/* * ARM GIC support - common bits of emulated and KVM kernel model * * Copyright (c) 2012 Linaro Limited * Written by Peter Maydell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu/osdep.h" #include "qapi/error.h" #include "gic_internal.h" #include "hw/arm/linux-boot-if.h" static void gic_pre_save(void *opaque) { GICState *s = (GICState *)opaque; ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s); if (c->pre_save) { c->pre_save(s); } } static int gic_post_load(void *opaque, int version_id) { GICState *s = (GICState *)opaque; ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s); if (c->post_load) { c->post_load(s); } return 0; } static const VMStateDescription vmstate_gic_irq_state = { .name = "arm_gic_irq_state", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(enabled, gic_irq_state), VMSTATE_UINT8(pending, gic_irq_state), VMSTATE_UINT8(active, gic_irq_state), VMSTATE_UINT8(level, gic_irq_state), VMSTATE_BOOL(model, gic_irq_state), VMSTATE_BOOL(edge_trigger, gic_irq_state), VMSTATE_UINT8(group, gic_irq_state), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_gic = { .name = "arm_gic", .version_id = 12, .minimum_version_id = 12, .pre_save = gic_pre_save, .post_load = gic_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32(ctlr, GICState), VMSTATE_UINT32_ARRAY(cpu_ctlr, GICState, GIC_NCPU), VMSTATE_STRUCT_ARRAY(irq_state, GICState, GIC_MAXIRQ, 1, vmstate_gic_irq_state, gic_irq_state), VMSTATE_UINT8_ARRAY(irq_target, GICState, GIC_MAXIRQ), VMSTATE_UINT8_2DARRAY(priority1, GICState, GIC_INTERNAL, GIC_NCPU), VMSTATE_UINT8_ARRAY(priority2, GICState, GIC_MAXIRQ - GIC_INTERNAL), VMSTATE_UINT8_2DARRAY(sgi_pending, GICState, GIC_NR_SGIS, GIC_NCPU), VMSTATE_UINT16_ARRAY(priority_mask, GICState, GIC_NCPU), VMSTATE_UINT16_ARRAY(running_priority, GICState, GIC_NCPU), VMSTATE_UINT16_ARRAY(current_pending, GICState, GIC_NCPU), VMSTATE_UINT8_ARRAY(bpr, GICState, GIC_NCPU), VMSTATE_UINT8_ARRAY(abpr, GICState, GIC_NCPU), VMSTATE_UINT32_2DARRAY(apr, GICState, GIC_NR_APRS, GIC_NCPU), VMSTATE_UINT32_2DARRAY(nsapr, GICState, GIC_NR_APRS, GIC_NCPU), VMSTATE_END_OF_LIST() } }; void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler, const MemoryRegionOps *ops) { SysBusDevice *sbd = SYS_BUS_DEVICE(s); int i = s->num_irq - GIC_INTERNAL; /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU. * GPIO array layout is thus: * [0..N-1] SPIs * [N..N+31] PPIs for CPU 0 * [N+32..N+63] PPIs for CPU 1 * ... */ i += (GIC_INTERNAL * s->num_cpu); qdev_init_gpio_in(DEVICE(s), handler, i); for (i = 0; i < s->num_cpu; i++) { sysbus_init_irq(sbd, &s->parent_irq[i]); } for (i = 0; i < s->num_cpu; i++) { sysbus_init_irq(sbd, &s->parent_fiq[i]); } for (i = 0; i < s->num_cpu; i++) { sysbus_init_irq(sbd, &s->parent_virq[i]); } for (i = 0; i < s->num_cpu; i++) { sysbus_init_irq(sbd, &s->parent_vfiq[i]); } /* Distributor */ memory_region_init_io(&s->iomem, OBJECT(s), ops, s, "gic_dist", 0x1000); sysbus_init_mmio(sbd, &s->iomem); /* This is the main CPU interface "for this core". It is always * present because it is required by both software emulation and KVM. */ memory_region_init_io(&s->cpuiomem[0], OBJECT(s), ops ? &ops[1] : NULL, s, "gic_cpu", s->revision == 2 ? 