/* * TI TSC2102 (touchscreen/sensors/audio controller) emulator. * TI TSC2301 (touchscreen/sensors/keypad). * * Copyright (c) 2006 Andrzej Zaborowski <balrog@zabor.org> * Copyright (C) 2008 Nokia Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "hw/hw.h" #include "audio/audio.h" #include "qemu/timer.h" #include "ui/console.h" #include "hw/arm/omap.h" /* For I2SCodec and uWireSlave */ #include "hw/devices.h" #define TSC_DATA_REGISTERS_PAGE 0x0 #define TSC_CONTROL_REGISTERS_PAGE 0x1 #define TSC_AUDIO_REGISTERS_PAGE 0x2 #define TSC_VERBOSE #define TSC_CUT_RESOLUTION(value, p) ((value) >> (16 - resolution[p])) typedef struct { qemu_irq pint; qemu_irq kbint; qemu_irq davint; QEMUTimer *timer; QEMUSoundCard card; uWireSlave chip; I2SCodec codec; uint8_t in_fifo[16384]; uint8_t out_fifo[16384]; uint16_t model; int x, y; int pressure; int state, page, offset, irq; uint16_t command, dav; int busy; int enabled; int host_mode; int function; int nextfunction; int precision; int nextprecision; int filter; int pin_func; int ref; int timing; int noise; uint16_t audio_ctrl1; uint16_t audio_ctrl2; uint16_t audio_ctrl3; uint16_t pll[3]; uint16_t volume; int64_t volume_change; int softstep; uint16_t dac_power; int64_t powerdown; uint16_t filter_data[0x14]; const char *name; SWVoiceIn *adc_voice[1]; SWVoiceOut *dac_voice[1]; int i2s_rx_rate; int i2s_tx_rate; int tr[8]; struct { uint16_t down; uint16_t mask; int scan; int debounce; int mode; int intr; } kb; } TSC210xState; static const int resolution[4] = { 12, 8, 10, 12 }; #define TSC_MODE_NO_SCAN 0x0 #define TSC_MODE_XY_SCAN 0x1 #define TSC_MODE_XYZ_SCAN 0x2 #define TSC_MODE_X 0x3 #define TSC_MODE_Y 0x4 #define TSC_MODE_Z 0x5 #define TSC_MODE_BAT1 0x6 #define TSC_MODE_BAT2 0x7 #define TSC_MODE_AUX 0x8 #define TSC_MODE_AUX_SCAN 0x9 #define TSC_MODE_TEMP1 0xa #define TSC_MODE_PORT_SCAN 0xb #define TSC_MODE_TEMP2 0xc #define TSC_MODE_XX_DRV 0xd #define TSC_MODE_YY_DRV 0xe #define TSC_MODE_YX_DRV 0xf static const uint16_t mode_regs[16] = { 0x0000, /* No scan */ 0x0600, /* X, Y scan */ 0x0780, /* X, Y, Z scan */ 0x0400, /* X */ 0x0200, /* Y */ 0x0180, /* Z */ 0x0040, /* BAT1 */ 0x0030, /* BAT2 */ 0x0010, /* AUX */ 0x0010, /* AUX scan */ 0x0004, /* TEMP1 */ 0x0070, /* Port scan */ 0x0002, /* TEMP2 */ 0x0000, /* X+, X- drivers */ 0x0000, /* Y+, Y- drivers */ 0x0000, /* Y+, X- drivers */ }; #define X_TRANSFORM(s) \ ((s->y * s->tr[0] - s->x * s->tr[1]) / s->tr[2] + s->tr[3]) #define Y_TRANSFORM(s) \ ((s->y * s->tr[4] - s->x * s->tr[5]) / s->tr[6] + s->tr[7]) #define Z1_TRANSFORM(s) \ ((400 - ((s)->x >> 7) + ((s)->pressure << 10)) << 4) #define Z2_TRANSFORM(s) \ ((4000 + ((s)->y >> 7) - ((s)->pressure << 10)) << 4) #define BAT1_VAL 0x8660 #define BAT2_VAL 0x0000 #define AUX1_VAL 0x35c0 #define AUX2_VAL 0xffff #define TEMP1_VAL 0x8c70 #define TEMP2_VAL 0xa5b0 #define TSC_POWEROFF_DELAY 50 #define TSC_SOFTSTEP_DELAY 50 static void tsc210x_reset(TSC210xState *s) { s->state = 0; s->pin_func = 2; s->enabled = 0; s->busy = 0; s->nextfunction = 0; s->ref = 0; s->timing = 0; s->irq = 0; s->dav = 0; s->audio_ctrl1 = 0x0000; s->audio_ctrl2 = 0x4410; s->audio_ctrl3 = 0x0000; s->pll[0] = 0x1004; s->pll[1] = 0x0000; s->pll[2] = 0x1fff; s->volume = 0xffff; s->dac_power = 0x8540; s->softstep = 1; s->volume_change = 0; s->powerdown = 0; s->filter_data[0x00] = 0x6be3; s->filter_data[0x01] = 0x9666; s->filter_data[0x02] = 0x675d; s->filter_data[0x03] = 0x6be3; s->filter_data[0x04] = 0x9666; s->filter_data[0x05] = 0x675d; s->filter_data[0x06] = 0x7d83; s->filter_data[0x07] = 