/* * ARM Generic Interrupt Controller using KVM in-kernel support * * Copyright (c) 2015 Samsung Electronics Co., Ltd. * Written by Pavel Fedin * Based on vGICv2 code by Peter Maydell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "qapi/error.h" #include "hw/intc/arm_gicv3_common.h" #include "hw/sysbus.h" #include "qemu/error-report.h" #include "qemu/module.h" #include "sysemu/kvm.h" #include "sysemu/runstate.h" #include "kvm_arm.h" #include "gicv3_internal.h" #include "vgic_common.h" #include "migration/blocker.h" #include "qom/object.h" #ifdef DEBUG_GICV3_KVM #define DPRINTF(fmt, ...) \ do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3" typedef struct KVMARMGICv3Class KVMARMGICv3Class; #define KVM_ARM_GICV3(obj) \ OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3) #define KVM_ARM_GICV3_CLASS(klass) \ OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3) #define KVM_ARM_GICV3_GET_CLASS(obj) \ OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3) #define KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2) \ (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \ ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \ ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \ ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \ ARM64_SYS_REG_SHIFT_MASK(op2, OP2)) #define ICC_PMR_EL1 \ KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0) #define ICC_BPR0_EL1 \ KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3) #define ICC_AP0R_EL1(n) \ KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n) #define ICC_AP1R_EL1(n) \ KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n) #define ICC_BPR1_EL1 \ KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3) #define ICC_CTLR_EL1 \ KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4) #define ICC_SRE_EL1 \ KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5) #define ICC_IGRPEN0_EL1 \ KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6) #define ICC_IGRPEN1_EL1 \ KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7) struct KVMARMGICv3Class { ARMGICv3CommonClass parent_class; DeviceRealize parent_realize; void (*parent_reset)(DeviceState *dev); }; static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level) { GICv3State *s = (GICv3State *)opaque; kvm_arm_gic_set_irq(s->num_irq, irq, level); } #define KVM_VGIC_ATTR(reg, typer) \ ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg)) static inline void kvm_gicd_access(GICv3State *s, int offset, uint32_t *val, bool write) { kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS, KVM_VGIC_ATTR(offset, 0), val, write, &error_abort); } static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu, uint32_t *val, bool write) { kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS, KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer), val, write, &error_abort); } static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu, uint64_t *val, bool write) { kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS, KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer), val, write, &error_abort); } static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu, uint32_t *val, bool write) { kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO, KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) | (VGIC_LEVEL_INFO_LINE_LEVEL << KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT), val, write, &error_abort); } /* Loop through each distributor IRQ related register; since bits * corresponding to SPIs and PPIs are RAZ/WI when affinity routing * is enabled, we skip those. */ #define for_each_dist_irq_reg(_irq, _max, _field_width) \ for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width)) static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp) { uint32_t reg, *field; int irq; /* For the KVM GICv3, affinity routing is always enabled, and the first 8 * GICD_IPRIORITYR registers are always RAZ/WI. The corresponding * functionality is replaced by GICR_IPRIORITYR. It doesn't need to * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and * offset. */ field = (uint32_t *)(bmp + GIC_INTERNAL); offset += (GIC_INTERNAL * 8) / 