/* * QEMU AHCI Emulation * * Copyright (c) 2010 qiaochong@loongson.cn * Copyright (c) 2010 Roland Elek * Copyright (c) 2010 Sebastian Herbszt * Copyright (c) 2010 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * */ #include "qemu/osdep.h" #include "hw/hw.h" #include "hw/pci/msi.h" #include "hw/pci/pci.h" #include "migration/vmstate.h" #include "qemu/error-report.h" #include "qemu/log.h" #include "qemu/module.h" #include "sysemu/block-backend.h" #include "sysemu/dma.h" #include "hw/ide/internal.h" #include "hw/ide/pci.h" #include "ahci_internal.h" #include "trace.h" static void check_cmd(AHCIState *s, int port); static int handle_cmd(AHCIState *s, int port, uint8_t slot); static void ahci_reset_port(AHCIState *s, int port); static bool ahci_write_fis_d2h(AHCIDevice *ad); static void ahci_init_d2h(AHCIDevice *ad); static int ahci_dma_prepare_buf(IDEDMA *dma, int32_t limit); static bool ahci_map_clb_address(AHCIDevice *ad); static bool ahci_map_fis_address(AHCIDevice *ad); static void ahci_unmap_clb_address(AHCIDevice *ad); static void ahci_unmap_fis_address(AHCIDevice *ad); static const char *AHCIHostReg_lookup[AHCI_HOST_REG__COUNT] = { [AHCI_HOST_REG_CAP] = "CAP", [AHCI_HOST_REG_CTL] = "GHC", [AHCI_HOST_REG_IRQ_STAT] = "IS", [AHCI_HOST_REG_PORTS_IMPL] = "PI", [AHCI_HOST_REG_VERSION] = "VS", [AHCI_HOST_REG_CCC_CTL] = "CCC_CTL", [AHCI_HOST_REG_CCC_PORTS] = "CCC_PORTS", [AHCI_HOST_REG_EM_LOC] = "EM_LOC", [AHCI_HOST_REG_EM_CTL] = "EM_CTL", [AHCI_HOST_REG_CAP2] = "CAP2", [AHCI_HOST_REG_BOHC] = "BOHC", }; static const char *AHCIPortReg_lookup[AHCI_PORT_REG__COUNT] = { [AHCI_PORT_REG_LST_ADDR] = "PxCLB", [AHCI_PORT_REG_LST_ADDR_HI] = "PxCLBU", [AHCI_PORT_REG_FIS_ADDR] = "PxFB", [AHCI_PORT_REG_FIS_ADDR_HI] = "PxFBU", [AHCI_PORT_REG_IRQ_STAT] = "PxIS", [AHCI_PORT_REG_IRQ_MASK] = "PXIE", [AHCI_PORT_REG_CMD] = "PxCMD", [7] = "Reserved", [AHCI_PORT_REG_TFDATA] = "PxTFD", [AHCI_PORT_REG_SIG] = "PxSIG", [AHCI_PORT_REG_SCR_STAT] = "PxSSTS", [AHCI_PORT_REG_SCR_CTL] = "PxSCTL", [AHCI_PORT_REG_SCR_ERR] = "PxSERR", [AHCI_PORT_REG_SCR_ACT] = "PxSACT", [AHCI_PORT_REG_CMD_ISSUE] = "PxCI", [AHCI_PORT_REG_SCR_NOTIF] = "PxSNTF", [AHCI_PORT_REG_FIS_CTL] = "PxFBS", [AHCI_PORT_REG_DEV_SLEEP] = "PxDEVSLP", [18 ... 27] = "Reserved", [AHCI_PORT_REG_VENDOR_1 ... AHCI_PORT_REG_VENDOR_4] = "PxVS", }; static const char *AHCIPortIRQ_lookup[AHCI_PORT_IRQ__COUNT] = { [AHCI_PORT_IRQ_BIT_DHRS] = "DHRS", [AHCI_PORT_IRQ_BIT_PSS] = "PSS", [AHCI_PORT_IRQ_BIT_DSS] = "DSS", [AHCI_PORT_IRQ_BIT_SDBS] = "SDBS", [AHCI_PORT_IRQ_BIT_UFS] = "UFS", [AHCI_PORT_IRQ_BIT_DPS] = "DPS", [AHCI_PORT_IRQ_BIT_PCS] = "PCS", [AHCI_PORT_IRQ_BIT_DMPS] = "DMPS", [8 ... 