/* * Copyright (c) 2007, Neocleus Corporation. * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * * Assign a PCI device from the host to a guest VM. * * This implementation uses the classic device assignment interface of KVM * and is only available on x86 hosts. It is expected to be obsoleted by VFIO * based device assignment. * * Adapted for KVM (qemu-kvm) by Qumranet. QEMU version was based on qemu-kvm * revision 4144fe9d48. See its repository for the history. * * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) */ #include #include #include #include #include #include #include "hw/hw.h" #include "hw/pc.h" #include "qemu-error.h" #include "console.h" #include "hw/loader.h" #include "monitor.h" #include "range.h" #include "sysemu.h" #include "hw/pci/pci.h" #include "hw/pci/msi.h" #include "kvm_i386.h" #define MSIX_PAGE_SIZE 0x1000 /* From linux/ioport.h */ #define IORESOURCE_IO 0x00000100 /* Resource type */ #define IORESOURCE_MEM 0x00000200 #define IORESOURCE_IRQ 0x00000400 #define IORESOURCE_DMA 0x00000800 #define IORESOURCE_PREFETCH 0x00002000 /* No side effects */ //#define DEVICE_ASSIGNMENT_DEBUG #ifdef DEVICE_ASSIGNMENT_DEBUG #define DEBUG(fmt, ...) \ do { \ fprintf(stderr, "%s: " fmt, __func__ , __VA_ARGS__); \ } while (0) #else #define DEBUG(fmt, ...) #endif typedef struct PCIRegion { int type; /* Memory or port I/O */ int valid; uint64_t base_addr; uint64_t size; /* size of the region */ int resource_fd; } PCIRegion; typedef struct PCIDevRegions { uint8_t bus, dev, func; /* Bus inside domain, device and function */ int irq; /* IRQ number */ uint16_t region_number; /* number of active regions */ /* Port I/O or MMIO Regions */ PCIRegion regions[PCI_NUM_REGIONS - 1]; int config_fd; } PCIDevRegions; typedef struct AssignedDevRegion { MemoryRegion container; MemoryRegion real_iomem; union { uint8_t *r_virtbase; /* mmapped access address for memory regions */ uint32_t r_baseport; /* the base guest port for I/O regions */ } u; pcibus_t e_size; /* emulated size of region in bytes */ pcibus_t r_size; /* real size of region in bytes */ PCIRegion *region; } AssignedDevRegion; #define ASSIGNED_DEVICE_PREFER_MSI_BIT 0 #define ASSIGNED_DEVICE_SHARE_INTX_BIT 1 #define ASSIGNED_DEVICE_PREFER_MSI_MASK (1 << ASSIGNED_DEVICE_PREFER_MSI_BIT) #define ASSIGNED_DEVICE_SHARE_INTX_MASK (1 << ASSIGNED_DEVICE_SHARE_INTX_BIT) typedef struct MSIXTableEntry { uint32_t addr_lo; uint32_t addr_hi; uint32_t data; uint32_t ctrl; } MSIXTableEntry; typedef enum AssignedIRQType { ASSIGNED_IRQ_NONE = 0, ASSIGNED_IRQ_INTX_HOST_INTX, ASSIGNED_IRQ_INTX_HOST_MSI, ASSIGNED_IRQ_MSI, ASSIGNED_IRQ_MSIX } AssignedIRQType; typedef struct AssignedDevice { PCIDevice dev; PCIHostDeviceAddress host; uint32_t dev_id; uint32_t features; int intpin; AssignedDevRegion v_addrs[PCI_NUM_REGIONS - 1]; PCIDevRegions real_device; PCIINTxRoute intx_route; AssignedIRQType assigned_irq_type; struct { #define ASSIGNED_DEVICE_CAP_MSI (1 << 0) #define ASSIGNED_DEVICE_CAP_MSIX (1 << 1) uint32_t available; #define ASSIGNED_DEVICE_MSI_ENABLED (1 << 0) #define ASSIGNED_DEVICE_MSIX_ENABLED (1 << 1) #define ASSIGNED_DEVICE_MSIX_MASKED (1 << 2) uint32_t state; } cap; uint8_t emulate_config_read[PCI_CONFIG_SPACE_SIZE]; uint8_t emulate_config_write[PCI_CONFIG_SPACE_SIZE]; int msi_virq_nr; int *msi_virq; MSIXTableEntry *msix_table; hwaddr msix_table_addr; uint16_t msix_max; MemoryRegion mmio; char *configfd_name; int32_t bootindex; } AssignedDevice; static void assigned_dev_update_irq_routing(PCIDevice *dev); static void assigned_dev_load_option_rom(AssignedDevice *dev); static void assigned_dev_unregister_msix_mmio(AssignedDevice *dev); static uint64_t assigned_dev_ioport_rw(AssignedDevRegion *dev_region, hwaddr addr, int size, uint64_t *data) { uint64_t val = 0; int fd = dev_region->region->resource_fd; if (fd >= 0) { if (data) { DEBUG("pwrite data=%" PRIx64 ", size=%d, e_phys=" TARGET_FMT_plx ", addr="TARGET_FMT_plx"\n", *data, size, addr, addr); if (pwrite(fd, data, size, addr) != size) { error_report("%s - pwrite failed %s", __func__, strerror(errno)); } } else { if (pread(fd, &val, size, addr) != size) { error_report("%s - pread failed %s", __func__, strerror(errno)); val = (1UL << (size * 8)) - 1; } DEBUG("pread val=%" PRIx64 ", size=%d, e_phys=" TARGET_FMT_plx ", addr=" TARGET_FMT_plx "\n", val, size, addr, addr); } } else { uint32_t port = addr + dev_region->u.r_baseport; if (data) { DEBUG("out data=%" PRIx64 ", size=%d, e_phys=" TARGET_FMT_plx ", host=%x\n", *data, size, addr, port); switch (size) { case 1: outb(*data, port); break; case 2: outw(*data, port); break; case 4: outl(*data, port); break; } } else { switch (size) { case 1: val = inb(port); break; case 2: val = inw(port); break; case 4: val = inl(port); break; } DEBUG("in data=%" PRIx64 ", size=%d, e_phys=" TARGET_FMT_plx ", host=%x\n", val, size, addr, port); } } return val; } static void assigned_dev_ioport_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { assigned_dev_ioport_rw(opaque, addr, size, &data); } static uint64_t assigned_dev_ioport_read(void *opaque, hwaddr addr, unsigned size) { return assigned_dev_ioport_rw(opaque, addr, size, NULL); } static uint32_t slow_bar_readb(void *opaque, hwaddr addr) { AssignedDevRegion *d = opaque; uint8_t *in = d->u.r_virtbase + addr; uint32_t r; r = *in; DEBUG("slow_bar_readl addr=0x" TARGET_FMT_plx " val=0x%08x\n", addr, r); return r; } static uint32_t slow_bar_readw(void *opaque, hwaddr addr) { AssignedDevRegion *d = opaque; uint16_t *in = (uint16_t *)(d->u.r_virtbase + addr); uint32_t r; r = *in; DEBUG("slow_bar_readl addr=0x" TARGET_FMT_plx " val=0x%08x\n", addr, r); return r; } static uint32_t slow_bar_readl(void *opaque, hwaddr addr) { AssignedDevRegion *d = opaque; uint32_t *in = (uint32_t *)(d->u.r_virtbase + addr); uint32_t r; r = *in; DEBUG("slow_bar_readl addr=0x" TARGET_FMT_plx " val=0x%08x\n", addr, r); return r; } static void slow_bar_writeb(void *opaque, hwaddr addr, uint32_t val) { AssignedDevRegion *d = opaque; uint8_t *out = d->u.r_virtbase + addr; DEBUG("slow_bar_writeb addr=0x" TARGET_FMT_plx " val=0x%02x\n", addr, val); *out = val; } static void slow_bar_writew(void *opaque, hwaddr addr, uint32_t val) { AssignedDevRegion *d = opaque; uint16_t *out = (uint16_t *)(d->u.r_virtbase + addr); DEBUG("slow_bar_writew addr=0x" TARGET_FMT_plx " val=0x%04x\n", addr, val); *out = val; } static void slow_bar_writel(void *opaque, hwaddr addr, uint32_t val) { AssignedDevRegion *d = opaque; uint32_t *out = (uint32_t *)(d->u.r_virtbase + addr); DEBUG("slow_bar_writel addr=0x" TARGET_FMT_plx " val=0x%08x\n", addr, val); *out = val; } static const MemoryRegionOps slow_bar_ops = { .old_mmio = { .read = { slow_bar_readb, slow_bar_readw, slow_bar_readl, }, .write = { slow_bar_writeb, slow_bar_writew, slow_bar_writel, }, }, .endianness = DEVICE_NATIVE_ENDIAN, }; static void assigned_dev_iomem_setup(PCIDevice *pci_dev, int region_num, pcibus_t e_size) { AssignedDevice *r_dev = DO_UPCAST(AssignedDevice, dev, pci_dev); AssignedDevRegion *region = &r_dev->v_addrs[region_num]; PCIRegion *real_region = &r_dev->real_device.regions[region_num]; if (e_size > 0) { memory_region_init(®ion->container, "assigned-dev-container", e_size); memory_region_add_subregion(®ion->container, 0, ®ion->real_iomem); /* deal with MSI-X MMIO page */ if (real_region->base_addr <= r_dev->msix_table_addr && real_region->base_addr + real_region->size > r_dev->msix_table_addr) { uint64_t offset = r_dev->msix_table_addr - real_region->base_addr; memory_region_add_subregion_overlap(®ion->container, offset, &r_dev->mmio, 1); } } } static const MemoryRegionOps assigned_dev_ioport_ops = { .read = assigned_dev_ioport_read, .write = assigned_dev_ioport_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void assigned_dev_ioport_setup(PCIDevice *pci_dev, int region_num, pcibus_t size) { AssignedDevice *r_dev = DO_UPCAST(AssignedDevice, dev, pci_dev); AssignedDevRegion *region = &r_dev->v_addrs[region_num]; region->e_size = size; memory_region_init(®ion->container, "assigned-dev-container", size); memory_region_init_io(®ion->real_iomem, &assigned_dev_ioport_ops, r_dev->v_addrs + region_num, "assigned-dev-iomem", size); memory_region_add_subregion(®ion->container, 0, ®ion->real_iomem); } static uint32_t assigned_dev_pci_read(PCIDevice *d, int pos, int len) { AssignedDevice *pci_dev = DO_UPCAST(AssignedDevice, dev, d); uint32_t val; ssize_t ret; int fd = pci_dev->real_device.config_fd; again: ret = pread(fd, &val, len, pos); if (ret != len) { if ((ret < 0) && (errno == EINTR || errno == EAGAIN)) { goto again; } hw_error("pci read failed, ret = %zd errno = %d\n", ret, errno); } return val; } static uint8_t assigned_dev_pci_read_byte(PCIDevice *d, int pos) { return (uint8_t)assigned_dev_pci_read(d, pos, 1); } static void assigned_dev_pci_write(PCIDevice *d, int pos, uint32_t val, int len) { AssignedDevice *pci_dev = DO_UPCAST(AssignedDevice, dev, d); ssize_t ret; int fd = pci_dev->real_device.config_fd; again: ret = pwrite(fd, &val, len, pos); if (ret != len) { if ((ret < 0) && (errno == EINTR || errno == EAGAIN)) { goto again; } hw_error("pci write failed, ret = %zd errno = %d\n", ret, errno); } } static void assigned_dev_emulate_config_read(AssignedDevice *dev, uint32_t offset, uint32_t len) { memset(dev->emulate_config_read + offset, 0xff, len); } static void assigned_dev_direct_config_read(AssignedDevice *dev, uint32_t offset, uint32_t len) { memset(dev->emulate_config_read + offset, 0, len); } static void assigned_dev_direct_config_write(AssignedDevice *dev, uint32_t offset, uint32_t len) { memset(dev->emulate_config_write + offset, 0, len); } static uint8_t pci_find_cap_offset(PCIDevice *d, uint8_t cap, uint8_t start) { int id; int max_cap = 48; int pos = start ? start : PCI_CAPABILITY_LIST; int status; status = assigned_dev_pci_read_byte(d, PCI_STATUS); if ((status & PCI_STATUS_CAP_LIST) == 0) { return 0; } while (max_cap--) { pos = assigned_dev_pci_read_byte(d, pos); if (pos < 0x40) { break; } pos &= ~3; id = assigned_dev_pci_read_byte(d, pos + PCI_CAP_LIST_ID); if (id == 0xff) { break; } if (id == cap) { return pos; } pos += PCI_CAP_LIST_NEXT; } return 0; } static int assigned_dev_register_regions(PCIRegion *io_regions, unsigned long regions_num, AssignedDevice *pci_dev) { uint32_t i; PCIRegion *cur_region = io_regions; for (i = 0; i < regions_num; i++, cur_region++) { if (!cur_region->valid) { continue; } /* handle memory io regions */ if (cur_region->type & IORESOURCE_MEM) { int t = cur_region->type & IORESOURCE_PREFETCH ? PCI_BASE_ADDRESS_MEM_PREFETCH : PCI_BASE_ADDRESS_SPACE_MEMORY; /* map physical memory */ pci_dev->v_addrs[i].u.r_virtbase = mmap(NULL, cur_region->size, PROT_WRITE | PROT_READ, MAP_SHARED, cur_region->resource_fd, (off_t)0); if (pci_dev->v_addrs[i].u.r_virtbase == MAP_FAILED) { pci_dev->v_addrs[i].u.r_virtbase = NULL; error_report("%s: Error: Couldn't mmap 0x%" PRIx64 "!", __func__, cur_region->base_addr); return -1; } pci_dev->v_addrs[i].r_size = cur_region->size; pci_dev->v_addrs[i].e_size = 0; /* add offset */ pci_dev->v_addrs[i].u.r_virtbase += (cur_region->base_addr & 0xFFF); if (cur_region->size & 0xFFF) { error_report("PCI region %d at address 0x%" PRIx64 " has " "size 0x%" PRIx64 ", which is not a multiple of " "4K. You might experience some performance hit " "due to that.", i, cur_region->base_addr, cur_region->size); memory_region_init_io(&pci_dev->v_addrs[i].real_iomem, &slow_bar_ops, &pci_dev->v_addrs[i], "assigned-dev-slow-bar", cur_region->size); } else { void *virtbase = pci_dev->v_addrs[i].u.r_virtbase; char name[32]; snprintf(name, sizeof(name), "%s.bar%d", object_get_typename(OBJECT(pci_dev)), i); memory_region_init_ram_ptr(&pci_dev->v_addrs[i].real_iomem, name, cur_region->size, virtbase); vmstate_register_ram(&pci_dev->v_addrs[i].real_iomem, &pci_dev->dev.qdev); } assigned_dev_iomem_setup(&pci_dev->dev, i, cur_region->size); pci_register_bar((PCIDevice *) pci_dev, i, t, &pci_dev->v_addrs[i].container); continue; } else { /* handle port io regions */ uint32_t val; int ret; /* Test kernel support for ioport resource read/write. Old * kernels return EIO. New kernels only allow 1/2/4 byte reads * so should return EINVAL for a 3 byte read */ ret = pread(pci_dev->v_addrs[i].region->resource_fd, &val, 3, 0); if (ret >= 0) { error_report("Unexpected return from I/O port read: %d", ret); abort(); } else if (errno != EINVAL) { error_report("Kernel doesn't support ioport resource " "access, hiding this