/* * QEMU models for LatticeMico32 uclinux and evr32 boards. * * Copyright (c) 2010 Michael Walle * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qemu/cutils.h" #include "qemu/error-report.h" #include "cpu.h" #include "hw/sysbus.h" #include "hw/irq.h" #include "hw/block/flash.h" #include "hw/boards.h" #include "hw/loader.h" #include "elf.h" #include "lm32_hwsetup.h" #include "lm32.h" #include "sysemu/reset.h" #include "sysemu/sysemu.h" typedef struct { LM32CPU *cpu; hwaddr bootstrap_pc; hwaddr flash_base; hwaddr hwsetup_base; hwaddr initrd_base; size_t initrd_size; hwaddr cmdline_base; } ResetInfo; static void cpu_irq_handler(void *opaque, int irq, int level) { LM32CPU *cpu = opaque; CPUState *cs = CPU(cpu); if (level) { cpu_interrupt(cs, CPU_INTERRUPT_HARD); } else { cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); } } static void main_cpu_reset(void *opaque) { ResetInfo *reset_info = opaque; CPULM32State *env = &reset_info->cpu->env; cpu_reset(CPU(reset_info->cpu)); /* init defaults */ env->pc = (uint32_t)reset_info->bootstrap_pc; env->regs[R_R1] = (uint32_t)reset_info->hwsetup_base; env->regs[R_R2] = (uint32_t)reset_info->cmdline_base; env->regs[R_R3] = (uint32_t)reset_info->initrd_base; env->regs[R_R4] = (uint32_t)(reset_info->initrd_base + reset_info->initrd_size); env->eba = reset_info->flash_base; env->deba = reset_info->flash_base; } static void lm32_evr_init(MachineState *machine) { MachineClass *mc = MACHINE_GET_CLASS(machine); const char *kernel_filename = machine->kernel_filename; LM32CPU *cpu; CPULM32State *env; DriveInfo *dinfo; MemoryRegion *address_space_mem = get_system_memory(); qemu_irq irq[32]; ResetInfo *reset_info; int i; if (machine->ram_size != mc->default_ram_size) { char *sz = size_to_str(mc->default_ram_size); error_report("Invalid RAM size, should be %s", sz); g_free(sz); exit(EXIT_FAILURE); } /* memory map */ hwaddr flash_base = 0x04000000; size_t flash_sector_size = 256 * KiB; size_t flash_size = 32 * MiB; hwaddr ram_base = 0x08000000; hwaddr timer0_base = 0x80002000; hwaddr uart0_base = 0x80006000; hwaddr timer1_base = 0x8000a000; int uart0_irq = 0; int timer0_irq = 1; int timer1_irq = 3; reset_info = g_malloc0(sizeof(ResetInfo)); cpu = LM32_CPU(cpu_create(machine->cpu_type)); env = &cpu->env; reset_info->cpu = cpu; reset_info->flash_base = flash_base; memory_region_add_subregion(address_space_mem, ram_base, machine->ram); dinfo = drive_get(IF_PFLASH, 0, 0); /* Spansion S29NS128P */ pflash_cfi02_register(flash_base, "lm32_evr.flash", flash_size, dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, flash_sector_size, 1, 2, 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1); /* create irq lines */ env->pic_state = lm32_pic_init(qemu_allocate_irq(cpu_irq_handler, cpu, 0)); for (i = 0; i < 32; i++) { irq[i] = qdev_get_gpio_in(env->pic_state, i); } lm32_uart_create(uart0_base, irq[uart0_irq], serial_hd(0)); sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]); sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]); /* make sure juart isn't the first chardev */ env->juart_state = lm32_juart_init(serial_hd(1)); reset_info->bootstrap_pc = flash_base; if (kernel_filename) { uint64_t entry; int kernel_size; kernel_size = load_elf(kernel_filename, NULL, NULL, NULL, &entry, NULL, NULL, NULL, 1, EM_LATTICEMICO32, 0, 0); reset_info->bootstrap_pc = entry; if (kernel_size < 0) { kernel_size = load_image_targphys(kernel_filename, ram_base, machine->ram_size); reset_info->bootstrap_pc = ram_base; } if (kernel_size < 0) { error_report("could not load kernel '%s'", kernel_filename); exit(1); } } qemu_register_reset(main_cpu_reset, reset_info); } static void lm32_uclinux_init(MachineState *machine) { MachineClass *mc = MACHINE_GET_CLASS(machine); const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; const char *initrd_filename = machine->initrd_filename; LM32CPU *cpu; CPULM32State *env; DriveInfo *dinfo; MemoryRegion *address_space_mem = get_system_memory(); qemu_irq irq[32]; HWSetup *hw; ResetInfo *reset_info; int i; if (machine->ram_size != mc->default_ram_size) { char *sz = size_to_str(mc->default_ram_size); error_report("Invalid