/* * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms * * Copyright (c) 2003-2005 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" #include "m48t59.h" //#define DEBUG_NVRAM #if defined(DEBUG_NVRAM) #define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0) #else #define NVRAM_PRINTF(fmt, args...) do { } while (0) #endif /* * The M48T08 and M48T59 chips are very similar. The newer '59 has * alarm and a watchdog timer and related control registers. In the * PPC platform there is also a nvram lock function. */ struct m48t59_t { /* Model parameters */ int type; // 8 = m48t08, 59 = m48t59 /* Hardware parameters */ qemu_irq IRQ; int mem_index; uint32_t mem_base; uint32_t io_base; uint16_t size; /* RTC management */ time_t time_offset; time_t stop_time; /* Alarm & watchdog */ time_t alarm; struct QEMUTimer *alrm_timer; struct QEMUTimer *wd_timer; /* NVRAM storage */ uint8_t lock; uint16_t addr; uint8_t *buffer; }; /* Fake timer functions */ /* Generic helpers for BCD */ static inline uint8_t toBCD (uint8_t value) { return (((value / 10) % 10) << 4) | (value % 10); } static inline uint8_t fromBCD (uint8_t BCD) { return ((BCD >> 4) * 10) + (BCD & 0x0F); } /* RTC management helpers */ static void get_time (m48t59_t *NVRAM, struct tm *tm) { time_t t; t = time(NULL) + NVRAM->time_offset; #ifdef _WIN32 memcpy(tm,localtime(&t),sizeof(*tm)); #else localtime_r (&t, tm) ; #endif } static void set_time (m48t59_t *NVRAM, struct tm *tm) { time_t now, new_time; new_time = mktime(tm); now = time(NULL); NVRAM->time_offset = new_time - now; } /* Alarm management */ static void alarm_cb (void *opaque) { struct tm tm, tm_now; uint64_t next_time; m48t59_t *NVRAM = opaque; qemu_set_irq(NVRAM->IRQ, 1); if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 && (NVRAM->buffer[0x1FF4] & 0x80) == 0 && (NVRAM->buffer[0x1FF3] & 0x80) == 0 && (NVRAM->buffer[0x1FF2] & 0x80) == 0) { /* Repeat once a month */ get_time(NVRAM, &tm_now); memcpy(&tm, &tm_now, sizeof(struct tm)); tm.tm_mon++; if (tm.tm_mon == 13) { tm.tm_mon = 1; tm.tm_year++; } next_time = mktime(&tm); } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 && (NVRAM->buffer[0x1FF4] & 0x80) == 0 && (NVRAM->buffer[0x1FF3] & 0x80) == 0 && (NVRAM->buffer[0x1FF2] & 0x80) == 0) { /* Repeat once a day */ next_time = 24 * 60 * 60 + mktime(&tm_now); } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 && (NVRAM->buffer[0x1FF4] & 0x80) != 0 && (NVRAM->buffer[0x1FF3] & 0x80) == 0 && (NVRAM->buffer[0x1FF2] & 0x80) == 0) { /* Repeat once an hour */ next_time = 60 * 60 + mktime(&tm_now); } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 && (NVRAM->buffer[0x1FF4] & 0x80) != 0 && (NVRAM->buffer[0x1FF3] & 0x80) != 0 && (NVRAM->buffer[0x1FF2] & 0x80) == 0) { /* Repeat once a minute */ next_time = 60 + mktime(&tm_now); } else { /* Repeat once a second */ next_time = 1 + mktime(&tm_now); } qemu_mod_timer(NVRAM->alrm_timer, next_time * 1000); qemu_set_irq(NVRAM->IRQ, 0); } static void get_alarm (m48t59_t *NVRAM, struct tm *tm) { #ifdef _WIN32 memcpy(tm,localtime(&NVRAM->alarm),sizeof(*tm)); #else localtime_r (&NVRAM->alarm, tm); #endif } static void set_alarm (m48t59_t *NVRAM, struct tm *tm) { NVRAM->alarm = mktime(tm); if (NVRAM->alrm_timer != NULL) { qemu_del_timer(NVRAM->alrm_timer); NVRAM->alrm_timer = NULL; } if (NVRAM->alarm - time(NULL) > 0) qemu_mod_timer(NVRAM->alrm_timer, NVRAM->alarm * 1000); } /* Watchdog management */ static void watchdog_cb (void *opaque) { m48t59_t *NVRAM = opaque; NVRAM->buffer[0x1FF0] |= 0x80; if (NVRAM->buffer[0x1FF7] & 0x80) { NVRAM->buffer[0x1FF7] = 0x00; NVRAM->buffer[0x1FFC] &= ~0x40; /* May it be a hw CPU Reset instead ? */ qemu_system_reset_request(); } else { qemu_set_irq(NVRAM->IRQ, 1); qemu_set_irq(NVRAM->IRQ, 0); } } static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value) { uint64_t interval; /* in 1/16 seconds */ if (NVRAM->wd_timer != NULL) { qemu_del_timer(NVRAM->wd_timer); NVRAM->wd_timer = NULL; } NVRAM->buffer[0x1FF0] &= ~0x80; if (value != 0) { interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F); qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) + ((interval * 1000) >> 4)); } } /* Direct access to NVRAM */ void m48t59_write (m48t59_t *NVRAM, uint32_t addr, uint32_t val) { struct tm tm; int tmp; if (addr > 0x1FF8 && addr < 0x2000) NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val); if (NVRAM->type == 8 && (addr >= 0x1ff0 && addr <= 0x1ff7)) goto do_write; switch (addr) { case 0x1FF0: /* flags register : read-only */ break; case 0x1FF1: /* unused */ break; case 0x1FF2: /* alarm seconds */ tmp = fromBCD(val & 0x7F); if (tmp >= 0 && tmp <= 59) { get_alarm(NVRAM, &tm); tm.tm_sec = tmp; NVRAM->buffer[0x1FF2] = val; set_alarm(NVRAM, &tm); } break; case 0x1FF3: /* alarm minutes */ tmp = fromBCD(val & 0x7F); if (tmp >= 0 && tmp <= 59) { get_alarm(NVRAM, &tm); tm.tm_min = tmp; NVRAM->buffer[0x1FF3] = val; set_alarm(NVRAM, &tm); } break; case 0x1FF4: /* alarm hours */ tmp = fromBCD(val & 0x3F); if (tmp >= 0 && tmp <= 23) { get_alarm(NVRAM, &tm); tm.tm_hour = tmp; NVRAM->buffer[0x1FF4] = val; set_alarm(NVRAM, &tm); } break; case 0x1FF5: /* alarm date */ tmp = fromBCD(val & 0x1F); if (tmp != 0) { get_alarm(NVRAM, &tm); tm.tm_mday = tmp; NVRAM->buffer[0x1FF5] = val; set_alarm(NVRAM, &tm); } break; case 0x1FF6: /* interrupts */ NVRAM->buffer[0x1FF6] = val; break; case 0x1FF7: /* watchdog */ NVRAM->buffer[0x1FF7] = val; set_up_watchdog(NVRAM, val); break; case 0x1FF8: /* control */ NVRAM->buffer[0x1FF8] = (val & ~0xA0) | 0x90; break; case 0x1FF9: /* seconds (BCD) */ tmp = fromBCD(val & 0x7F); if (tmp >= 0 && tmp <= 59) { get_time(NVRAM, &tm); tm.tm_sec = tmp; set_time(NVRAM, &tm); } if ((val & 0x80) ^ (NVRAM->buffer[0x1FF9] & 0x80)) { if (val & 0x80) { NVRAM->stop_time = time(NULL); } else { NVRAM->time_offset += NVRAM->stop_time - time(NULL); NVRAM->stop_time = 0; } } NVRAM->buffer[0x1FF9] = val & 0x80; break; case 0x1FFA: /* minutes (BCD) */ tmp = fromBCD(val & 0x7F); if (tmp >= 0 && tmp <= 59) { get_time(NVRAM, &tm); tm.tm_min = tmp; set_time(NVRAM, &tm); } break; case 0x1FFB: /* hours (BCD) */ tmp = fromBCD(val & 0x3F); if (tmp >= 0 && tmp <= 23) { get_time(NVRAM, &tm); tm.tm_hour = tmp; set_time(NVRAM, &tm); } break; case 0x1FFC: /* day of the week / century */ tmp = fromBCD(val & 0x07); get_time(NVRAM, &tm); tm.tm_wday = tmp; set_time(NVRAM, &tm); NVRAM->buffer[0x1FFC] = val & 0x40; break; case 0x1FFD: /* date */ tmp = fromBCD(val & 0x1F); if (tmp != 0) { get_time(NVRAM, &tm); tm.tm_mday = tmp; set_time(NVRAM, &tm); } break; case 0x1FFE: /* month */ tmp = fromBCD(val & 0x1F); if (tmp >= 1 && tmp <= 12) { get_time(NVRAM, &tm); tm.tm_mon = tmp - 1; set_time(NVRAM, &tm); } break; case 0x1FFF: /* year */ tmp = fromBCD(val); if (tmp >= 0 && tmp <= 99) { get_time(NVRAM, &tm); if (NVRAM->type == 8) tm.tm_year = fromBCD(val) + 68; // Base year is 1968 else tm.tm_year = fromBCD(val); set_time(NVRAM, &tm); } break; default: /* Check lock registers state */ if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1)) break; if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2)) break; do_write: if (addr < NVRAM->size) { NVRAM->buffer[addr] = val & 0xFF; } break; } } uint32_t m48t59_read (m48t59_t *NVRAM, uint32_t addr) { struct tm tm; uint32_t retval = 0xFF; if (NVRAM->type == 8 && (addr >= 0x1ff0 && addr <= 0x1ff7)) goto do_read; switch (addr) { case 0x1FF0: /* flags register */ goto do_read; case 0x1FF1: /* unused */ retval = 0; break; case 0x1FF2: /* alarm seconds */ goto do_read; case 0x1FF3: /* alarm minutes */ goto do_read; case 0x1FF4: /* alarm hours */ goto do_read; case 0x1FF5: /* alarm date */ goto do_read; case 0x1FF6: /* interrupts */ goto do_read; case 0x1FF7: /* A read resets the watchdog */ set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]); goto do_read; case 0x1FF8: /* control */ goto do_read; case 0x1FF9: /* seconds (BCD) */ get_time(NVRAM, &tm); retval = (NVRAM->buffer[0x1FF9] & 0x80) | toBCD(tm.tm_sec); break; case 0x1FFA: /* minutes (BCD) */ get_time(NVRAM, &tm); retval = toBCD(tm.tm_min); break; case 0x1FFB: /* hours (BCD) */ get_time(NVRAM, &tm); retval = toBCD(tm.tm_hour); break; case 0x1FFC: /* day of the week / century */ get_time(NVRAM, &tm); retval = NVRAM->buffer[0x1FFC] | tm.tm_wday; break; case 0x1FFD: /* date */ get_time(NVRAM, &tm); retval = toBCD(tm.tm_mday); break; case 0x1FFE: /* month */ get_time(NVRAM, &tm); retval = toBCD(tm.tm_mon + 1); break; case 0x1FFF: /* year */ get_time(NVRAM, &tm); if (NVRAM->type == 8) retval = toBCD(tm.tm_year - 68); // Base year is 1968 else retval = toBCD(tm.tm_year); break; default: /* Check lock registers state */ if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1)) break; if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2)) break; do_read: if (addr < NVRAM->size) { retval = NVRAM->buffer[addr]; } break; } if (addr > 0x1FF9 && addr < 0x2000) NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval); return retval; } void m48t59_set_addr (m48t59_t *NVRAM, uint32_t addr) { NVRAM->addr = addr; } void m48t59_toggle_lock (m48t59_t *NVRAM, int lock) { NVRAM->lock ^= 1 << lock; } /* IO access to NVRAM */ static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val) { m48t59_t *NVRAM = opaque; addr -= NVRAM->io_base; NVRAM_PRINTF("0x%08x => 0x%08x\n", addr, val); switch (addr) { case 0: NVRAM->addr &= ~0x00FF; NVRAM->addr |= val; break; case 1: NVRAM->addr &= ~0xFF00; NVRAM->addr |= val << 8; break; case 3: m48t59_write(NVRAM, val, NVRAM->addr); NVRAM->addr = 0x0000; break; default: break; } } static uint32_t NVRAM_readb (void *opaque, uint32_t addr) { m48t59_t *NVRAM = opaque; uint32_t retval; addr -= NVRAM->io_base; switch (addr) { case 3: retval = m48t59_read(NVRAM, NVRAM->addr); break; default: retval = -1; break; } NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval); return retval; } static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) { m48t59_t *NVRAM = opaque; addr -= NVRAM->mem_base; m48t59_write(NVRAM, addr, value & 0xff); } static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value) { m48t59_t *NVRAM = opaque; addr -= NVRAM->mem_base; m48t59_write(NVRAM, addr, (value >> 8) & 0xff); m48t59_write(NVRAM, addr + 1, value & 0xff); } static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { m48t59_t *NVRAM = opaque; addr -= NVRAM->mem_base; m48t59_write(NVRAM, addr, (value >> 24) & 0xff); m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff); m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff); m48t59_write(NVRAM, addr + 3, value & 0xff); } static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr) { m48t59_t *NVRAM = opaque; uint32_t retval; addr -= NVRAM->mem_base; retval = m48t59_read(NVRAM, addr); return retval; } static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr) { m48t59_t *NVRAM = opaque; uint32_t retval; addr -= NVRAM->mem_base; retval = m48t59_read(NVRAM, addr) << 8; retval |= m48t59_read(NVRAM, addr + 1); return retval; } static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr) { m48t59_t *NVRAM = opaque; uint32_t retval; addr -= NVRAM->mem_base; retval = m48t59_read(NVRAM, addr) << 24; retval |= m48t59_read(NVRAM, addr + 1) << 16; retval |= m48t59_read(NVRAM, addr + 2) << 8; retval |= m48t59_read(NVRAM, addr + 3); return retval; } static CPUWriteMemoryFunc *nvram_write[] = { &nvram_writeb, &nvram_writew, &nvram_writel, }; static CPUReadMemoryFunc *nvram_read[] = { &nvram_readb, &nvram_readw, &nvram_readl, }; /* Initialisation routine */ m48t59_t *m48t59_init (qemu_irq IRQ, target_ulong mem_base, uint32_t io_base, uint16_t size, int type) { m48t59_t *s; s = qemu_mallocz(sizeof(m48t59_t)); if (!s) return NULL; s->buffer = qemu_mallocz(size); if (!s->buffer) { qemu_free(s); return NULL; } s->IRQ = IRQ; s->size = size; s->mem_base = mem_base; s->io_base = io_base; s->addr = 0; s->type = type; if (io_base != 0) { register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s); register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s); } if (mem_base != 0) { s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s); cpu_register_physical_memory(mem_base, 0x4000, s->mem_index); } if (type == 59) { s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s); s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s); } s->lock = 0; return s; }