0x84ee; s->filter_data[0x08] = 0x7d83; s->filter_data[0x09] = 0x84ee; s->filter_data[0x0a] = 0x6be3; s->filter_data[0x0b] = 0x9666; s->filter_data[0x0c] = 0x675d; s->filter_data[0x0d] = 0x6be3; s->filter_data[0x0e] = 0x9666; s->filter_data[0x0f] = 0x675d; s->filter_data[0x10] = 0x7d83; s->filter_data[0x11] = 0x84ee; s->filter_data[0x12] = 0x7d83; s->filter_data[0x13] = 0x84ee; s->i2s_tx_rate = 0; s->i2s_rx_rate = 0; s->kb.scan = 1; s->kb.debounce = 0; s->kb.mask = 0x0000; s->kb.mode = 3; s->kb.intr = 0; qemu_set_irq(s->pint, !s->irq); qemu_set_irq(s->davint, !s->dav); qemu_irq_raise(s->kbint); } typedef struct { int rate; int dsor; int fsref; } TSC210xRateInfo; /* { rate, dsor, fsref } */ static const TSC210xRateInfo tsc2101_rates[] = { /* Fsref / 6.0 */ { 7350, 7, 1 }, { 8000, 7, 0 }, /* Fsref / 5.5 */ { 8018, 6, 1 }, { 8727, 6, 0 }, /* Fsref / 5.0 */ { 8820, 5, 1 }, { 9600, 5, 0 }, /* Fsref / 4.0 */ { 11025, 4, 1 }, { 12000, 4, 0 }, /* Fsref / 3.0 */ { 14700, 3, 1 }, { 16000, 3, 0 }, /* Fsref / 2.0 */ { 22050, 2, 1 }, { 24000, 2, 0 }, /* Fsref / 1.5 */ { 29400, 1, 1 }, { 32000, 1, 0 }, /* Fsref */ { 44100, 0, 1 }, { 48000, 0, 0 }, { 0, 0, 0 }, }; /* { rate, dsor, fsref } */ static const TSC210xRateInfo tsc2102_rates[] = { /* Fsref / 6.0 */ { 7350, 63, 1 }, { 8000, 63, 0 }, /* Fsref / 6.0 */ { 7350, 54, 1 }, { 8000, 54, 0 }, /* Fsref / 5.0 */ { 8820, 45, 1 }, { 9600, 45, 0 }, /* Fsref / 4.0 */ { 11025, 36, 1 }, { 12000, 36, 0 }, /* Fsref / 3.0 */ { 14700, 27, 1 }, { 16000, 27, 0 }, /* Fsref / 2.0 */ { 22050, 18, 1 }, { 24000, 18, 0 }, /* Fsref / 1.5 */ { 29400, 9, 1 }, { 32000, 9, 0 }, /* Fsref */ { 44100, 0, 1 }, { 48000, 0, 0 }, { 0, 0, 0 }, }; static inline void tsc210x_out_flush(TSC210xState *s, int len) { uint8_t *data = s->codec.out.fifo + s->codec.out.start; uint8_t *end = data + len; while (data < end) data += AUD_write(s->dac_voice[0], data, end - data) ?: (end - data); s->codec.out.len -= len; if (s->codec.out.len) memmove(s->codec.out.fifo, end, s->codec.out.len); s->codec.out.start = 0; } static void tsc210x_audio_out_cb(TSC210xState *s, int free_b) { if (s->codec.out.len >= free_b) { tsc210x_out_flush(s, free_b); return; } s->codec.out.size = MIN(free_b, 16384); qemu_irq_raise(s->codec.tx_start); } static void tsc2102_audio_rate_update(TSC210xState *s) { const TSC210xRateInfo *rate; s->codec.tx_rate = 0; s->codec.rx_rate = 0; if (s->dac_power & (1 << 15)) /* PWDNC */ return; for (rate = tsc2102_rates; rate->rate; rate ++) if (rate->dsor == (s->audio_ctrl1 & 0x3f) && /* DACFS */ rate->fsref == ((s->audio_ctrl3 >> 13) & 1))/* REFFS */ break; if (!rate->rate) { printf("%s: unknown sampling rate configured\n", __FUNCTION__); return; } s->codec.tx_rate = rate->rate; } static void tsc2102_audio_output_update(TSC210xState *s) { int enable; struct audsettings fmt; if (s->dac_voice[0]) { tsc210x_out_flush(s, s->codec.out.len); s->codec.out.size = 0; AUD_set_active_out(s->dac_voice[0], 0); AUD_close_out(&s->card, s->dac_voice[0]); s->dac_voice[0] = NULL; } s->codec.cts = 0; enable = (~s->dac_power & (1 << 15)) && /* PWDNC */ (~s->dac_power & (1 << 10)); /* DAPWDN */ if (!enable || !s->codec.tx_rate) return; /* Force our own sampling rate even in slave DAC mode */ fmt.endianness = 0; fmt.nchannels = 2; fmt.freq = s->codec.tx_rate; fmt.fmt = AUD_FMT_S16; s->dac_voice[0] = AUD_open_out(&s->card, s->dac_voice[0], "tsc2102.sink", s, (void *) tsc210x_audio_out_cb, &fmt); if (s->dac_voice[0]) { s->codec.cts = 1; AUD_set_active_out(s->dac_voice[0], 1); } } static uint16_t