0x2000 : 0x100); sysbus_init_mmio(sbd, &s->cpuiomem[0]); } static void arm_gic_common_realize(DeviceState *dev, Error **errp) { GICState *s = ARM_GIC_COMMON(dev); int num_irq = s->num_irq; if (s->num_cpu > GIC_NCPU) { error_setg(errp, "requested %u CPUs exceeds GIC maximum %d", s->num_cpu, GIC_NCPU); return; } s->num_irq += GIC_BASE_IRQ; if (s->num_irq > GIC_MAXIRQ) { error_setg(errp, "requested %u interrupt lines exceeds GIC maximum %d", num_irq, GIC_MAXIRQ); return; } /* ITLinesNumber is represented as (N / 32) - 1 (see * gic_dist_readb) so this is an implementation imposed * restriction, not an architectural one: */ if (s->num_irq < 32 || (s->num_irq % 32)) { error_setg(errp, "%d interrupt lines unsupported: not divisible by 32", num_irq); return; } if (s->security_extn && (s->revision == REV_11MPCORE)) { error_setg(errp, "this GIC revision does not implement " "the security extensions"); return; } } static void arm_gic_common_reset(DeviceState *dev) { GICState *s = ARM_GIC_COMMON(dev); int i, j; int resetprio; /* If we're resetting a TZ-aware GIC as if secure firmware * had set it up ready to start a kernel in non-secure, * we need to set interrupt priorities to a "zero for the * NS view" value. This is particularly critical for the * priority_mask[] values, because if they are zero then NS * code cannot ever rewrite the priority to anything else. */ if (s->security_extn && s->irq_reset_nonsecure) { resetprio = 0x80; } else { resetprio = 0; } memset(s->irq_state, 0, GIC_MAXIRQ * sizeof(gic_irq_state)); for (i = 0 ; i < s->num_cpu; i++) { if (s->revision == REV_11MPCORE) { s->priority_mask[i] = 0xf0; } else { s->priority_mask[i] = resetprio; } s->current_pending[i] = 1023; s->running_priority[i] = 0x100; s->cpu_ctlr[i] = 0; s->bpr[i] = GIC_MIN_BPR; s->abpr[i] = GIC_MIN_ABPR; for (j = 0; j < GIC_INTERNAL; j++) { s->priority1[j][i] = resetprio; } for (j = 0; j < GIC_NR_SGIS; j++) { s->sgi_pending[j][i] = 0; } } for (i = 0; i < GIC_NR_SGIS; i++) { GIC_SET_ENABLED(i, ALL_CPU_MASK); GIC_SET_EDGE_TRIGGER(i); } for (i = 0; i < ARRAY_SIZE(s->priority2); i++) { s->priority2[i] = resetprio; } for (i = 0; i < GIC_MAXIRQ; i++) { /* For uniprocessor GICs all interrupts always target the sole CPU */ if (s->num_cpu == 1) { s->irq_target[i] = 1; } else { s->irq_target[i] = 0; } } if (s->security_extn && s->irq_reset_nonsecure) { for (i = 0; i < GIC_MAXIRQ; i++) { GIC_SET_GROUP(i, ALL_CPU_MASK); } } s->ctlr = 0; } static void arm_gic_common_linux_init(ARMLinuxBootIf *obj, bool secure_boot) { GICState *s = ARM_GIC_COMMON(obj); if (s->security_extn && !secure_boot) { /* We're directly booting a kernel into NonSecure. If this GIC * implements the security extensions then we must configure it * to have all the interrupts be NonSecure (this is a job that * is done by the Secure boot firmware in real hardware, and in * this mode QEMU is acting as a minimalist firmware-and-bootloader * equivalent). */ s->irq_reset_nonsecure = true; } } static Property arm_gic_common_properties[] = { DEFINE_PROP_UINT32("num-cpu", GICState, num_cpu, 1), DEFINE_PROP_UINT32("num-irq", GICState, num_irq, 32), /* Revision can be 1 or 2 for GIC architecture specification * versions 1 or 2, or 0 to indicate the legacy 11MPCore GIC. */ DEFINE_PROP_UINT32("revision", GICState, revision, 1), /* True if the GIC should implement the security extensions */ DEFINE_PROP_BOOL("has-security-extensions", GICState, security_extn, 0), DEFINE_PROP_END_OF_LIST(), }; static void arm_gic_common_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass); dc->reset = arm_gic_common_reset; dc->realize = arm_gic_common_realize; dc->props = arm_gic_common_properties; dc->vmsd = &vmstate_gic; albifc->arm_linux_init = arm_gic_common_linux_init; } static const TypeInfo arm_gic_common_type = { .name = TYPE_ARM_GIC_COMMON, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(GICState), .class_size = sizeof(ARMGICCommonClass), .class_init = arm_gic_common_class_init, .abstract = true, .interfaces = (InterfaceInfo []) { { TYPE_ARM_LINUX_BOOT_IF }, { }, }, }; static void register_types(void) { type_register_static(&arm_gic_common_type); } type_init(register_types)