RAM size, should be %s", sz); g_free(sz); exit(EXIT_FAILURE); } /* memory map */ hwaddr flash_base = 0x04000000; size_t flash_sector_size = 256 * KiB; size_t flash_size = 32 * MiB; hwaddr ram_base = 0x08000000; hwaddr uart0_base = 0x80000000; hwaddr timer0_base = 0x80002000; hwaddr timer1_base = 0x80010000; hwaddr timer2_base = 0x80012000; int uart0_irq = 0; int timer0_irq = 1; int timer1_irq = 20; int timer2_irq = 21; hwaddr hwsetup_base = 0x0bffe000; hwaddr cmdline_base = 0x0bfff000; hwaddr initrd_base = 0x08400000; size_t initrd_max = 0x01000000; reset_info = g_malloc0(sizeof(ResetInfo)); cpu = LM32_CPU(cpu_create(machine->cpu_type)); env = &cpu->env; reset_info->cpu = cpu; reset_info->flash_base = flash_base; memory_region_add_subregion(address_space_mem, ram_base, machine->ram); dinfo = drive_get(IF_PFLASH, 0, 0); /* Spansion S29NS128P */ pflash_cfi02_register(flash_base, "lm32_uclinux.flash", flash_size, dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, flash_sector_size, 1, 2, 0x01, 0x7e, 0x43, 0x00, 0x555, 0x2aa, 1); /* create irq lines */ env->pic_state = lm32_pic_init(qemu_allocate_irq(cpu_irq_handler, env, 0)); for (i = 0; i < 32; i++) { irq[i] = qdev_get_gpio_in(env->pic_state, i); } lm32_uart_create(uart0_base, irq[uart0_irq], serial_hd(0)); sysbus_create_simple("lm32-timer", timer0_base, irq[timer0_irq]); sysbus_create_simple("lm32-timer", timer1_base, irq[timer1_irq]); sysbus_create_simple("lm32-timer", timer2_base, irq[timer2_irq]); /* make sure juart isn't the first chardev */ env->juart_state = lm32_juart_init(serial_hd(1)); reset_info->bootstrap_pc = flash_base; if (kernel_filename) { uint64_t entry; int kernel_size; kernel_size = load_elf(kernel_filename, NULL, NULL, NULL, &entry, NULL, NULL, NULL, 1, EM_LATTICEMICO32, 0, 0); reset_info->bootstrap_pc = entry; if (kernel_size < 0) { kernel_size = load_image_targphys(kernel_filename, ram_base, machine->ram_size); reset_info->bootstrap_pc = ram_base; } if (kernel_size < 0) { error_report("could not load kernel '%s'", kernel_filename); exit(1); } } /* generate a rom with the hardware description */ hw = hwsetup_init(); hwsetup_add_cpu(hw, "LM32", 75000000); hwsetup_add_flash(hw, "flash", flash_base, flash_size); hwsetup_add_ddr_sdram(hw, "ddr_sdram", ram_base, machine->ram_size); hwsetup_add_timer(hw, "timer0", timer0_base, timer0_irq); hwsetup_add_timer(hw, "timer1_dev_only", timer1_base, timer1_irq); hwsetup_add_timer(hw, "timer2_dev_only", timer2_base, timer2_irq); hwsetup_add_uart(hw, "uart", uart0_base, uart0_irq); hwsetup_add_trailer(hw); hwsetup_create_rom(hw, hwsetup_base); hwsetup_free(hw); reset_info->hwsetup_base = hwsetup_base; if (kernel_cmdline && strlen(kernel_cmdline)) { pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE, kernel_cmdline); reset_info->cmdline_base = cmdline_base; } if (initrd_filename) { size_t initrd_size; initrd_size = load_image_targphys(initrd_filename, initrd_base, initrd_max); reset_info->initrd_base = initrd_base; reset_info->initrd_size = initrd_size; } qemu_register_reset(main_cpu_reset, reset_info); } static void lm32_evr_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "LatticeMico32 EVR32 eval system"; mc->init = lm32_evr_init; mc->is_default = true; mc->default_cpu_type = LM32_CPU_TYPE_NAME("lm32-full"); mc->default_ram_size = 64 * MiB; mc->default_ram_id = "lm32_evr.sdram"; } static const TypeInfo lm32_evr_type = { .name = MACHINE_TYPE_NAME("lm32-evr"), .parent = TYPE_MACHINE, .class_init = lm32_evr_class_init, }; static void lm32_uclinux_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "lm32 platform for uClinux and u-boot by Theobroma Systems"; mc->init = lm32_uclinux_init; mc->default_cpu_type = LM32_CPU_TYPE_NAME("lm32-full"); mc->default_ram_size = 64 * MiB; mc->default_ram_id = "lm32_uclinux.sdram"; } static const TypeInfo lm32_uclinux_type = { .name = MACHINE_TYPE_NAME("lm32-uclinux"), .parent = TYPE_MACHINE, .class_init = lm32_uclinux_class_init, }; static void lm32_machine_init(void) { type_register_static(&lm32_evr_type); type_register_static(&lm32_uclinux_type); } type_init(lm32_machine_init)