tsc2102_data_register_read(TSC210xState *s, int reg) { switch (reg) { case 0x00: /* X */ s->dav &= 0xfbff; return TSC_CUT_RESOLUTION(X_TRANSFORM(s), s->precision) + (s->noise & 3); case 0x01: /* Y */ s->noise ++; s->dav &= 0xfdff; return TSC_CUT_RESOLUTION(Y_TRANSFORM(s), s->precision) ^ (s->noise & 3); case 0x02: /* Z1 */ s->dav &= 0xfeff; return TSC_CUT_RESOLUTION(Z1_TRANSFORM(s), s->precision) - (s->noise & 3); case 0x03: /* Z2 */ s->dav &= 0xff7f; return TSC_CUT_RESOLUTION(Z2_TRANSFORM(s), s->precision) | (s->noise & 3); case 0x04: /* KPData */ if ((s->model & 0xff00) == 0x2300) { if (s->kb.intr && (s->kb.mode & 2)) { s->kb.intr = 0; qemu_irq_raise(s->kbint); } return s->kb.down; } return 0xffff; case 0x05: /* BAT1 */ s->dav &= 0xffbf; return TSC_CUT_RESOLUTION(BAT1_VAL, s->precision) + (s->noise & 6); case 0x06: /* BAT2 */ s->dav &= 0xffdf; return TSC_CUT_RESOLUTION(BAT2_VAL, s->precision); case 0x07: /* AUX1 */ s->dav &= 0xffef; return TSC_CUT_RESOLUTION(AUX1_VAL, s->precision); case 0x08: /* AUX2 */ s->dav &= 0xfff7; return 0xffff; case 0x09: /* TEMP1 */ s->dav &= 0xfffb; return TSC_CUT_RESOLUTION(TEMP1_VAL, s->precision) - (s->noise & 5); case 0x0a: /* TEMP2 */ s->dav &= 0xfffd; return TSC_CUT_RESOLUTION(TEMP2_VAL, s->precision) ^ (s->noise & 3); case 0x0b: /* DAC */ s->dav &= 0xfffe; return 0xffff; default: #ifdef TSC_VERBOSE fprintf(stderr, "tsc2102_data_register_read: " "no such register: 0x%02x\n", reg); #endif return 0xffff; } } static uint16_t tsc2102_control_register_read( TSC210xState *s, int reg) { switch (reg) { case 0x00: /* TSC ADC */ return (s->pressure << 15) | ((!s->busy) << 14) | (s->nextfunction << 10) | (s->nextprecision << 8) | s->filter; case 0x01: /* Status / Keypad Control */ if ((s->model & 0xff00) == 0x2100) return (s->pin_func << 14) | ((!s->enabled) << 13) | (s->host_mode << 12) | ((!!s->dav) << 11) | s->dav; else return (s->kb.intr << 15) | ((s->kb.scan || !s->kb.down) << 14) | (s->kb.debounce << 11); case 0x02: /* DAC Control */ if ((s->model & 0xff00) == 0x2300) return s->dac_power & 0x8000; else goto bad_reg; case 0x03: /* Reference */ return s->ref; case 0x04: /* Reset */ return 0xffff; case 0x05: /* Configuration */ return s->timing; case 0x06: /* Secondary configuration */ if ((s->model & 0xff00) == 0x2100) goto bad_reg; return ((!s->dav) << 15) | ((s->kb.mode & 1) << 14) | s->pll[2]; case 0x10: /* Keypad Mask */ if ((s->model & 0xff00) == 0x2100) goto bad_reg; return s->kb.mask; default: bad_reg: #ifdef TSC_VERBOSE fprintf(stderr, "tsc2102_control_register_read: " "no such register: 0x%02x\n", reg); #endif return 0xffff; } } static uint16_t tsc2102_audio_register_read(TSC210xState *s, int reg) { int l_ch, r_ch; uint16_t val; switch (reg) { case 0x00: /* Audio Control 1 */ return s->audio_ctrl1; case 0x01: return 0xff00; case 0x02: /* DAC Volume Control */ return s->volume; case 0x03: return 0x8b00; case 0x04: /* Audio Control 2 */ l_ch = 1; r_ch = 1; if (s->softstep && !(s->dac_power & (1 << 10))) { l_ch = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) > s->volume_change + TSC_SOFTSTEP_DELAY); r_ch = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) > s->volume_change + TSC_SOFTSTEP_DELAY); } return s->audio_ctrl2 | (l_ch << 3) | (r_ch << 2); case 0x05: /* Stereo DAC Power Control */ return 0x2aa0 | s->dac_power | (((s->dac_power & (1 << 10)) && (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) > s->powerdown + TSC_POWEROFF_DELAY)) << 6); case 0x06: /* Audio Control 3 */ val = s->audio_ctrl3 | 0x0001; s->audio_ctrl3 &= 0xff3f; return