, 0, ser_irq[0]); sysbus_connect_irq(s, 1, ser_irq[1]); sysbus_mmio_map(s, 0, 0x2118000); } static void next_cube_init(MachineState *machine) { M68kCPU *cpu; CPUM68KState *env; MemoryRegion *rom = g_new(MemoryRegion, 1); MemoryRegion *mmiomem = g_new(MemoryRegion, 1); MemoryRegion *scrmem = g_new(MemoryRegion, 1); MemoryRegion *dmamem = g_new(MemoryRegion, 1); MemoryRegion *bmapm1 = g_new(MemoryRegion, 1); MemoryRegion *bmapm2 = g_new(MemoryRegion, 1); MemoryRegion *sysmem = get_system_memory(); NeXTState *ns = NEXT_MACHINE(machine); DeviceState *dev; /* Initialize the cpu core */ cpu = M68K_CPU(cpu_create(machine->cpu_type)); if (!cpu) { error_report("Unable to find m68k CPU definition"); exit(1); } env = &cpu->env; /* Initialize CPU registers. */ env->vbr = 0; env->sr = 0x2700; /* Set internal registers to initial values */ /* 0x0000XX00 << vital bits */ ns->scr1 = 0x00011102; ns->scr2 = 0x00ff0c80; ns->rtc.status = 0x90; /* Load RTC RAM - TODO: provide possibility to load contents from file */ memcpy(ns->rtc.ram, rtc_ram2, 32); /* 64MB RAM starting at 0x04000000 */ memory_region_add_subregion(sysmem, 0x04000000, machine->ram); /* Framebuffer */ dev = qdev_new(TYPE_NEXTFB); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x0B000000); /* MMIO */ memory_region_init_io(mmiomem, NULL, &mmio_ops, machine, "next.mmio", 0xD0000); memory_region_add_subregion(sysmem, 0x02000000, mmiomem); /* BMAP memory */ memory_region_init_ram_shared_nomigrate(bmapm1, NULL, "next.bmapmem", 64, true, &error_fatal); memory_region_add_subregion(sysmem, 0x020c0000, bmapm1); /* The Rev_2.5_v66.bin firmware accesses it at 0x820c0020, too */ memory_region_init_alias(bmapm2, NULL, "next.bmapmem2", bmapm1, 0x0, 64); memory_region_add_subregion(sysmem, 0x820c0000, bmapm2); /* BMAP IO - acts as a catch-all for now */ memory_region_init_io(scrmem, NULL, &scr_ops, machine, "next.scr", 0x20000); memory_region_add_subregion(sysmem, 0x02100000, scrmem); /* KBD */ dev = qdev_new(TYPE_NEXTKBD); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x0200e000); /* Load ROM here */ if (bios_name == NULL) { bios_name = ROM_FILE; } /* still not sure if the rom should also be mapped at 0x0*/ memory_region_init_rom(rom, NULL, "next.rom", 0x20000, &error_fatal); memory_region_add_subregion(sysmem, 0x01000000, rom); if (load_image_targphys(bios_name, 0x01000000, 0x20000) < 8) { if (!qtest_enabled()) { error_report("Failed to load firmware '%s'.", bios_name); } } else { uint8_t *ptr; /* Initial PC is always at offset 4 in firmware binaries */ ptr = rom_ptr(0x01000004, 4); g_assert(ptr != NULL); env->pc = ldl_p(ptr); if (env->pc >= 0x01020000) { error_report("'%s' does not seem to be a valid firmware image.", bios_name); exit(1); } } /* Serial */ next_escc_init(cpu); /* TODO: */ /* Network */ /* SCSI */ /* DMA */ memory_region_init_io(dmamem, NULL, &dma_ops, machine, "next.dma", 0x5000); memory_region_add_subregion(sysmem, 0x02000000, dmamem); } static void next_machine_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "NeXT Cube"; mc->init = next_cube_init; mc->default_ram_size = RAM_SIZE; mc->default_ram_id = "next.ram"; mc->default_cpu_type = M68K_CPU_TYPE_NAME("m68040"); } static const TypeInfo next_typeinfo = { .name = TYPE_NEXT_MACHINE, .parent = TYPE_MACHINE, .class_init = next_machine_class_init, .instance_size = sizeof(NeXTState), }; static void next_register_type(void) { type_register_static(&next_typeinfo); } type_init(next_register_type)