8; for_each_dist_irq_reg(irq, s->num_irq, 8) { kvm_gicd_access(s, offset, ®, false); *field = reg; offset += 4; field++; } } static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp) { uint32_t reg, *field; int irq; /* For the KVM GICv3, affinity routing is always enabled, and the first 8 * GICD_IPRIORITYR registers are always RAZ/WI. The corresponding * functionality is replaced by GICR_IPRIORITYR. It doesn't need to * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and * offset. */ field = (uint32_t *)(bmp + GIC_INTERNAL); offset += (GIC_INTERNAL * 8) / 8; for_each_dist_irq_reg(irq, s->num_irq, 8) { reg = *field; kvm_gicd_access(s, offset, ®, true); offset += 4; field++; } } static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset, uint32_t *bmp) { uint32_t reg; int irq; /* For the KVM GICv3, affinity routing is always enabled, and the first 2 * GICD_ICFGR registers are always RAZ/WI. The corresponding * functionality is replaced by GICR_ICFGR. It doesn't need to sync * them. So it should increase the offset to skip GIC_INTERNAL irqs. * This matches the for_each_dist_irq_reg() macro which also skips the * first GIC_INTERNAL irqs. */ offset += (GIC_INTERNAL * 2) / 8; for_each_dist_irq_reg(irq, s->num_irq, 2) { kvm_gicd_access(s, offset, ®, false); reg = half_unshuffle32(reg >> 1); if (irq % 32 != 0) { reg = (reg << 16); } *gic_bmp_ptr32(bmp, irq) |= reg; offset += 4; } } static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset, uint32_t *bmp) { uint32_t reg; int irq; /* For the KVM GICv3, affinity routing is always enabled, and the first 2 * GICD_ICFGR registers are always RAZ/WI. The corresponding * functionality is replaced by GICR_ICFGR. It doesn't need to sync * them. So it should increase the offset to skip GIC_INTERNAL irqs. * This matches the for_each_dist_irq_reg() macro which also skips the * first GIC_INTERNAL irqs. */ offset += (GIC_INTERNAL * 2) / 8; for_each_dist_irq_reg(irq, s->num_irq, 2) { reg = *gic_bmp_ptr32(bmp, irq); if (irq % 32 != 0) { reg = (reg & 0xffff0000) >> 16; } else { reg = reg & 0xffff; } reg = half_shuffle32(reg) << 1; kvm_gicd_access(s, offset, ®, true); offset += 4; } } static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp) { uint32_t reg; int irq; for_each_dist_irq_reg(irq, s->num_irq, 1) { kvm_gic_line_level_access(s, irq, 0, ®, false); *gic_bmp_ptr32(bmp, irq) = reg; } } static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp) { uint32_t reg; int irq; for_each_dist_irq_reg(irq, s->num_irq, 1) { reg = *gic_bmp_ptr32(bmp, irq); kvm_gic_line_level_access(s, irq, 0, ®, true); } } /* Read a bitmap register group from the kernel VGIC. */ static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp) { uint32_t reg; int irq; /* For the KVM GICv3, affinity routing is always enabled, and the * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/ * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding * functionality is replaced by the GICR registers. It doesn't need to sync * them. So it should increase the offset to skip GIC_INTERNAL irqs. * This matches the for_each_dist_irq_reg() macro which also skips the * first GIC_INTERNAL irqs. */ offset += (GIC_INTERNAL * 1) / 8; for_each_dist_irq_reg(irq, s->num_irq, 1) { kvm_gicd_access(s, offset, ®, false); *gic_bmp_ptr32(bmp, irq) = reg; offset += 4; } } static void kvm_dist_putbmp(GICv3State *s, uint32_t offset, uint32_t clroffset, uint32_t *bmp) { uint32_t reg; int irq; /* For the KVM GICv3, affinity routing is always enabled, and the * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/ * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding * functionality is replaced by the GICR registers. It doesn't need to sync * them. So it should increase the offset and clroffset to skip GIC_INTERNAL * irqs. This matches the for_each_dist_irq_reg() macro which also skips the * first GIC_INTERNAL irqs. */ offset += (GIC_INTERNAL * 1) / 8; if (clroffset != 0) { clroffset += (GIC_INTERNAL * 1) / 8; } for_each_dist_irq_reg(irq, s->num_irq, 1) { /* If this bitmap is a set/clear register pair, first write to the * clear-reg to clear all bits before using the set-reg to write * the 1 bits. */ if (clroffset != 0) { reg = 0; kvm_gicd_access(s, clroffset, ®, true); clroffset += 4; } reg = *gic_bmp_ptr32(bmp, irq); kvm_gicd_access(s, offset, ®, true); offset += 4; } } static void kvm_arm_gicv3_check(GICv3State *s) { uint32_t reg; uint32_t num_irq; /* Sanity checking s->num_irq */ kvm_gicd_access(s, GICD_TYPER, ®, false); num_irq = ((reg & 0x1f) + 1) * 32; if (num_irq < s->num_irq) { error_report("Model requests %u IRQs, but kernel supports max %u", s->num_irq, num_irq); abort(); } } static void kvm_arm_gicv3_put(GICv3State *s) { uint32_t regl, regh, reg; uint64_t reg64, redist_typer; int ncpu, i; kvm_arm_gicv3_check(s); kvm_gicr_access(s, GICR_TYPER, 0, ®l, false); kvm_gicr_access(s, GICR_TYPER + 4, 0, ®h, false); redist_typer = ((uint64_t)regh << 32) | regl; reg = s->gicd_ctlr; kvm_gicd_access(s, GICD_CTLR, ®, true); if (redist_typer & GICR_TYPER_PLPIS) { /* * Restore base addresses before LPIs are potentially enabled by * GICR_CTLR write */ for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { GICv3CPUState *c = &s->cpu[ncpu]; reg64 = c->gicr_propbaser; regl = (uint32_t)reg64; kvm_gicr_access(s, GICR_PROPBASER, ncpu, ®l, true); regh = (uint32_t)(reg64 >> 32); kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, ®h, true); reg64 = c->gicr_pendbaser; regl = (uint32_t)reg64; kvm_gicr_access(s, GICR_PENDBASER, ncpu, ®l, true); regh = (uint32_t)(reg64 >> 32); kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, ®h, true); } } /* Redistributor state (one per CPU) */ for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { GICv3CPUState *c = &s->cpu[ncpu]; reg = c->gicr_ctlr; kvm_gicr_access(s, GICR_CTLR, ncpu, ®, true); reg = c->gicr_statusr[GICV3_NS]; kvm_gicr_access(s, GICR_STATUSR, ncpu, ®, true); reg = c->gicr_waker; kvm_gicr_access(s, GICR_WAKER, ncpu, ®, true); reg = c->gicr_igroupr0; kvm_gicr_access(s, GICR_IGROUPR0, ncpu, ®, true); reg = ~0; kvm_gicr_access(s, GICR_ICENABLER0, ncpu, ®, true); reg = c->gicr_ienabler0; kvm_gicr_access(s, GICR_ISENABLER0, ncpu, ®, true); /* Restore config before pending so we treat level/edge correctly */ reg = half_shuffle32(c->edge_trigger >> 16) << 1; kvm_gicr_access(s, GICR_ICFGR1, ncpu, ®, true); reg = c->level; kvm_gic_line_level_access(s, 0, ncpu, ®, true); reg = ~0; kvm_gicr_access(s, GICR_ICPENDR0, ncpu, ®, true); reg = c->gicr_ipendr0; kvm_gicr_access(s, GICR_ISPENDR0, ncpu, ®, true); reg = ~0; kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, ®, true); reg = c->gicr_iactiver0; kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, ®, true); for (i = 0; i < GIC_INTERNAL; i += 4) { reg = c->gicr_ipriorityr[i] | (c->gicr_ipriorityr[i + 1] << 8) | (c->gicr_ipriorityr[i + 2] << 16) | (c->gicr_ipriorityr[i + 3] << 24); kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, ®, true); } } /* Distributor state (shared between all CPUs */ reg = s->gicd_statusr[GICV3_NS]; kvm_gicd_access(s, GICD_STATUSR, ®, true); /* s->enable bitmap -> GICD_ISENABLERn */ kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled); /* s->group bitmap -> GICD_IGROUPRn */ kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group); /* Restore targets before pending to ensure the pending state is set on * the appropriate CPU interfaces in the kernel */ /* s->gicd_irouter[irq] -> GICD_IROUTERn * We can't use kvm_dist_put() here because the registers are 64-bit */ for (i = GIC_INTERNAL; i < s->num_irq; i++) { uint32_t offset; offset = GICD_IROUTER + (sizeof(uint32_t) * i); reg = (uint32_t)s->gicd_irouter[i]; kvm_gicd_access(s, offset, ®, true); offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4; reg = (uint32_t)(s->gicd_irouter[i] >> 32); kvm_gicd_access(s, offset, ®, true); } /* s->trigger bitmap -> GICD_ICFGRn * (restore configuration registers before pending IRQs so we treat * level/edge correctly) */ kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger); /* s->level bitmap -> line_level */ kvm_gic_put_line_level_bmp(s, s->level); /* s->pending bitmap -> GICD_ISPENDRn */ kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending); /* s->active bitmap -> GICD_ISACTIVERn */ kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active); /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */ kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority); /* CPU Interface state (one per CPU) */ for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { GICv3CPUState *c = &s->cpu[ncpu]; int num_pri_bits; kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true); kvm_gicc_access(s, ICC_CTLR_EL1, ncpu, &c->icc_ctlr_el1[GICV3_NS], true); kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu, &c->icc_igrpen[GICV3_G0], true); kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu, &c->icc_igrpen[GICV3_G1NS], true); kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true); kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true); kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true); num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_PRIBITS_MASK) >> ICC_CTLR_EL1_PRIBITS_SHIFT) + 1; switch (num_pri_bits) { case 7: reg64 = c->icc_apr[GICV3_G0][3]; kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, ®64, true); reg64 = c->icc_apr[GICV3_G0][2]; kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, ®64, true); case 6: reg64 = c->icc_apr[GICV3_G0][1]; kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, ®64, true); default: reg64 = c->icc_apr[GICV3_G0][0]; kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, ®64, true); } switch (num_pri_bits) { case 7: reg64 = c->icc_apr[GICV3_G1NS][3]; kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, ®64, true); reg64 = c->icc_apr[GICV3_G1NS][2]; kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, ®64, true); case 6: reg64 = c->icc_apr[GICV3_G1NS][1]; kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, ®64, true); default: reg64 = c->icc_apr[GICV3_G1NS][0]; kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, ®64, true); } } } static void kvm_arm_gicv3_get(GICv3State *s) { uint32_t regl, regh, reg; uint64_t reg64, redist_typer; int ncpu, i; kvm_arm_gicv3_check(s); kvm_gicr_access(s, GICR_TYPER, 0, ®l, false); kvm_gicr_access(s, GICR_TYPER + 4, 0, ®h, false); redist_typer = ((uint64_t)regh << 32) | regl; kvm_gicd_access(s, GICD_CTLR, ®, false); s->gicd_ctlr = reg; /* Redistributor state (one per CPU) */ for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { GICv3CPUState *c = &s->cpu[ncpu]; kvm_gicr_access(s, GICR_CTLR, ncpu, ®, false); c->gicr_ctlr = reg; kvm_gicr_access(s, GICR_STATUSR, ncpu, ®, false); c->gicr_statusr[GICV3_NS] = reg; kvm_gicr_access(s, GICR_WAKER, ncpu, ®, false); c->gicr_waker = reg; kvm_gicr_access(s, GICR_IGROUPR0, ncpu, ®, false); c->gicr_igroupr0 = reg; kvm_gicr_access(s, GICR_ISENABLER0, ncpu, ®, false); c->gicr_ienabler0 = reg; kvm_gicr_access(s, GICR_ICFGR1, ncpu, ®, false); c->edge_trigger = half_unshuffle32(reg >> 1) << 16; kvm_gic_line_level_access(s, 0, ncpu, ®, false); c->level = reg; kvm_gicr_access(s, GICR_ISPENDR0, ncpu, ®, false); c->gicr_ipendr0 = reg; kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, ®, false); c->gicr_iactiver0 = reg; for (i = 0; i < GIC_INTERNAL; i += 4) { kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, ®, false); c->gicr_ipriorityr[i] = extract32(reg, 0, 8); c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8); c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8); c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8); } } if (redist_typer & GICR_TYPER_PLPIS) { for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { GICv3CPUState *c = &s->cpu[ncpu]; kvm_gicr_access(s, GICR_PROPBASER, ncpu, ®l, false); kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, ®h, false); c->gicr_propbaser = ((uint64_t)regh << 32) | regl; kvm_gicr_access(s, GICR_PENDBASER, ncpu, ®l, false); kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, ®h, false); c->gicr_pendbaser = ((uint64_t)regh << 32) | regl; } } /* Distributor state (shared between all CPUs */ kvm_gicd_access(s, GICD_STATUSR, ®, false); s->gicd_statusr[GICV3_NS] = reg; /* GICD_IGROUPRn -> s->group bitmap */ kvm_dist_getbmp(s, GICD_IGROUPR, s->group); /* GICD_ISENABLERn -> s->enabled bitmap */ kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled); /* Line level of irq */ kvm_gic_get_line_level_bmp(s, s->level); /* GICD_ISPENDRn -> s->pending bitmap */ kvm_dist_getbmp(s, GICD_ISPENDR, s->pending); /* GICD_ISACTIVERn -> s->active bitmap */ kvm_dist_getbmp(s, GICD_ISACTIVER, s->active); /* GICD_ICFGRn -> s->trigger bitmap */ kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger); /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */ kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority); /* GICD_IROUTERn -> s->gicd_irouter[irq] */ for (i = GIC_INTERNAL; i < s->num_irq; i++) { uint32_t offset; offset = GICD_IROUTER + (sizeof(uint32_t) * i); kvm_gicd_access(s, offset, ®l, false); offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4; kvm_gicd_access(s, offset, ®h, false); s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl; } /***************************************************************** * CPU Interface(s) State */ for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { GICv3CPUState *c = &s->cpu[ncpu]; int num_pri_bits; kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false); kvm_gicc_access(s, ICC_CTLR_EL1, ncpu, &c->icc_ctlr_el1[GICV3_NS], false); kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu, &c->icc_igrpen[GICV3_G0], false); kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu, &c->icc_igrpen[GICV3_G1NS], false); kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false); kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false); kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false); num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_PRIBITS_MASK) >> ICC_CTLR_EL1_PRIBITS_SHIFT) + 1; switch (num_pri_bits) { case 7: kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, ®64, false); c->icc_apr[GICV3_G0][3] = reg64; kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, ®64, false); c->icc_apr[GICV3_G0][2] = reg64; case 6: kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, ®64, false); c->icc_apr[GICV3_G0][1] = reg64; default: kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, ®64, false); c->icc_apr[GICV3_G0][0] = reg64; } switch (num_pri_bits) { case 7: kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, ®64, false); c->icc_apr[GICV3_G1NS][3] = reg64; kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, ®64, false); c->icc_apr[GICV3_G1NS][2] = reg64; case 6: kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, ®64, false); c->icc_apr[GICV3_G1NS][1] = reg64; default: kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, ®64, false); c->icc_apr[GICV3_G1NS][0] = reg64; } } } static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) { GICv3State *s; GICv3CPUState *c; c = (GICv3CPUState *)env->gicv3state; s = c->gic; c->icc_pmr_el1 = 0; c->icc_bpr[GICV3_G0] = GIC_MIN_BPR; c->icc_bpr[GICV3_G1] = GIC_MIN_BPR; c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR; c->icc_sre_el1 = 0x7; memset(c->icc_apr, 0, sizeof(c->icc_apr)); memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen)); if (s->migration_blocker) { return; } /* Initialize to actual HW supported configuration */ kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS, KVM_VGIC_ATTR(ICC_CTLR_EL1, c->gicr_typer), &c->icc_ctlr_el1[GICV3_NS], false, &error_abort); c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS]; } static void kvm_arm_gicv3_reset(DeviceState *dev) { GICv3State *s = ARM_GICV3_COMMON(dev); KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s); DPRINTF("Reset\n"); kgc->parent_reset(dev); if (s->migration_blocker) { DPRINTF("Cannot put kernel gic state, no kernel interface\n"); return; } kvm_arm_gicv3_put(s); } /* * CPU interface registers of GIC needs to be reset on CPU reset. * For the calling arm_gicv3_icc_reset() on CPU reset, we register * below ARMCPRegInfo. As we reset the whole cpu interface under single * register reset, we define only one register of CPU interface instead * of defining all the registers. */ static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, /* * If ARM_CP_NOP is used, resetfn is not called, * So ARM_CP_NO_RAW is appropriate type. */ .type = ARM_CP_NO_RAW, .access = PL1_RW, .