val; case 0x07: /* LCH_BASS_BOOST_N0 */ case 0x08: /* LCH_BASS_BOOST_N1 */ case 0x09: /* LCH_BASS_BOOST_N2 */ case 0x0a: /* LCH_BASS_BOOST_N3 */ case 0x0b: /* LCH_BASS_BOOST_N4 */ case 0x0c: /* LCH_BASS_BOOST_N5 */ case 0x0d: /* LCH_BASS_BOOST_D1 */ case 0x0e: /* LCH_BASS_BOOST_D2 */ case 0x0f: /* LCH_BASS_BOOST_D4 */ case 0x10: /* LCH_BASS_BOOST_D5 */ case 0x11: /* RCH_BASS_BOOST_N0 */ case 0x12: /* RCH_BASS_BOOST_N1 */ case 0x13: /* RCH_BASS_BOOST_N2 */ case 0x14: /* RCH_BASS_BOOST_N3 */ case 0x15: /* RCH_BASS_BOOST_N4 */ case 0x16: /* RCH_BASS_BOOST_N5 */ case 0x17: /* RCH_BASS_BOOST_D1 */ case 0x18: /* RCH_BASS_BOOST_D2 */ case 0x19: /* RCH_BASS_BOOST_D4 */ case 0x1a: /* RCH_BASS_BOOST_D5 */ return s->filter_data[reg - 0x07]; case 0x1b: /* PLL Programmability 1 */ return s->pll[0]; case 0x1c: /* PLL Programmability 2 */ return s->pll[1]; case 0x1d: /* Audio Control 4 */ return (!s->softstep) << 14; default: #ifdef TSC_VERBOSE fprintf(stderr, "tsc2102_audio_register_read: " "no such register: 0x%02x\n", reg); #endif return 0xffff; } } static void tsc2102_data_register_write( TSC210xState *s, int reg, uint16_t value) { switch (reg) { case 0x00: /* X */ case 0x01: /* Y */ case 0x02: /* Z1 */ case 0x03: /* Z2 */ case 0x05: /* BAT1 */ case 0x06: /* BAT2 */ case 0x07: /* AUX1 */ case 0x08: /* AUX2 */ case 0x09: /* TEMP1 */ case 0x0a: /* TEMP2 */ return; default: #ifdef TSC_VERBOSE fprintf(stderr, "tsc2102_data_register_write: " "no such register: 0x%02x\n", reg); #endif } } static void tsc2102_control_register_write( TSC210xState *s, int reg, uint16_t value) { switch (reg) { case 0x00: /* TSC ADC */ s->host_mode = value >> 15; s->enabled = !(value & 0x4000); if (s->busy && !s->enabled) timer_del(s->timer); s->busy &= s->enabled; s->nextfunction = (value >> 10) & 0xf; s->nextprecision = (value >> 8) & 3; s->filter = value & 0xff; return; case 0x01: /* Status / Keypad Control */ if ((s->model & 0xff00) == 0x2100) s->pin_func = value >> 14; else { s->kb.scan = (value >> 14) & 1; s->kb.debounce = (value >> 11) & 7; if (s->kb.intr && s->kb.scan) { s->kb.intr = 0; qemu_irq_raise(s->kbint); } } return; case 0x02: /* DAC Control */ if ((s->model & 0xff00) == 0x2300) { s->dac_power &= 0x7fff; s->dac_power |= 0x8000 & value; } else goto bad_reg; break; case 0x03: /* Reference */ s->ref = value & 0x1f; return; case 0x04: /* Reset */ if (value == 0xbb00) { if (s->busy) timer_del(s->timer); tsc210x_reset(s); #ifdef TSC_VERBOSE } else { fprintf(stderr, "tsc2102_control_register_write: " "wrong value written into RESET\n"); #endif } return; case 0x05: /* Configuration */ s->timing = value & 0x3f; #ifdef TSC_VERBOSE if (value & ~0x3f) fprintf(stderr, "tsc2102_control_register_write: " "wrong value written into CONFIG\n"); #endif return; case 0x06: /* Secondary configuration */ if ((s->model & 0xff00) == 0x2100) goto bad_reg; s->kb.mode = value >> 14; s->pll[2] = value & 0x3ffff; return; case 0x10: /* Keypad Mask */ if ((s->model & 0xff00) == 0x2100) goto bad_reg; s->kb.mask = value; return; default: bad_reg: #ifdef TSC_VERBOSE fprintf(stderr, "tsc2102_control_register_write: " "no such register: 0x%02x\n", reg); #endif } } static void tsc2102_audio_register_write( TSC210xState *s, int reg, uint16_t value) { switch (reg) { case 0x00: /* Audio Control 1 */ s->audio_ctrl1 = value & 0x0f3f; #ifdef TSC_VERBOSE if ((value & ~0x0f3f) || ((value & 7) != ((value >> 3) & 7))) fprintf(stderr, "tsc2102_audio_register_write: " "wrong value written into Audio 1\n"); #endif