21] = "RESERVED", [AHCI_PORT_IRQ_BIT_PRCS] = "PRCS", [AHCI_PORT_IRQ_BIT_IPMS] = "IPMS", [AHCI_PORT_IRQ_BIT_OFS] = "OFS", [25] = "RESERVED", [AHCI_PORT_IRQ_BIT_INFS] = "INFS", [AHCI_PORT_IRQ_BIT_IFS] = "IFS", [AHCI_PORT_IRQ_BIT_HBDS] = "HBDS", [AHCI_PORT_IRQ_BIT_HBFS] = "HBFS", [AHCI_PORT_IRQ_BIT_TFES] = "TFES", [AHCI_PORT_IRQ_BIT_CPDS] = "CPDS" }; static uint32_t ahci_port_read(AHCIState *s, int port, int offset) { uint32_t val; AHCIPortRegs *pr = &s->dev[port].port_regs; enum AHCIPortReg regnum = offset / sizeof(uint32_t); assert(regnum < (AHCI_PORT_ADDR_OFFSET_LEN / sizeof(uint32_t))); switch (regnum) { case AHCI_PORT_REG_LST_ADDR: val = pr->lst_addr; break; case AHCI_PORT_REG_LST_ADDR_HI: val = pr->lst_addr_hi; break; case AHCI_PORT_REG_FIS_ADDR: val = pr->fis_addr; break; case AHCI_PORT_REG_FIS_ADDR_HI: val = pr->fis_addr_hi; break; case AHCI_PORT_REG_IRQ_STAT: val = pr->irq_stat; break; case AHCI_PORT_REG_IRQ_MASK: val = pr->irq_mask; break; case AHCI_PORT_REG_CMD: val = pr->cmd; break; case AHCI_PORT_REG_TFDATA: val = pr->tfdata; break; case AHCI_PORT_REG_SIG: val = pr->sig; break; case AHCI_PORT_REG_SCR_STAT: if (s->dev[port].port.ifs[0].blk) { val = SATA_SCR_SSTATUS_DET_DEV_PRESENT_PHY_UP | SATA_SCR_SSTATUS_SPD_GEN1 | SATA_SCR_SSTATUS_IPM_ACTIVE; } else { val = SATA_SCR_SSTATUS_DET_NODEV; } break; case AHCI_PORT_REG_SCR_CTL: val = pr->scr_ctl; break; case AHCI_PORT_REG_SCR_ERR: val = pr->scr_err; break; case AHCI_PORT_REG_SCR_ACT: val = pr->scr_act; break; case AHCI_PORT_REG_CMD_ISSUE: val = pr->cmd_issue; break; default: trace_ahci_port_read_default(s, port, AHCIPortReg_lookup[regnum], offset); val = 0; } trace_ahci_port_read(s, port, AHCIPortReg_lookup[regnum], offset, val); return val; } static void ahci_irq_raise(AHCIState *s) { DeviceState *dev_state = s->container; PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state), TYPE_PCI_DEVICE); trace_ahci_irq_raise(s); if (pci_dev && msi_enabled(pci_dev)) { msi_notify(pci_dev, 0); } else { qemu_irq_raise(s->irq); } } static void ahci_irq_lower(AHCIState *s) { DeviceState *dev_state = s->container; PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state), TYPE_PCI_DEVICE); trace_ahci_irq_lower(s); if (!pci_dev || !msi_enabled(pci_dev)) { qemu_irq_lower(s->irq); } } static void ahci_check_irq(AHCIState *s) { int i; uint32_t old_irq = s->control_regs.irqstatus; s->control_regs.irqstatus = 0; for (i = 0; i < s->ports; i++) { AHCIPortRegs *pr = &s->dev[i].port_regs; if (pr->irq_stat & pr->irq_mask) { s->control_regs.irqstatus |= (1 << i); } } trace_ahci_check_irq(s, old_irq, s->control_regs.irqstatus); if (s->control_regs.irqstatus && (s->control_regs.ghc & HOST_CTL_IRQ_EN)) { ahci_irq_raise(s); } else { ahci_irq_lower(s); } } static void ahci_trigger_irq(AHCIState *s, AHCIDevice *d, enum AHCIPortIRQ irqbit) { g_assert((unsigned)irqbit < 32); uint32_t irq = 1U << irqbit; uint32_t irqstat = d->port_regs.irq_stat | irq; trace_ahci_trigger_irq(s, d->port_no, AHCIPortIRQ_lookup[irqbit], irq, d->port_regs.irq_stat, irqstat, irqstat & d->port_regs.irq_mask); d->port_regs.irq_stat = irqstat; ahci_check_irq(s); } static void map_page(AddressSpace *as, uint8_t **ptr, uint64_t addr, uint32_t