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore, /* * We hang the whole cpu interface reset routine off here * rather than parcelling it out into one little function * per register */ .resetfn = arm_gicv3_icc_reset, }, REGINFO_SENTINEL }; /** * vm_change_state_handler - VM change state callback aiming at flushing * RDIST pending tables into guest RAM * * The tables get flushed to guest RAM whenever the VM gets stopped. */ static void vm_change_state_handler(void *opaque, int running, RunState state) { GICv3State *s = (GICv3State *)opaque; Error *err = NULL; int ret; if (running) { return; } ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES, NULL, true, &err); if (err) { error_report_err(err); } if (ret < 0 && ret != -EFAULT) { abort(); } } static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp) { GICv3State *s = KVM_ARM_GICV3(dev); KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s); bool multiple_redist_region_allowed; Error *local_err = NULL; int i; DPRINTF("kvm_arm_gicv3_realize\n"); kgc->parent_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } if (s->security_extn) { error_setg(errp, "the in-kernel VGICv3 does not implement the " "security extensions"); return; } gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL, &local_err); if (local_err) { error_propagate(errp, local_err); return; } for (i = 0; i < s->num_cpu; i++) { ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); } /* Try to create the device via the device control API */ s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false); if (s->dev_fd < 0) { error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC"); return; } multiple_redist_region_allowed = kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION); if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) { error_setg(errp, "Multiple VGICv3 redistributor regions are not " "supported by this host kernel"); error_append_hint(errp, "A maximum of %d VCPUs can be used", s->redist_region_count[0]); return; } kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 0, &s->num_irq, true, &error_abort); /* Tell the kernel to complete VGIC initialization now */ kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort); kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0); if (!multiple_redist_region_allowed) { kvm_arm_register_device(&s->iomem_redist[0], -1, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0); } else { /* we register regions in reverse order as "devices" are inserted at * the head of a QSLIST and the list is then popped from the head * onwards by kvm_arm_machine_init_done() */ for (i = s->nb_redist_regions - 1; i >= 0; i--) { /* Address mask made of the rdist region index and count */ uint64_t addr_ormask = i | ((uint64_t)s->redist_region_count[i] << 52); kvm_arm_register_device(&s->iomem_redist[i], -1, KVM_DEV_ARM_VGIC_GRP_ADDR, KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, s->dev_fd, addr_ormask); } } if (kvm_has_gsi_routing()) { /* set up irq routing */ for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) { kvm_irqchip_add_irq_route(kvm_state, i, 0, i); } kvm_gsi_routing_allowed = true; kvm_irqchip_commit_routes(kvm_state); } if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS, GICD_CTLR)) { error_setg(&s->migration_blocker, "This operating system kernel does " "not support vGICv3 migration"); if (migrate_add_blocker(s->migration_blocker, errp) < 0) { error_free(s->migration_blocker); return; } } if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) { qemu_add_vm_change_state_handler(vm_change_state_handler, s); } } static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass); KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass); agcc->pre_save = kvm_arm_gicv3_get; agcc->post_load = kvm_arm_gicv3_put; device_class_set_parent_realize(dc, kvm_arm_gicv3_realize, &kgc->parent_realize); device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset); } static const TypeInfo kvm_arm_gicv3_info = { .name = TYPE_KVM_ARM_GICV3, .parent = TYPE_ARM_GICV3_COMMON, .instance_size = sizeof(GICv3State), .class_init = kvm_arm_gicv3_class_init, .class_size = sizeof(KVMARMGICv3Class), }; static void kvm_arm_gicv3_register_types(void) { type_register_static(&kvm_arm_gicv3_info); } type_init(kvm_arm_gicv3_register_types)