tsc2102_audio_rate_update(s); tsc2102_audio_output_update(s); return; case 0x01: #ifdef TSC_VERBOSE if (value != 0xff00) fprintf(stderr, "tsc2102_audio_register_write: " "wrong value written into reg 0x01\n"); #endif return; case 0x02: /* DAC Volume Control */ s->volume = value; s->volume_change = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); return; case 0x03: #ifdef TSC_VERBOSE if (value != 0x8b00) fprintf(stderr, "tsc2102_audio_register_write: " "wrong value written into reg 0x03\n"); #endif return; case 0x04: /* Audio Control 2 */ s->audio_ctrl2 = value & 0xf7f2; #ifdef TSC_VERBOSE if (value & ~0xf7fd) fprintf(stderr, "tsc2102_audio_register_write: " "wrong value written into Audio 2\n"); #endif return; case 0x05: /* Stereo DAC Power Control */ if ((value & ~s->dac_power) & (1 << 10)) s->powerdown = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); s->dac_power = value & 0x9543; #ifdef TSC_VERBOSE if ((value & ~0x9543) != 0x2aa0) fprintf(stderr, "tsc2102_audio_register_write: " "wrong value written into Power\n"); #endif tsc2102_audio_rate_update(s); tsc2102_audio_output_update(s); return; case 0x06: /* Audio Control 3 */ s->audio_ctrl3 &= 0x00c0; s->audio_ctrl3 |= value & 0xf800; #ifdef TSC_VERBOSE if (value & ~0xf8c7) fprintf(stderr, "tsc2102_audio_register_write: " "wrong value written into Audio 3\n"); #endif tsc2102_audio_output_update(s); return; case 0x07: /* LCH_BASS_BOOST_N0 */ case 0x08: /* LCH_BASS_BOOST_N1 */ case 0x09: /* LCH_BASS_BOOST_N2 */ case 0x0a: /* LCH_BASS_BOOST_N3 */ case 0x0b: /* LCH_BASS_BOOST_N4 */ case 0x0c: /* LCH_BASS_BOOST_N5 */ case 0x0d: /* LCH_BASS_BOOST_D1 */ case 0x0e: /* LCH_BASS_BOOST_D2 */ case 0x0f: /* LCH_BASS_BOOST_D4 */ case 0x10: /* LCH_BASS_BOOST_D5 */ case 0x11: /* RCH_BASS_BOOST_N0 */ case 0x12: /* RCH_BASS_BOOST_N1 */ case 0x13: /* RCH_BASS_BOOST_N2 */ case 0x14: /* RCH_BASS_BOOST_N3 */ case 0x15: /* RCH_BASS_BOOST_N4 */ case 0x16: /* RCH_BASS_BOOST_N5 */ case 0x17: /* RCH_BASS_BOOST_D1 */ case 0x18: /* RCH_BASS_BOOST_D2 */ case 0x19: /* RCH_BASS_BOOST_D4 */ case 0x1a: /* RCH_BASS_BOOST_D5 */ s->filter_data[reg - 0x07] = value; return; case 0x1b: /* PLL Programmability 1 */ s->pll[0] = value & 0xfffc; #ifdef TSC_VERBOSE if (value & ~0xfffc) fprintf(stderr, "tsc2102_audio_register_write: " "wrong value written into PLL 1\n"); #endif return; case 0x1c: /* PLL Programmability 2 */ s->pll[1] = value & 0xfffc; #ifdef TSC_VERBOSE if (value & ~0xfffc) fprintf(stderr, "tsc2102_audio_register_write: " "wrong value written into PLL 2\n"); #endif return; case 0x1d: /* Audio Control 4 */ s->softstep = !(value & 0x4000); #ifdef TSC_VERBOSE if (value & ~0x4000) fprintf(stderr, "tsc2102_audio_register_write: " "wrong value written into Audio 4\n"); #endif return; default: #ifdef TSC_VERBOSE fprintf(stderr, "tsc2102_audio_register_write: " "no such register: 0x%02x\n", reg); #endif } } /* This handles most of the chip logic. */ static void tsc210x_pin_update(TSC210xState *s) { int64_t expires; int pin_state; switch (s->pin_func) { case 0: pin_state = s->pressure; break; case 1: pin_state = !!s->dav; break; case 2: default: pin_state = s->pressure && !s->dav; } if (!s->enabled) pin_state = 0; if (pin_state != s->irq) { s->irq = pin_state; qemu_set_irq(s->pint, !s->irq); } switch (s->nextfunction) { case TSC_MODE_XY_SCAN: case TSC_MODE_XYZ_SCAN: if (!s->pressure) return; break; case TSC_MODE_X: case TSC_MODE_Y: case TSC_MODE_Z: if (!s->pressure) return; /* Fall through */ case TSC_MODE_BAT1: case TSC_MODE_BAT2: case TSC_MODE_AUX: case TSC_MODE_TEMP1: case TSC_MODE_TEMP2: if (s->dav) s->enabled = 0; break; case TSC_MODE_AUX_SCAN: case TSC_MODE_PORT_SCAN: break; case TSC_MODE_NO_SCAN: case TSC_MODE_XX_DRV: case TSC_MODE_YY_DRV: case TSC_MODE_YX_DRV: default: return; } if (!s->enabled || s->busy || s->dav) return; s->busy = 1; s->precision = s->nextprecision; s->function = s->nextfunction; expires = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() >> 10); timer_mod(s->timer, expires); } static uint16_t tsc210x_read(TSC210xState *s) { uint16_t ret = 0x0000; if (!s->command) fprintf(stderr, "tsc210x_read: SPI underrun!\n"); switch (s->page) { case TSC_DATA_REGISTERS_PAGE: ret = tsc2102_data_register_read(s, s->offset); if (!s->dav) qemu_irq_raise(s->davint); break; case TSC_CONTROL_REGISTERS_PAGE: ret = tsc2102_control_register_read(s, s->offset); break; case TSC_AUDIO_REGISTERS_PAGE: ret = tsc2102_audio_register_read(s, s->offset); break; default: hw_error("tsc210x_read: wrong memory page\n"); } tsc210x_pin_update(s); /* Allow sequential reads. */ s->offset ++; s->state = 0; return ret; } static void tsc210x_write(TSC210xState *s, uint16_t value) { /* * This is a two-state state machine for reading * command and data every second time. */ if (!s->state) { s->command = value >> 15; s->page = (value >> 11) & 0x0f; s->offset = (value >> 5) & 0x3f; s->state = 1; } else { if (s->command) fprintf(stderr, "tsc210x_write: SPI overrun!\n"); else switch (s->page) { case TSC_DATA_REGISTERS_PAGE: tsc2102_data_register_write(s, s->offset, value); break; case TSC_CONTROL_REGISTERS_PAGE: tsc2102_control_register_write(s, s->offset, value); break; case TSC_AUDIO_REGISTERS_PAGE: tsc2102_audio_register_write(s, s->offset, value); break; default: hw_error("tsc210x_write: wrong memory page\n"); } tsc210x_pin_update(s); s->state = 0; } } uint32_t tsc210x_txrx(void *opaque, uint32_t value, int len) { TSC210xState *s = opaque; uint32_t ret = 0; if (len != 16) hw_error("%s: FIXME: bad SPI word width %i\n", __FUNCTION__, len); /* TODO: sequential reads etc - how do we make sure the host doesn't * unintentionally read out a conversion result from a register while * transmitting the command word of the next command? */ if (!value || (s->state && s->command)) ret = tsc210x_read(s); if (value || (s->state && !s->command)) tsc210x_write(s, value); return ret; } static void tsc210x_timer_tick(void *opaque) { TSC210xState *s = opaque; /* Timer ticked -- a set of conversions has been finished. */ if (!s->busy) return; s->busy = 0; s->dav |= mode_regs[s->function]; tsc210x_pin_update(s); qemu_irq_lower(s->davint); } static void tsc210x_touchscreen_event(void *opaque, int x, int y, int z, int buttons_state) { TSC210xState *s = opaque; int p = s->pressure; if (buttons_state) { s->x = x; s->y = y; } s->pressure = !!buttons_state; /* * Note: We would get better responsiveness in the guest by * signaling TS events immediately, but for now we simulate * the first conversion delay for sake of correctness. */ if (p != s->pressure) tsc210x_pin_update(s); } static void tsc210x_i2s_swallow(TSC210xState *s) { if (s->dac_voice[0]) tsc210x_out_flush(s, s->codec.out.len); else s->codec.out.len = 0; } static void tsc210x_i2s_set_rate(TSC210xState *s, int in, int out) { s->i2s_tx_rate = out; s->i2s_rx_rate = in; } static void tsc210x_save(QEMUFile *f, void *opaque) { TSC210xState *s = (TSC210xState *) opaque; int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); int