region."); close(pci_dev->v_addrs[i].region->resource_fd); cur_region->valid = 0; continue; } pci_dev->v_addrs[i].u.r_baseport = cur_region->base_addr; pci_dev->v_addrs[i].r_size = cur_region->size; pci_dev->v_addrs[i].e_size = 0; assigned_dev_ioport_setup(&pci_dev->dev, i, cur_region->size); pci_register_bar((PCIDevice *) pci_dev, i, PCI_BASE_ADDRESS_SPACE_IO, &pci_dev->v_addrs[i].container); } } /* success */ return 0; } static int get_real_id(const char *devpath, const char *idname, uint16_t *val) { FILE *f; char name[128]; long id; snprintf(name, sizeof(name), "%s%s", devpath, idname); f = fopen(name, "r"); if (f == NULL) { error_report("%s: %s: %m", __func__, name); return -1; } if (fscanf(f, "%li\n", &id) == 1) { *val = id; } else { return -1; } fclose(f); return 0; } static int get_real_vendor_id(const char *devpath, uint16_t *val) { return get_real_id(devpath, "vendor", val); } static int get_real_device_id(const char *devpath, uint16_t *val) { return get_real_id(devpath, "device", val); } static int get_real_device(AssignedDevice *pci_dev, uint16_t r_seg, uint8_t r_bus, uint8_t r_dev, uint8_t r_func) { char dir[128], name[128]; int fd, r = 0, v; FILE *f; uint64_t start, end, size, flags; uint16_t id; PCIRegion *rp; PCIDevRegions *dev = &pci_dev->real_device; dev->region_number = 0; snprintf(dir, sizeof(dir), "/sys/bus/pci/devices/%04x:%02x:%02x.%x/", r_seg, r_bus, r_dev, r_func); snprintf(name, sizeof(name), "%sconfig", dir); if (pci_dev->configfd_name && *pci_dev->configfd_name) { dev->config_fd = monitor_handle_fd_param(cur_mon, pci_dev->configfd_name); if (dev->config_fd < 0) { return 1; } } else { dev->config_fd = open(name, O_RDWR); if (dev->config_fd == -1) { error_report("%s: %s: %m", __func__, name); return 1; } } again: r = read(dev->config_fd, pci_dev->dev.config, pci_config_size(&pci_dev->dev)); if (r < 0) { if (errno == EINTR || errno == EAGAIN) { goto again; } error_report("%s: read failed, errno = %d", __func__, errno); } /* Restore or clear multifunction, this is always controlled by qemu */ if (pci_dev->dev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { pci_dev->dev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION; } else { pci_dev->dev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION; } /* Clear host resource mapping info. If we choose not to register a * BAR, such as might be the case with the option ROM, we can get * confusing, unwritable, residual addresses from the host here. */ memset(&pci_dev->dev.config[PCI_BASE_ADDRESS_0], 0, 24); memset(&pci_dev->dev.config[PCI_ROM_ADDRESS], 0, 4); snprintf(name, sizeof(name), "%sresource", dir); f = fopen(name, "r"); if (f == NULL) { error_report("%s: %s: %m", __func__, name); return 1; } for (r = 0; r < PCI_ROM_SLOT; r++) { if (fscanf(f, "%" SCNi64 " %" SCNi64 " %" SCNi64 "\n", &start, &end, &flags) != 3) { break; } rp = dev->regions + r; rp->valid = 0; rp->resource_fd = -1; size = end - start + 1; flags &= IORESOURCE_IO | IORESOURCE_MEM | IORESOURCE_PREFETCH; if (size == 0 || (flags & ~IORESOURCE_PREFETCH) == 0) { continue; } if (flags & IORESOURCE_MEM) { flags &= ~IORESOURCE_IO; } else { flags &= ~IORESOURCE_PREFETCH; } snprintf(name, sizeof(name), "%sresource%d", dir, r); fd = open(name, O_RDWR); if (fd == -1) { continue; } rp->resource_fd = fd; rp->type = flags; rp->valid = 1; rp->base_addr = start; rp->size = size; pci_dev->v_addrs[r].region = rp; DEBUG("region %d size %" PRIu64 " start 0x%" PRIx64 " type %d resource_fd %d\n", r, rp->size, start, rp->type, rp->resource_fd); } fclose(f); /* read and fill vendor ID */ v = get_real_vendor_id(dir, &id); if (v) { return 1; } pci_dev->dev.config[0] = id & 0xff; pci_dev->dev.config[1] = (id & 0xff00) >> 8; /* read and fill device ID */ v = get_real_device_id(dir, &id); if (v) { return 1; } pci_dev->dev.config[2] = id & 0xff; pci_dev->dev.config[3] = (id & 0xff00) >> 8; pci_word_test_and_clear_mask(pci_dev->emulate_config_write + PCI_COMMAND, PCI_COMMAND_MASTER | PCI_COMMAND_INTX_DISABLE); dev->region_number = r; return 0; } static void free_msi_virqs(AssignedDevice *dev) { int i; for (i = 0; i < dev->msi_virq_nr; i++) { if (dev->msi_virq[i] >= 0) { kvm_irqchip_release_virq(kvm_state, dev->msi_virq[i]); dev->msi_virq[i] = -1; } } g_free(dev->msi_virq); dev->msi_virq = NULL; dev->msi_virq_nr = 0; } static void free_assigned_device(AssignedDevice *dev) { int i; if (dev->cap.available & ASSIGNED_DEVICE_CAP_MSIX) { assigned_dev_unregister_msix_mmio(dev); } for (i = 0; i < dev->real_device.region_number; i++) { PCIRegion *pci_region = &dev->real_device.regions[i]; AssignedDevRegion *region = &dev->v_addrs[i]; if (!pci_region->valid) { continue; } if (pci_region->type & IORESOURCE_IO) { if (region->u.r_baseport) { memory_region_del_subregion(®ion->container, ®ion->real_iomem); memory_region_destroy(®ion->real_iomem); memory_region_destroy(®ion->container); } } else if (pci_region->type & IORESOURCE_MEM) { if (region->u.r_virtbase) { memory_region_del_subregion(®ion->container, ®ion->real_iomem); /* Remove MSI-X table subregion */ if (pci_region->base_addr <= dev->msix_table_addr && pci_region->base_addr + pci_region->size > dev->msix_table_addr) { memory_region_del_subregion(®ion->container, &dev->mmio); } memory_region_destroy(®ion->real_iomem); memory_region_destroy(®ion->container); if (munmap(region->u.r_virtbase, (pci_region->size + 0xFFF) & 0xFFFFF000)) { error_report("Failed to unmap assigned device region: %s", strerror(errno)); } } } if (pci_region->resource_fd >= 0) { close(pci_region->resource_fd); } } if (dev->real_device.config_fd >= 0) { close(dev->real_device.config_fd); } free_msi_virqs(dev); } static void assign_failed_examine(AssignedDevice *dev) { char name[PATH_MAX], dir[PATH_MAX], driver[PATH_MAX] = {}, *ns; uint16_t vendor_id, device_id; int r; snprintf(dir, sizeof(dir), "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/", dev->host.domain, dev->host.bus, dev->host.slot, dev->host.function); snprintf(name, sizeof(name), "%sdriver", dir); r = readlink(name, driver, sizeof(driver)); if ((r <= 0) || r >= sizeof(driver)) { goto fail; } ns = strrchr(driver, '/'); if (!ns) { goto fail; } ns++; if (get_real_vendor_id(dir, &vendor_id) || get_real_device_id(dir, &device_id)) { goto fail; } error_report("*** The driver '%s' is occupying your device " "%04x:%02x:%02x.