/* * QEMU JAZZ LED emulator. * * Copyright (c) 2007 Herv� Poussineau * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "mips.h" #include "console.h" #include "pixel_ops.h" //#define DEBUG_LED typedef enum { REDRAW_NONE = 0, REDRAW_SEGMENTS = 1, REDRAW_BACKGROUND = 2, } screen_state_t; typedef struct LedState { target_phys_addr_t base; uint8_t segments; DisplayState *ds; QEMUConsole *console; screen_state_t state; } LedState; static uint32_t led_readb(void *opaque, target_phys_addr_t addr) { LedState *s = opaque; int relative_addr = addr - s->base; uint32_t val; switch (relative_addr) { case 0: val = s->segments; break; default: #ifdef DEBUG_LED printf("jazz led: invalid read [0x%x]\n", relative_addr); #endif val = 0; } return val; } static uint32_t led_readw(void *opaque, target_phys_addr_t addr) { uint32_t v; #ifdef TARGET_WORDS_BIGENDIAN v = led_readb(opaque, addr) << 8; v |= led_readb(opaque, addr + 1); #else v = led_readb(opaque, addr); v |= led_readb(opaque, addr + 1) << 8; #endif return v; } static uint32_t led_readl(void *opaque, target_phys_addr_t addr) { uint32_t v; #ifdef TARGET_WORDS_BIGENDIAN v = led_readb(opaque, addr) << 24; v |= led_readb(opaque, addr + 1) << 16; v |= led_readb(opaque, addr + 2) << 8; v |= led_readb(opaque, addr + 3); #else v = led_readb(opaque, addr); v |= led_readb(opaque, addr + 1) << 8; v |= led_readb(opaque, addr + 2) << 16; v |= led_readb(opaque, addr + 3) << 24; #endif return v; } static void led_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { LedState *s = opaque; int relative_addr = addr - s->base; switch (relative_addr) { case 0: s->segments = val; s->state |= REDRAW_SEGMENTS; break; default: #ifdef DEBUG_LED printf("jazz led: invalid write of 0x%02x at [0x%x]\n", val, relative_addr); #endif break; } } static void led_writew(void *opaque, target_phys_addr_t addr, uint32_t val) { #ifdef TARGET_WORDS_BIGENDIAN led_writeb(opaque, addr, (val >> 8) & 0xff); led_writeb(opaque, addr + 1, val & 0xff); #else led_writeb(opaque, addr, val & 0xff); led_writeb(opaque, addr + 1, (val >> 8) & 0xff); #endif } static void led_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { #ifdef TARGET_WORDS_BIGENDIAN led_writeb(opaque, addr, (val >> 24) & 0xff); led_writeb(opaque, addr + 1, (val >> 16) & 0xff); led_writeb(opaque, addr + 2, (val >> 8) & 0xff); led_writeb(opaque, addr + 3, val & 0xff); #else led_writeb(opaque, addr, val & 0xff); led_writeb(opaque, addr + 1, (val >> 8) & 0xff); led_writeb(opaque, addr + 2, (val >> 16) & 0xff); led_writeb(opaque, addr + 3, (val >> 24) & 0xff); #endif } static CPUReadMemoryFunc *led_read[3] = { led_readb, led_readw, led_readl, }; static CPUWriteMemoryFunc *led_write[3] = { led_writeb, led_writew, led_writel, }; /***********************************************************/ /* jazz_led display */ static void draw_horizontal_line(DisplayState *ds, int posy, int posx1, int posx2, uint32_t color) { uint8_t *d; int x, bpp; bpp = (ds->depth + 7) >> 3; d = ds->data + ds->linesize * posy + bpp * posx1; switch(bpp) { case 1: for (x = posx1; x <= posx2; x++) { *((uint8_t *)d) = color; d++; } break; case 2: for (x = posx1; x <= posx2; x++) { *((uint16_t *)d) = color; d += 2; } break; case 4: for (x = posx1; x <= posx2; x++) { *((uint32_t *)d) = color; d += 4; } break; } } static void draw_vertical_line(DisplayState *ds, int posx, int posy1, int posy2, uint32_t color) { uint8_t *d; int y, bpp; bpp = (ds->depth + 7) >> 3; d = ds->data + ds->linesize * posy1 + bpp * posx; switch(bpp) { case 1: for (y = posy1; y <= posy2; y++) { *((uint8_t *)d) = color; d += ds->linesize; } break; case 2: for (y = posy1; y <= posy2; y++) { *((uint16_t *)d) = color; d += ds->linesize; } break; case 4: for (y = posy1; y <= posy2; y++) { *((uint32_t *)d) = color; d += ds->linesize; } break; } } static void jazz_led_update_display(void *opaque) { LedState *s = opaque; DisplayState *ds = s->ds; uint8_t *d1; uint32_t color_segment, color_led; int y, bpp; if (s->state & REDRAW_BACKGROUND) { /* clear screen */ bpp = (ds->depth + 7) >> 3; d1 = ds->data; for (y = 0; y < ds->height; y++) { memset(d1, 0x00, ds->width * bpp); d1 += ds->linesize; } } if (s->state & REDRAW_SEGMENTS) { /* set colors according to bpp */ switch (ds->depth) { case 8: color_segment = rgb_to_pixel8(0xaa, 0xaa, 0xaa); color_led = rgb_to_pixel8(0x00, 0xff, 0x00); break; case 15: color_segment = rgb_to_pixel15(0xaa, 0xaa, 0xaa); color_led = rgb_to_pixel15(0x00, 0xff, 0x00); break; case 16: color_segment = rgb_to_pixel16(0xaa, 0xaa, 0xaa); color_led = rgb_to_pixel16(0x00, 0xff, 0x00); case 24: color_segment = rgb_to_pixel24(0xaa, 0xaa, 0xaa); color_led = rgb_to_pixel24(0x00, 0xff, 0x00); break; case 32: color_segment = rgb_to_pixel32(0xaa, 0xaa, 0xaa); color_led = rgb_to_pixel32(0x00, 0xff, 0x00); break; default: return; } /* display segments */ draw_horizontal_line(ds, 40, 10, 40, (s->segments & 0x02) ? color_segment : 0); draw_vertical_line(ds, 10, 10, 40, (s->segments & 0x04) ? color_segment : 0); draw_vertical_line(ds, 10, 40, 70, (s->segments & 0x08) ? color_segment : 0); draw_horizontal_line(ds, 70, 10, 40, (s->segments & 0x10) ? color_segment : 0); draw_vertical_line(ds, 40, 40, 70, (s->segments & 0x20) ? color_segment : 0); draw_vertical_line(ds, 40, 10, 40, (s->segments & 0x40) ? color_segment : 0); draw_horizontal_line(ds, 10, 10, 40, (s->segments & 0x80) ? color_segment : 0); /* display led */ if (!(s->segments & 0x01)) color_led = 0; /* black */ draw_horizontal_line(ds, 68, 50, 50, color_led); draw_horizontal_line(ds, 69, 49, 51, color_led); draw_horizontal_line(ds, 70, 48, 52, color_led); draw_horizontal_line(ds, 71, 49, 51, color_led); draw_horizontal_line(ds, 72, 50, 50, color_led); } s->state = REDRAW_NONE; dpy_update(ds, 0, 0, ds->width, ds->height); } static void jazz_led_invalidate_display(void *opaque) { LedState *s = opaque; s->state |= REDRAW_SEGMENTS | REDRAW_BACKGROUND; } static void jazz_led_screen_dump(void *opaque, const char *filename) { printf("jazz_led_screen_dump() not implemented\n"); } static void jazz_led_text_update(void *opaque, console_ch_t *chardata) { LedState *s = opaque; char buf[2]; dpy_cursor(s->ds, -1, -1); qemu_console_resize(s->console, 2, 1); /* TODO: draw the segments */ snprintf(buf, 2, "%02hhx\n", s->segments); console_write_ch(chardata++, 0x00200100 | buf[0]); console_write_ch(chardata++, 0x00200100 | buf[1]); dpy_update(s->ds, 0, 0, 2, 1); } void jazz_led_init(DisplayState *ds, target_phys_addr_t base) { LedState *s; int io; s = qemu_mallocz(sizeof(LedState)); if (!s) return; s->base = base; s->ds = ds; s->state = REDRAW_SEGMENTS | REDRAW_BACKGROUND; io = cpu_register_io_memory(0, led_read, led_write, s); cpu_register_physical_memory(s->base, 1, io); s->console = graphic_console_init(ds, jazz_led_update_display, jazz_led_invalidate_display, jazz_led_screen_dump, jazz_led_text_update, s); qemu_console_resize(s->console, 60, 80); }