i; qemu_put_be16(f, s->x); qemu_put_be16(f, s->y); qemu_put_byte(f, s->pressure); qemu_put_byte(f, s->state); qemu_put_byte(f, s->page); qemu_put_byte(f, s->offset); qemu_put_byte(f, s->command); qemu_put_byte(f, s->irq); qemu_put_be16s(f, &s->dav); timer_put(f, s->timer); qemu_put_byte(f, s->enabled); qemu_put_byte(f, s->host_mode); qemu_put_byte(f, s->function); qemu_put_byte(f, s->nextfunction); qemu_put_byte(f, s->precision); qemu_put_byte(f, s->nextprecision); qemu_put_byte(f, s->filter); qemu_put_byte(f, s->pin_func); qemu_put_byte(f, s->ref); qemu_put_byte(f, s->timing); qemu_put_be32(f, s->noise); qemu_put_be16s(f, &s->audio_ctrl1); qemu_put_be16s(f, &s->audio_ctrl2); qemu_put_be16s(f, &s->audio_ctrl3); qemu_put_be16s(f, &s->pll[0]); qemu_put_be16s(f, &s->pll[1]); qemu_put_be16s(f, &s->volume); qemu_put_sbe64(f, (s->volume_change - now)); qemu_put_sbe64(f, (s->powerdown - now)); qemu_put_byte(f, s->softstep); qemu_put_be16s(f, &s->dac_power); for (i = 0; i < 0x14; i ++) qemu_put_be16s(f, &s->filter_data[i]); } static int tsc210x_load(QEMUFile *f, void *opaque, int version_id) { TSC210xState *s = (TSC210xState *) opaque; int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); int i; s->x = qemu_get_be16(f); s->y = qemu_get_be16(f); s->pressure = qemu_get_byte(f); s->state = qemu_get_byte(f); s->page = qemu_get_byte(f); s->offset = qemu_get_byte(f); s->command = qemu_get_byte(f); s->irq = qemu_get_byte(f); qemu_get_be16s(f, &s->dav); timer_get(f, s->timer); s->enabled = qemu_get_byte(f); s->host_mode = qemu_get_byte(f); s->function = qemu_get_byte(f); if (s->function < 0 || s->function >= ARRAY_SIZE(mode_regs)) { return -EINVAL; } s->nextfunction = qemu_get_byte(f); if (s->nextfunction < 0 || s->nextfunction >= ARRAY_SIZE(mode_regs)) { return -EINVAL; } s->precision = qemu_get_byte(f); if (s->precision < 0 || s->precision >= ARRAY_SIZE(resolution)) { return -EINVAL; } s->nextprecision = qemu_get_byte(f); if (s->nextprecision < 0 || s->nextprecision >= ARRAY_SIZE(resolution)) { return -EINVAL; } s->filter = qemu_get_byte(f); s->pin_func = qemu_get_byte(f); s->ref = qemu_get_byte(f); s->timing = qemu_get_byte(f); s->noise = qemu_get_be32(f); qemu_get_be16s(f, &s->audio_ctrl1); qemu_get_be16s(f, &s->audio_ctrl2); qemu_get_be16s(f, &s->audio_ctrl3); qemu_get_be16s(f, &s->pll[0]); qemu_get_be16s(f, &s->pll[1]); qemu_get_be16s(f, &s->volume); s->volume_change = qemu_get_sbe64(f) + now; s->powerdown = qemu_get_sbe64(f) + now; s->softstep = qemu_get_byte(f); qemu_get_be16s(f, &s->dac_power); for (i = 0; i < 0x14; i ++) qemu_get_be16s(f, &s->filter_data[i]); s->busy = timer_pending(s->timer); qemu_set_irq(s->pint, !s->irq); qemu_set_irq(s->davint, !s->dav); return 0; } uWireSlave *tsc2102_init(qemu_irq pint) { TSC210xState *s; s = (TSC210xState *) g_malloc0(sizeof(TSC210xState)); memset(s, 0, sizeof(TSC210xState)); s->x = 160; s->y = 160; s->pressure = 0; s->precision = s->nextprecision = 0; s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, tsc210x_timer_tick, s); s->pint = pint; s->model = 0x2102; s->name = "tsc2102"; s->tr[0] = 0; s->tr[1] = 1; s->tr[2] = 1; s->tr[3] = 0; s->tr[4] = 1; s->tr[5] = 0; s->tr[6] = 1; s->tr[7] = 0; s->chip.opaque = s; s->chip.send = (void *) tsc210x_write; s->chip.receive = (void *) tsc210x_read; s->codec.opaque = s; s->codec.tx_swallow = (void *) tsc210x_i2s_swallow; s->codec.set_rate = (void *) tsc210x_i2s_set_rate; s->codec.in.fifo = s->in_fifo; s->codec.out.fifo = s->out_fifo; tsc210x_reset(s); qemu_add_mouse_event_handler(tsc210x_touchscreen_event, s, 1, "QEMU TSC2102-driven Touchscreen"); AUD_register_card(s->name, &s->card); qemu_register_reset((void *) tsc210x_reset, s); register_savevm(NULL, s->name, -1, 0, tsc210x_save, tsc210x_load, s); return &s->chip; } uWireSlave *tsc2301_init(qemu_irq penirq, qemu_irq kbirq, qemu_irq dav) { TSC210xState *s; s = (TSC210xState *) g_malloc0(sizeof(TSC210xState)); memset(s, 0, sizeof(TSC210xState)); s->x = 400; s->y = 240; s->pressure = 0; s->precision = s->nextprecision = 0; s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, tsc210x_timer_tick, s); s->pint = penirq; s->kbint = kbirq; s->davint = dav; s->model = 0x2301; s->name = "tsc2301"; s->tr[0] = 0; s->tr[1] = 1; s->tr[2] = 1; s->tr[3] = 0; s->tr[4] = 1; s->tr[5] = 0; s->tr[6] = 1; s->tr[7] = 0; s->chip.opaque = s; s->chip.send = (void *) tsc210x_write; s->chip.receive = (void *) tsc210x_read; s->codec.opaque = s; s->codec.tx_swallow = (void *) tsc210x_i2s_swallow; s->codec.set_rate = (void *) tsc210x_i2s_set_rate; s->codec.in.fifo = s->in_fifo; s->codec.out.fifo = s->out_fifo; tsc210x_reset(s); qemu_add_mouse_event_handler(tsc210x_touchscreen_event, s, 1, "QEMU TSC2301-driven Touchscreen"); AUD_register_card(s->name, &s->card); qemu_register_reset((void *) tsc210x_reset, s); register_savevm(NULL, s->name, -1, 0, tsc210x_save, tsc210x_load, s); return &s->chip; } I2SCodec *tsc210x_codec(uWireSlave *chip) { TSC210xState *s = (TSC210xState *) chip->opaque; return &s->codec; } /* * Use tslib generated calibration data to generate ADC input values * from the touchscreen. Assuming 12-bit precision was used during * tslib calibration. */ void tsc210x_set_transform(uWireSlave *chip, MouseTransformInfo *info) { TSC210xState *s = (TSC210xState *) chip->opaque; #if 0 int64_t ltr[8]; ltr[0] = (int64_t) info->a[1] * info->y; ltr[1] = (int64_t) info->a[4] * info->x; ltr[2] = (int64_t) info->a[1] * info->a[3] - (int64_t) info->a[4] * info->a[0]; ltr[3] = (int64_t) info->a[2] * info->a[4] - (int64_t) info->a[5] * info->a[1]; ltr[4] = (int64_t) info->a[0] * info->y; ltr[5] = (int64_t) info->a[3] * info->x; ltr[6] = (int64_t) info->a[4] * info->a[0] - (int64_t) info->a[1] * info->a[3]; ltr[7] = (int64_t) info->a[2] * info->a[3] - (int64_t) info->a[5] * info->a[0]; /* Avoid integer overflow */ s->tr[0] = ltr[0] >> 11; s->tr[1] = ltr[1] >> 11; s->tr[2] = muldiv64(ltr[2], 1, info->a[6]); s->tr[3] = muldiv64(ltr[3], 1 << 4, ltr[2]); s->tr[4] = ltr[4] >> 11; s->tr[5] = ltr[5] >> 11; s->tr[6] = muldiv64(ltr[6], 1, info->a[6]); s->tr[7] = muldiv64(ltr[7], 1 << 4, ltr[6]); #else /* This version assumes touchscreen X & Y axis are parallel or * perpendicular to LCD's X & Y axis in some way. */ if (abs(info->a[0]) > abs(info->a[1])) { s->tr[0] = 0; s->tr[1] = -info->a[6] * info->x; s->tr[2] = info->a[0]; s->tr[3] = -info->a[2] / info->a[0]; s->tr[4] = info->a[6] * info->y; s->tr[5] = 0; s->tr[6] = info->a[4]; s->tr[7] = -info->a[5] / info->a[4]; } else { s->tr[0] = info->a[6] * info->y; s->tr[1] = 0; s->tr[2] = info->a[1]; s->tr[3] = -info->a[2] / info->a[1]; s->tr[4] = 0; s->tr[5] = -info->a[6] * info->x; s->tr[6] = info->a[3]; s->tr[7] = -info->a[5] / info->a[3]; } s->tr[0] >>= 11; s->tr[1] >>= 11; s->tr[3] <<= 4; s->tr[4] >>= 11; s->tr[5] >>= 11; s->tr[7] <<= 4; #endif } void tsc210x_key_event(uWireSlave *chip, int key, int down) { TSC210xState *s = (TSC210xState *) chip->opaque; if (down) s->kb.down |= 1 << key; else s->kb.down &= ~(1 << key); if (down && (s->kb.down & ~s->kb.mask) && !s->kb.intr) { s->kb.intr = 1; qemu_irq_lower(s->kbint); } else if (s->kb.intr && !(s->kb.down & ~s->kb.mask) && !(s->kb.mode & 1)) { s->kb.intr = 0; qemu_irq_raise(s->kbint); } }