%x.", ns, dev->host.domain, dev->host.bus, dev->host.slot, dev->host.function); error_report("***"); error_report("*** You can try the following commands to free it:"); error_report("***"); error_report("*** $ echo \"%04x %04x\" > /sys/bus/pci/drivers/pci-stub/" "new_id", vendor_id, device_id); error_report("*** $ echo \"%04x:%02x:%02x.%x\" > /sys/bus/pci/drivers/" "%s/unbind", dev->host.domain, dev->host.bus, dev->host.slot, dev->host.function, ns); error_report("*** $ echo \"%04x:%02x:%02x.%x\" > /sys/bus/pci/drivers/" "pci-stub/bind", dev->host.domain, dev->host.bus, dev->host.slot, dev->host.function); error_report("*** $ echo \"%04x %04x\" > /sys/bus/pci/drivers/pci-stub" "/remove_id", vendor_id, device_id); error_report("***"); return; fail: error_report("Couldn't find out why."); } static int assign_device(AssignedDevice *dev) { uint32_t flags = KVM_DEV_ASSIGN_ENABLE_IOMMU; int r; /* Only pass non-zero PCI segment to capable module */ if (!kvm_check_extension(kvm_state, KVM_CAP_PCI_SEGMENT) && dev->host.domain) { error_report("Can't assign device inside non-zero PCI segment " "as this KVM module doesn't support it."); return -ENODEV; } if (!kvm_check_extension(kvm_state, KVM_CAP_IOMMU)) { error_report("No IOMMU found. Unable to assign device \"%s\"", dev->dev.qdev.id); return -ENODEV; } if (dev->features & ASSIGNED_DEVICE_SHARE_INTX_MASK && kvm_has_intx_set_mask()) { flags |= KVM_DEV_ASSIGN_PCI_2_3; } r = kvm_device_pci_assign(kvm_state, &dev->host, flags, &dev->dev_id); if (r < 0) { error_report("Failed to assign device \"%s\" : %s", dev->dev.qdev.id, strerror(-r)); switch (r) { case -EBUSY: assign_failed_examine(dev); break; default: break; } } return r; } static bool check_irqchip_in_kernel(void) { if (kvm_irqchip_in_kernel()) { return true; } error_report("pci-assign: error: requires KVM with in-kernel irqchip " "enabled"); return false; } static int assign_intx(AssignedDevice *dev) { AssignedIRQType new_type; PCIINTxRoute intx_route; bool intx_host_msi; int r; /* Interrupt PIN 0 means don't use INTx */ if (assigned_dev_pci_read_byte(&dev->dev, PCI_INTERRUPT_PIN) == 0) { pci_device_set_intx_routing_notifier(&dev->dev, NULL); return 0; } if (!check_irqchip_in_kernel()) { return -ENOTSUP; } pci_device_set_intx_routing_notifier(&dev->dev, assigned_dev_update_irq_routing); intx_route = pci_device_route_intx_to_irq(&dev->dev, dev->intpin); assert(intx_route.mode != PCI_INTX_INVERTED); if (!pci_intx_route_changed(&dev->intx_route, &intx_route)) { return 0; } switch (dev->assigned_irq_type) { case ASSIGNED_IRQ_INTX_HOST_INTX: case ASSIGNED_IRQ_INTX_HOST_MSI: intx_host_msi = dev->assigned_irq_type == ASSIGNED_IRQ_INTX_HOST_MSI; r = kvm_device_intx_deassign(kvm_state, dev->dev_id, intx_host_msi); break; case ASSIGNED_IRQ_MSI: r = kvm_device_msi_deassign(kvm_state, dev->dev_id); break; case ASSIGNED_IRQ_MSIX: r = kvm_device_msix_deassign(kvm_state, dev->dev_id); break; default: r = 0; break; } if (r) { perror("assign_intx: deassignment of previous interrupt failed"); } dev->assigned_irq_type = ASSIGNED_IRQ_NONE; if (intx_route.mode == PCI_INTX_DISABLED) { dev->intx_route = intx_route; return 0; } retry: if (dev->features & ASSIGNED_DEVICE_PREFER_MSI_MASK && dev->cap.available & ASSIGNED_DEVICE_CAP_MSI) { intx_host_msi = true; new_type = ASSIGNED_IRQ_INTX_HOST_MSI; } else { intx_host_msi = false; new_type = ASSIGNED_IRQ_INTX_HOST_INTX; } r = kvm_device_intx_assign(kvm_state, dev->dev_id, intx_host_msi, intx_route.irq); if (r < 0) { if (r == -EIO && !(dev->features & ASSIGNED_DEVICE_PREFER_MSI_MASK) && dev->cap.available & ASSIGNED_DEVICE_CAP_MSI) { /* Retry with host-side MSI. There might be an IRQ conflict and * either the kernel or the device doesn't support sharing. */ error_report("Host-side INTx sharing not supported, " "using MSI instead.\n" "Some devices do not to work properly in this mode."); dev->features |= ASSIGNED_DEVICE_PREFER_MSI_MASK; goto retry; } error_report("Failed to assign irq for \"%s\": %s", dev->dev.qdev.id, strerror(-r)); error_report("Perhaps you are assigning a device " "that shares an IRQ with another device?"); return r; } dev->intx_route = intx_route; dev->assigned_irq_type = new_type; return r; } static void deassign_device(AssignedDevice *dev) { int r; r = kvm_device_pci_deassign(kvm_state, dev->dev_id); assert(r == 0); } /* The pci config space got updated. Check if irq numbers have changed * for our devices */ static void assigned_dev_update_irq_routing(PCIDevice *dev) { AssignedDevice *assigned_dev = DO_UPCAST(AssignedDevice, dev, dev); Error *err = NULL; int r; r = assign_intx(assigned_dev); if (r < 0) { qdev_unplug(&dev->qdev, &err); assert(!err); } } static void assigned_dev_update_msi(PCIDevice *pci_dev) { AssignedDevice *assigned_dev = DO_UPCAST(AssignedDevice, dev, pci_dev); uint8_t ctrl_byte = pci_get_byte(pci_dev->config + pci_dev->msi_cap + PCI_MSI_FLAGS); int r; /* Some guests gratuitously disable MSI even if they're not using it, * try to catch this by only deassigning irqs if the guest is using * MSI or intends to start. */ if (assigned_dev->assigned_irq_type == ASSIGNED_IRQ_MSI || (ctrl_byte & PCI_MSI_FLAGS_ENABLE)) { r = kvm_device_msi_deassign(kvm_state, assigned_dev->dev_id); /* -ENXIO means no assigned irq */ if (r && r != -ENXIO) { perror("assigned_dev_update_msi: deassign irq"); } free_msi_virqs(assigned_dev); assigned_dev->assigned_irq_type = ASSIGNED_IRQ_NONE; pci_device_set_intx_routing_notifier(pci_dev, NULL); } if (ctrl_byte & PCI_MSI_FLAGS_ENABLE) { MSIMessage msg = msi_get_message(pci_dev, 0); int virq; virq = kvm_irqchip_add_msi_route(kvm_state, msg); if (virq < 0) { perror("assigned_dev_update_msi: kvm_irqchip_add_msi_route"); return; } assigned_dev->msi_virq = g_malloc(sizeof(*assigned_dev->msi_virq)); assigned_dev->msi_virq_nr = 1; assigned_dev->msi_virq[0] = virq; if (kvm_device_msi_assign(kvm_state, assigned_dev->dev_id, virq) < 0) { perror("assigned_dev_update_msi: kvm_device_msi_assign"); } assigned_dev->intx_route.mode = PCI_INTX_DISABLED; assigned_dev->intx_route.irq = -1; assigned_dev->assigned_irq_type = ASSIGNED_IRQ_MSI; } else { assign_intx(assigned_dev); } } static bool assigned_dev_msix_masked(MSIXTableEntry *entry) { return (entry->ctrl & cpu_to_le32(0x1)) != 0; } static int assigned_dev_update_msix_mmio(PCIDevice *pci_dev) { AssignedDevice *adev = DO_UPCAST(AssignedDevice, dev, pci_dev); uint16_t entries_nr = 0; int i, r = 0; MSIXTableEntry *entry = adev->msix_table; MSIMessage msg; /* Get the usable entry number for allocating */ for (i = 0; i < adev->msix_max; i++, entry++) { if (assigned_dev_msix_masked(entry)) { continue; } entries_nr++; } DEBUG("MSI-X entries: %d\n", entries_nr); /* It's valid to enable MSI-X with all entries masked */ if (!entries_nr) { return 0; } r = kvm_device_msix_init_vectors(kvm_state, adev->dev_id, entries_nr); if (r != 0) { error_report("fail to set MSI-X entry number for MSIX! %s", strerror(-r)); return r; } free_msi_virqs(adev); adev->msi_virq_nr = adev->msix_max; adev->msi_virq = g_malloc(adev->msix_max * sizeof(*adev->msi_virq)); entry = adev->msix_table; for (i = 0; i < adev->msix_max; i++, entry++) { adev->msi_virq[i] = -1; if (assigned_dev_msix_masked(entry)) { continue; } msg.address = entry->addr_lo | ((uint64_t)entry->addr_hi << 32); msg.data = entry->data; r = kvm_irqchip_add_msi_route(kvm_state, msg); if (r < 0) { return r; } adev->msi_virq[i] = r; DEBUG("MSI-X vector %d, gsi %d, addr %08x_%08x, data %08x\n", i, r, entry->addr_hi, entry->addr_lo, entry->data); r = kvm_device_msix_set_vector(kvm_state, adev->dev_id, i, adev->msi_virq[i]); if (r) { error_report("fail to set MSI-X entry! %s", strerror(-r)); break; } } return r; } static void assigned_dev_update_msix(PCIDevice *pci_dev) { AssignedDevice *assigned_dev = DO_UPCAST(AssignedDevice, dev, pci_dev); uint16_t ctrl_word = pci_get_word(pci_dev->config + pci_dev->msix_cap + PCI_MSIX_FLAGS); int r; /* Some guests gratuitously disable MSIX even if they're not using it, * try to catch this by only deassigning irqs if the guest is using * MSIX or intends to start. */ if ((assigned_dev->assigned_irq_type == ASSIGNED_IRQ_MSIX) || (ctrl_word & PCI_MSIX_FLAGS_ENABLE)) { r = kvm_device_msix_deassign(kvm_state, assigned_dev->dev_id); /* -ENXIO means no assigned irq */ if (r && r != -ENXIO) { perror("assigned_dev_update_msix: deassign irq"); } free_msi_virqs(assigned_dev); assigned_dev->assigned_irq_type = ASSIGNED_IRQ_NONE; pci_device_set_intx_routing_notifier(pci_dev, NULL); } if (ctrl_word & PCI_MSIX_FLAGS_ENABLE) { if (assigned_dev_update_msix_mmio(pci_dev) < 0) { perror("assigned_dev_update_msix_mmio"); return; } if (assigned_dev->msi_virq_nr > 0) { if (kvm_device_msix_assign(kvm_state, assigned_dev->dev_id) < 0) { perror("assigned_dev_enable_msix: assign irq"); return; } } assigned_dev->intx_route.mode = PCI_INTX_DISABLED; assigned_dev->intx_route.irq = -1; assigned_dev->assigned_irq_type = ASSIGNED_IRQ_MSIX; } else { assign_intx(assigned_dev); } } static uint32_t assigned_dev_pci_read_config(PCIDevice *pci_dev, uint32_t address, int len) { AssignedDevice *assigned_dev = DO_UPCAST(AssignedDevice, dev, pci_dev); uint32_t virt_val = pci_default_read_config(pci_dev, address, len); uint32_t real_val, emulate_mask, full_emulation_mask; emulate_mask = 0; memcpy(&emulate_mask, assigned_dev->emulate_config_read + address, len); emulate_mask = le32_to_cpu(emulate_mask); full_emulation_mask = 0xffffffff >> (32 - len * 8); if (emulate_mask != full_emulation_mask) { real_val = assigned_dev_pci_read(pci_dev, address, len); return (virt_val & emulate_mask) | (real_val & ~emulate_mask); } else { return virt_val; } } static void assigned_dev_pci_write_config(PCIDevice *pci_dev, uint32_t address, uint32_t val, int len) { AssignedDevice *assigned_dev = DO_UPCAST(AssignedDevice, dev, pci_dev); uint16_t old_cmd = pci_get_word(pci_dev->config + PCI_COMMAND); uint32_t emulate_mask, full_emulation_mask; int ret; pci_default_write_config(pci_dev, address, val, len); if (kvm_has_intx_set_mask() && range_covers_byte(address, len, PCI_COMMAND + 1)) { bool intx_masked = (pci_get_word(pci_dev->config + PCI_COMMAND) & PCI_COMMAND_INTX_DISABLE); if (intx_masked != !!(old_cmd & PCI_COMMAND_INTX_DISABLE)) { ret = kvm_device_intx_set_mask(kvm_state, assigned_dev->dev_id, intx_masked); if (ret) { perror("assigned_dev_pci_write_config: set intx mask"); } } } if (assigned_dev->cap.available & ASSIGNED_DEVICE_CAP_MSI) { if (range_covers_byte(address, len, pci_dev->msi_cap + PCI_MSI_FLAGS)) { assigned_dev_update_msi(pci_dev); } } if (assigned_dev->cap.available & ASSIGNED_DEVICE_CAP_MSIX) { if (range_covers_byte(address, len, pci_dev->msix_cap + PCI_MSIX_FLAGS + 1)) { assigned_dev_update_msix(pci_dev); } } emulate_mask = 0; memcpy(&emulate_mask, assigned_dev->emulate_config_write + address, len); emulate_mask = le32_to_cpu(emulate_mask); full_emulation_mask = 0xffffffff >> (32 - len * 8); if (emulate_mask != full_emulation_mask) { if (emulate_mask) { val &= ~emulate_mask; val |= assigned_dev_pci_read(pci_dev, address, len) & emulate_mask; } assigned_dev_pci_write(pci_dev, address, val, len); } } static void assigned_dev_setup_cap_read(AssignedDevice *dev, uint32_t offset, uint32_t len) { assigned_dev_direct_config_read(dev, offset, len); assigned_dev_emulate_config_read(dev, offset + PCI_CAP_LIST_NEXT, 1); } static int assigned_device_pci_cap_init(PCIDevice *pci_dev) { AssignedDevice *dev = DO_UPCAST(AssignedDevice, dev, pci_dev); PCIRegion *pci_region = dev->real_device.regions; int ret, pos; /* Clear initial capabilities pointer and status copied from hw */ pci_set_byte(pci_dev->config + PCI_CAPABILITY_LIST, 0); pci_set_word(pci_dev->config + PCI_STATUS, pci_get_word(pci_dev->config + PCI_STATUS) & ~PCI_STATUS_CAP_LIST); /* Expose MSI capability * MSI capability is the 1st capability in capability config */ pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_MSI, 0); if (pos != 0 && kvm_check_extension(kvm_state, KVM_CAP_ASSIGN_DEV_IRQ)) { if (!check_irqchip_in_kernel()) { return -ENOTSUP; } dev->cap.available |= ASSIGNED_DEVICE_CAP_MSI; /* Only 32-bit/no-mask currently supported */ ret = pci_add_capability(pci_dev, PCI_CAP_ID_MSI, pos, 10); if (ret < 0) { return ret; } pci_dev->msi_cap = pos; pci_set_word(pci_dev->config + pos + PCI_MSI_FLAGS, pci_get_word(pci_dev->config + pos + PCI_MSI_FLAGS) & PCI_MSI_FLAGS_QMASK); pci_set_long(pci_dev->config + pos + PCI_MSI_ADDRESS_LO, 0); pci_set_word(pci_dev->config + pos + PCI_MSI_DATA_32, 0); /* Set writable fields */ pci_set_word(pci_dev->wmask + pos + PCI_MSI_FLAGS, PCI_MSI_FLAGS_QSIZE | PCI_MSI_FLAGS_ENABLE); pci_set_long(pci_dev->wmask + pos + PCI_MSI_ADDRESS_LO, 0xfffffffc); pci_set_word(pci_dev->wmask + pos + PCI_MSI_DATA_32, 0xffff); } /* Expose MSI-X capability */ pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_MSIX, 0); if (pos != 0 && kvm_device_msix_supported(kvm_state)) { int bar_nr; uint32_t msix_table_entry; if (!check_irqchip_in_kernel()) { return -ENOTSUP; } dev->cap.available |= ASSIGNED_DEVICE_CAP_MSIX; ret = pci_add_capability(pci_dev, PCI_CAP_ID_MSIX, pos, 12); if (ret < 0) { return ret; } pci_dev->msix_cap = pos; pci_set_word(pci_dev->config + pos + PCI_MSIX_FLAGS, pci_get_word(pci_dev->config + pos + PCI_MSIX_FLAGS) & PCI_MSIX_FLAGS_QSIZE); /* Only enable and function mask bits are writable */ pci_set_word(pci_dev->wmask + pos + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL); msix_table_entry = pci_get_long(pci_dev->config + pos + PCI_MSIX_TABLE); bar_nr = msix_table_entry & PCI_MSIX_FLAGS_BIRMASK; msix_table_entry &= ~PCI_MSIX_FLAGS_BIRMASK; dev->msix_table_addr = pci_region[bar_nr].base_addr + msix_table_entry; dev->msix_max = pci_get_word(pci_dev->config + pos + PCI_MSIX_FLAGS); dev->msix_max &= PCI_MSIX_FLAGS_QSIZE; dev->msix_max += 1; } /* Minimal PM support, nothing writable, device appears to NAK changes */ pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_PM, 0); if (pos) { uint16_t pmc; ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, pos, PCI_PM_SIZEOF); if (ret < 0) { return ret; } assigned_dev_setup_cap_read(dev, pos, PCI_PM_SIZEOF); pmc = pci_get_word(pci_dev->config + pos + PCI_CAP_FLAGS); pmc &= (PCI_PM_CAP_VER_MASK | PCI_PM_CAP_DSI); pci_set_word(pci_dev->config + pos + PCI_CAP_FLAGS, pmc); /* assign_device will bring the device up to D0, so we don't need * to worry about doing that ourselves here. */ pci_set_word(pci_dev->config + pos + PCI_PM_CTRL, PCI_PM_CTRL_NO_SOFT_RESET); pci_set_byte(pci_dev->config + pos + PCI_PM_PPB_EXTENSIONS, 0); pci_set_byte(pci_dev->config + pos + PCI_PM_DATA_REGISTER, 0); } pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_EXP, 0); if (pos) { uint8_t version, size = 0; uint16_t type, devctl, lnksta; uint32_t devcap, lnkcap; version = pci_get_byte(pci_dev->config + pos + PCI_EXP_FLAGS); version &= PCI_EXP_FLAGS_VERS; if (version == 1) { size = 0x14; } else if (version == 2) { /* * Check for non-std size, accept reduced size to 0x34, * which is what bcm5761 implemented, violating the * PCIe v3.0 spec that regs should exist and be read as 0, * not optionally provided and shorten the struct size. */ size = MIN(0x3c, PCI_CONFIG_SPACE_SIZE - pos); if (size < 0x34) { error_report("%s: Invalid size PCIe cap-id 0x%x", __func__, PCI_CAP_ID_EXP); return -EINVAL; } else if (size != 0x3c) { error_report("WARNING, %s: PCIe cap-id 0x%x has " "non-standard size 0x%x; std size should be 0x3c", __func__, PCI_CAP_ID_EXP, size); } } else if (version == 0) { uint16_t vid, did; vid = pci_get_word(pci_dev->config + PCI_VENDOR_ID); did = pci_get_word(pci_dev->config + PCI_DEVICE_ID); if (vid == PCI_VENDOR_ID_INTEL && did == 0x10ed) { /* * quirk for Intel 82599 VF with invalid PCIe capability * version, should really be version 2 (same as PF) */ size = 0x3c; } } if (size == 0) { error_report("%s: Unsupported PCI express capability version %d", __func__, version); return -EINVAL; } ret = pci_add_capability(pci_dev, PCI_CAP_ID_EXP, pos, size); if (ret < 0) { return ret; } assigned_dev_setup_cap_read(dev, pos, size); type = pci_get_word(pci_dev->config + pos + PCI_EXP_FLAGS); type = (type & PCI_EXP_FLAGS_TYPE) >> 4; if (type != PCI_EXP_TYPE_ENDPOINT && type != PCI_EXP_TYPE_LEG_END && type != PCI_EXP_TYPE_RC_END) { error_report("Device assignment only supports endpoint assignment," " device type %d", type); return -EINVAL; } /* capabilities, pass existing read-only copy * PCI_EXP_FLAGS_IRQ: updated by hardware, should be direct read */ /* device capabilities: hide FLR */ devcap = pci_get_long(pci_dev->config + pos + PCI_EXP_DEVCAP); devcap &= ~PCI_EXP_DEVCAP_FLR; pci_set_long(pci_dev->config + pos + PCI_EXP_DEVCAP, devcap); /* device control: clear all error reporting enable bits, leaving * only a few host values. Note, these are * all writable, but not passed to hw. */ devctl = pci_get_word(pci_dev->config + pos + PCI_EXP_DEVCTL); devctl = (devctl & (PCI_EXP_DEVCTL_READRQ | PCI_EXP_DEVCTL_PAYLOAD)) | PCI_EXP_DEVCTL_RELAX_EN | PCI_EXP_DEVCTL_NOSNOOP_EN; pci_set_word(pci_dev->config + pos + PCI_EXP_DEVCTL, devctl); devctl = PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_AUX_PME; pci_set_word(pci_dev->wmask + pos + PCI_EXP_DEVCTL, ~devctl); /* Clear device status */ pci_set_word(pci_dev->config + pos + PCI_EXP_DEVSTA, 0); /* Link capabilities, expose links and latencues, clear reporting */ lnkcap = pci_get_long(pci_dev->config + pos + PCI_EXP_LNKCAP); lnkcap &= (PCI_EXP_LNKCAP_SLS | PCI_EXP_LNKCAP_MLW | PCI_EXP_LNKCAP_ASPMS | PCI_EXP_LNKCAP_L0SEL | PCI_EXP_LNKCAP_L1EL); pci_set_long(pci_dev->config + pos + PCI_EXP_LNKCAP, lnkcap); /* Link control, pass existing read-only copy. Should be writable? */ /* Link status, only expose current speed and width */ lnksta = pci_get_word(pci_dev->config + pos + PCI_EXP_LNKSTA); lnksta &= (PCI_EXP_LNKSTA_CLS | PCI_EXP_LNKSTA_NLW); pci_set_word(pci_dev->config + pos + PCI_EXP_LNKSTA, lnksta); if (version >= 2) { /* Slot capabilities, control, status - not needed for endpoints */ pci_set_long(pci_dev->config + pos + PCI_EXP_SLTCAP, 0); pci_set_word(pci_dev->config + pos + PCI_EXP_SLTCTL, 0); pci_set_word(pci_dev->config + pos + PCI_EXP_SLTSTA, 0); /* Root control, capabilities, status - not needed for endpoints */ pci_set_word(pci_dev->config + pos + PCI_EXP_RTCTL, 0); pci_set_word(pci_dev->config + pos + PCI_EXP_RTCAP, 0); pci_set_long(pci_dev->config + pos + PCI_EXP_RTSTA, 0); /* Device capabilities/control 2, pass existing read-only copy */ /* Link control 2, pass existing read-only copy */ } } pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_PCIX, 0); if (pos) { uint16_t cmd; uint32_t status; /* Only expose the minimum, 8 byte capability */ ret = pci_add_capability(pci_dev, PCI_CAP_ID_PCIX, pos, 8); if (ret < 0) { return ret; } assigned_dev_setup_cap_read(dev, pos, 8); /* Command register, clear upper bits, including extended modes */ cmd = pci_get_word(pci_dev->config + pos + PCI_X_CMD); cmd &= (PCI_X_CMD_DPERR_E | PCI_X_CMD_ERO | PCI_X_CMD_MAX_READ | PCI_X_CMD_MAX_SPLIT); pci_set_word(pci_dev->config + pos + PCI_X_CMD, cmd); /* Status register, update with emulated PCI bus location, clear * error bits, leave the rest. */ status = pci_get_long(pci_dev->config + pos + PCI_X_STATUS); status &= ~(PCI_X_STATUS_BUS | PCI_X_STATUS_DEVFN); status |= (pci_bus_num(pci_dev->bus) << 8) | pci_dev->devfn; status &= ~(PCI_X_STATUS_SPL_DISC | PCI_X_STATUS_UNX_SPL | PCI_X_STATUS_SPL_ERR); pci_set_long(pci_dev->config + pos + PCI_X_STATUS, status); } pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_VPD, 0); if (pos) { /* Direct R/W passthrough */ ret = pci_add_capability(pci_dev, PCI_CAP_ID_VPD, pos, 8); if (ret < 0) { return ret; } assigned_dev_setup_cap_read(dev, pos, 8); /* direct write for cap content */ assigned_dev_direct_config_write(dev, pos + 2, 6); } /* Devices can have multiple vendor capabilities, get them all */ for (pos = 0; (pos = pci_find_cap_offset(pci_dev, PCI_CAP_ID_VNDR, pos)); pos += PCI_CAP_LIST_NEXT) { uint8_t len = pci_get_byte(pci_dev->config + pos + PCI_CAP_FLAGS); /* Direct R/W passthrough */ ret = pci_add_capability(pci_dev, PCI_CAP_ID_VNDR, pos, len); if (ret < 0) { return ret; } assigned_dev_setup_cap_read(dev, pos, len); /* direct write for cap content */ assigned_dev_direct_config_write(dev, pos + 2, len - 2); } /* If real and virtual capability list status bits differ, virtualize the * access. */ if ((pci_get_word(pci_dev->config + PCI_STATUS) & PCI_STATUS_CAP_LIST) != (assigned_dev_pci_read_byte(pci_dev, PCI_STATUS) & PCI_STATUS_CAP_LIST)) { dev->emulate_config_read[PCI_STATUS] |= PCI_STATUS_CAP_LIST; } return 0; } static uint64_t assigned_dev_msix_mmio_read(void *opaque, hwaddr addr, unsigned size) { AssignedDevice *adev = opaque; uint64_t val; memcpy(&val, (void *)((uint8_t *)adev->msix_table + addr), size); return val; } static void assigned_dev_msix_mmio_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { AssignedDevice *adev = opaque; PCIDevice *pdev = &adev->dev; uint16_t ctrl; MSIXTableEntry orig; int i = addr >> 4; if (i >= adev->msix_max) { return; /* Drop write */ } ctrl = pci_get_word(pdev->config + pdev->msix_cap + PCI_MSIX_FLAGS); DEBUG("write to MSI-X table offset 0x%lx, val 0x%lx\n", addr, val); if (ctrl & PCI_MSIX_FLAGS_ENABLE) { orig = adev->msix_table[i]; } memcpy((uint8_t *)adev->msix_table + addr, &val, size); if (ctrl & PCI_MSIX_FLAGS_ENABLE) { MSIXTableEntry *entry = &adev->msix_table[i]; if (!assigned_dev_msix_masked(&orig) && assigned_dev_msix_masked(entry)) { /* * Vector masked, disable it * * XXX It's not clear if we can or should actually attempt * to mask or disable the interrupt. KVM doesn't have * support for pending bits and kvm_assign_set_msix_entry * doesn't modify the device hardware mask. Interrupts * while masked are simply not injected to the guest, so * are lost. Can we get away with always injecting an * interrupt on unmask? */ } else if (assigned_dev_msix_masked(&orig) && !assigned_dev_msix_masked(entry)) { /* Vector unmasked */ if (i >= adev->msi_virq_nr || adev->msi_virq[i] < 0) { /* Previously unassigned vector, start from scratch */ assigned_dev_update_msix(pdev); return; } else { /* Update an existing, previously masked vector */ MSIMessage msg; int ret; msg.address = entry->addr_lo | ((uint64_t)entry->addr_hi << 32); msg.data = entry->data; ret = kvm_irqchip_update_msi_route(kvm_state, adev->msi_virq[i], msg); if (ret) { error_report("Error updating irq routing entry (%d)", ret); } } } } } static const MemoryRegionOps assigned_dev_msix_mmio_ops = { .read = assigned_dev_msix_mmio_read, .write = assigned_dev_msix_mmio_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 8, }, .impl = { .min_access_size = 4, .max_access_size = 8, }, }; static void assigned_dev_msix_reset(AssignedDevice *dev) { MSIXTableEntry *entry; int i; if (!dev->msix_table) { return; } memset(dev->msix_table, 0, MSIX_PAGE_SIZE); for (i = 0, entry = dev->msix_table; i < dev->msix_max; i++, entry++) { entry->ctrl = cpu_to_le32(0x1); /* Masked */ } } static int assigned_dev_register_msix_mmio(AssignedDevice *dev) { dev->msix_table = mmap(NULL, MSIX_PAGE_SIZE, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 0, 0); if (dev->msix_table == MAP_FAILED) { error_report("fail allocate msix_table! %s", strerror(errno)); return -EFAULT; } assigned_dev_msix_reset(dev); memory_region_init_io(&dev->mmio, &assigned_dev_msix_mmio_ops, dev, "assigned-dev-msix", MSIX_PAGE_SIZE); return 0; } static void assigned_dev_unregister_msix_mmio(AssignedDevice *dev) { if (!dev->msix_table) { return; } memory_region_destroy(&dev->mmio); if (munmap(dev->msix_table, MSIX_PAGE_SIZE) == -1) { error_report("error unmapping msix_table! %s", strerror(errno)); } dev->msix_table = NULL; } static const VMStateDescription vmstate_assigned_device = { .name = "pci-assign", .unmigratable = 1, }; static void reset_assigned_device(DeviceState *dev) { PCIDevice *pci_dev = DO_UPCAST(PCIDevice, qdev, dev); AssignedDevice *adev = DO_UPCAST(AssignedDevice, dev, pci_dev); char reset_file[64]; const char reset[] = "1"; int fd, ret; /* * If a guest is reset without being shutdown, MSI/MSI-X can still * be running. We want to return the device to a known state on * reset, so disable those here. We especially do not want MSI-X * enabled since it lives in MMIO space, which is about to get * disabled. */ if (adev->assigned_irq_type == ASSIGNED_IRQ_MSIX) { uint16_t ctrl = pci_get_word(pci_dev->config + pci_dev->msix_cap + PCI_MSIX_FLAGS); pci_set_word(pci_dev->config + pci_dev->msix_cap + PCI_MSIX_FLAGS, ctrl & ~PCI_MSIX_FLAGS_ENABLE); assigned_dev_update_msix(pci_dev); } else if (adev->assigned_irq_type == ASSIGNED_IRQ_MSI) { uint8_t ctrl = pci_get_byte(pci_dev->config + pci_dev->msi_cap + PCI_MSI_FLAGS); pci_set_byte(pci_dev->config + pci_dev->msi_cap + PCI_MSI_FLAGS, ctrl & ~PCI_MSI_FLAGS_ENABLE); assigned_dev_update_msi(pci_dev); } snprintf(reset_file, sizeof(reset_file), "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/reset", adev->host.domain, adev->host.bus, adev->host.slot, adev->host.function); /* * Issue a device reset via pci-sysfs. Note that we use write(2) here * and ignore the return value because some kernels have a bug that * returns 0 rather than bytes written on success, sending us into an * infinite retry loop using other write mechanisms. */ fd = open(reset_file, O_WRONLY); if (fd != -1) { ret = write(fd, reset, strlen(reset)); (void)ret; close(fd); } /* * When a 0 is written to the bus master register, the device is logically * disconnected from the PCI bus. This avoids further DMA transfers. */ assigned_dev_pci_write_config(pci_dev, PCI_COMMAND, 0, 1); } static int assigned_initfn(struct PCIDevice *pci_dev) { AssignedDevice *dev = DO_UPCAST(AssignedDevice, dev, pci_dev); uint8_t e_intx; int r; if (!kvm_enabled()) { error_report("pci-assign: error: requires KVM support"); return -1; } if (!dev->host.domain && !dev->host.bus && !dev->host.slot && !dev->host.function) { error_report("pci-assign: error: no host device specified"); return -1; } /* * Set up basic config space access control. Will be further refined during * device initialization. */ assigned_dev_emulate_config_read(dev, 0, PCI_CONFIG_SPACE_SIZE); assigned_dev_direct_config_read(dev, PCI_STATUS, 2); assigned_dev_direct_config_read(dev, PCI_REVISION_ID, 1); assigned_dev_direct_config_read(dev, PCI_CLASS_PROG, 3); assigned_dev_direct_config_read(dev, PCI_CACHE_LINE_SIZE, 1); assigned_dev_direct_config_read(dev, PCI_LATENCY_TIMER, 1); assigned_dev_direct_config_read(dev, PCI_BIST, 1); assigned_dev_direct_config_read(dev, PCI_CARDBUS_CIS, 4); assigned_dev_direct_config_read(dev, PCI_SUBSYSTEM_VENDOR_ID, 2); assigned_dev_direct_config_read(dev, PCI_SUBSYSTEM_ID, 2); assigned_dev_direct_config_read(dev, PCI_CAPABILITY_LIST + 1, 7); assigned_dev_direct_config_read(dev, PCI_MIN_GNT, 1); assigned_dev_direct_config_read(dev, PCI_MAX_LAT, 1); memcpy(dev->emulate_config_write, dev->emulate_config_read, sizeof(dev->emulate_config_read)); if (get_real_device(dev, dev->host.domain, dev->host.bus, dev->host.slot, dev->host.function)) { error_report("pci-assign: Error: Couldn't get real device (%s)!", dev->dev.qdev.id); goto out; } if (assigned_device_pci_cap_init(pci_dev) < 0) { goto out; } /* intercept MSI-X entry page in the MMIO */ if (dev->cap.available & ASSIGNED_DEVICE_CAP_MSIX) { if (assigned_dev_register_msix_mmio(dev)) { goto out; } } /* handle real device's MMIO/PIO BARs */ if (assigned_dev_register_regions(dev->real_device.regions, dev->real_device.region_number, dev)) { goto out; } /* handle interrupt routing */ e_intx = dev->dev.config[PCI_INTERRUPT_PIN] - 1; dev->intpin = e_intx; dev->intx_route.mode = PCI_INTX_DISABLED; dev->intx_route.irq = -1; /* assign device to guest */ r = assign_device(dev); if (r < 0) { goto out; } /* assign legacy INTx to the device */ r = assign_intx(dev); if (r < 0) { goto assigned_out; } assigned_dev_load_option_rom(dev); add_boot_device_path(dev->bootindex, &pci_dev->qdev, NULL); return 0; assigned_out: deassign_device(dev); out: free_assigned_device(dev); return -1; } static void assigned_exitfn(struct PCIDevice *pci_dev) { AssignedDevice *dev = DO_UPCAST(AssignedDevice, dev, pci_dev); deassign_device(dev); free_assigned_device(dev); } static Property assigned_dev_properties[] = { DEFINE_PROP_PCI_HOST_DEVADDR("host", AssignedDevice, host), DEFINE_PROP_BIT("prefer_msi", AssignedDevice, features, ASSIGNED_DEVICE_PREFER_MSI_BIT, false), DEFINE_PROP_BIT("share_intx", AssignedDevice, features, ASSIGNED_DEVICE_SHARE_INTX_BIT, true), DEFINE_PROP_INT32("bootindex", AssignedDevice, bootindex, -1), DEFINE_PROP_STRING("configfd", AssignedDevice, configfd_name), DEFINE_PROP_END_OF_LIST(), }; static void assign_class_init(ObjectClass *klass, void *data) { PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); k->init = assigned_initfn; k->exit = assigned_exitfn; k->config_read = assigned_dev_pci_read_config; k->config_write = assigned_dev_pci_write_config; dc->props = assigned_dev_properties; dc->vmsd = &vmstate_assigned_device; dc->reset = reset_assigned_device; dc->desc = "KVM-based PCI passthrough"; } static const TypeInfo assign_info = { .name = "kvm-pci-assign", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(AssignedDevice), .class_init = assign_class_init, }; static void assign_register_types(void) { type_register_static(&assign_info); } type_init(assign_register_types) /* * Scan the assigned devices for the devices that have an option ROM, and then * load the corresponding ROM data to RAM. If an error occurs while loading an * option ROM, we just ignore that option ROM and continue with the next one. */ static void assigned_dev_load_option_rom(AssignedDevice *dev) { char name[32], rom_file[64]; FILE *fp; uint8_t val; struct stat st; void *ptr; /* If loading ROM from file, pci handles it */ if (dev->dev.romfile || !dev->dev.rom_bar) { return; } snprintf(rom_file, sizeof(rom_file), "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/rom", dev->host.domain, dev->host.bus, dev->host.slot, dev->host.function); if (stat(rom_file, &st)) { return; } if (access(rom_file, F_OK)) { error_report("pci-assign: Insufficient privileges for %s", rom_file); return; } /* Write "1" to the ROM file to enable it */ fp = fopen(rom_file, "r+"); if (fp == NULL) { return; } val = 1; if (fwrite(&val, 1, 1, fp) != 1) { goto close_rom; } fseek(fp, 0, SEEK_SET); snprintf(name, sizeof(name), "%s.rom", object_get_typename(OBJECT(dev))); memory_region_init_ram(&dev->dev.rom, name, st.st_size); vmstate_register_ram(&dev->dev.rom, &dev->dev.qdev); ptr = memory_region_get_ram_ptr(&dev->dev.rom); memset(ptr, 0xff, st.st_size); if (!fread(ptr, 1, st.st_size, fp)) { error_report("pci-assign: Cannot read from host %s\n" "\tDevice option ROM contents are probably invalid " "(check dmesg).\n\tSkip option ROM probe with rombar=0, " "or load from file with romfile=", rom_file); memory_region_destroy(&dev->dev.rom); goto close_rom; } pci_register_bar(&dev->dev, PCI_ROM_SLOT, 0, &dev->dev.rom); dev->dev.has_rom = true; close_rom: /* Write "0" to disable ROM */ fseek(fp, 0, SEEK_SET); val = 0; if (!fwrite(&val, 1, 1, fp)) { DEBUG("%s\n", "Failed to disable pci-sysfs rom file"); } fclose(fp); }