wanted) { hwaddr len = wanted; if (*ptr) { dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len); } *ptr = dma_memory_map(as, addr, &len, DMA_DIRECTION_FROM_DEVICE); if (len < wanted) { dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len); *ptr = NULL; } } /** * Check the cmd register to see if we should start or stop * the DMA or FIS RX engines. * * @ad: Device to dis/engage. * * @return 0 on success, -1 on error. */ static int ahci_cond_start_engines(AHCIDevice *ad) { AHCIPortRegs *pr = &ad->port_regs; bool cmd_start = pr->cmd & PORT_CMD_START; bool cmd_on = pr->cmd & PORT_CMD_LIST_ON; bool fis_start = pr->cmd & PORT_CMD_FIS_RX; bool fis_on = pr->cmd & PORT_CMD_FIS_ON; if (cmd_start && !cmd_on) { if (!ahci_map_clb_address(ad)) { pr->cmd &= ~PORT_CMD_START; error_report("AHCI: Failed to start DMA engine: " "bad command list buffer address"); return -1; } } else if (!cmd_start && cmd_on) { ahci_unmap_clb_address(ad); } if (fis_start && !fis_on) { if (!ahci_map_fis_address(ad)) { pr->cmd &= ~PORT_CMD_FIS_RX; error_report("AHCI: Failed to start FIS receive engine: " "bad FIS receive buffer address"); return -1; } } else if (!fis_start && fis_on) { ahci_unmap_fis_address(ad); } return 0; } static void ahci_port_write(AHCIState *s, int port, int offset, uint32_t val) { AHCIPortRegs *pr = &s->dev[port].port_regs; enum AHCIPortReg regnum = offset / sizeof(uint32_t); assert(regnum < (AHCI_PORT_ADDR_OFFSET_LEN / sizeof(uint32_t))); trace_ahci_port_write(s, port, AHCIPortReg_lookup[regnum], offset, val); switch (regnum) { case AHCI_PORT_REG_LST_ADDR: pr->lst_addr = val; break; case AHCI_PORT_REG_LST_ADDR_HI: pr->lst_addr_hi = val; break; case AHCI_PORT_REG_FIS_ADDR: pr->fis_addr = val; break; case AHCI_PORT_REG_FIS_ADDR_HI: pr->fis_addr_hi = val; break; case AHCI_PORT_REG_IRQ_STAT: pr->irq_stat &= ~val; ahci_check_irq(s); break; case AHCI_PORT_REG_IRQ_MASK: pr->irq_mask = val & 0xfdc000ff; ahci_check_irq(s); break; case AHCI_PORT_REG_CMD: /* Block any Read-only fields from being set; * including LIST_ON and FIS_ON. * The spec requires to set ICC bits to zero after the ICC change * is done. We don't support ICC state changes, therefore always * force the ICC bits to zero. */ pr->cmd = (pr->cmd & PORT_CMD_RO_MASK) | (val & ~(PORT_CMD_RO_MASK | PORT_CMD_ICC_MASK)); /* Check FIS RX and CLB engines */ ahci_cond_start_engines(&s->dev[port]); /* XXX usually the FIS would be pending on the bus here and issuing deferred until the OS enables FIS receival. Instead, we only submit it once - which works in most cases, but is a hack. */ if ((pr->cmd & PORT_CMD_FIS_ON) && !s->dev[port].init_d2h_sent) { ahci_init_d2h(&s->dev[port]); } check_cmd(s, port); break; case AHCI_PORT_REG_TFDATA: case AHCI_PORT_REG_SIG: case AHCI_PORT_REG_SCR_STAT: /* Read Only */ break; case AHCI_PORT_REG_SCR_CTL: if (((pr->scr_ctl & AHCI_SCR_SCTL_DET) == 1) && ((val & AHCI_SCR_SCTL_DET) == 0)) { ahci_reset_port(s, port); } pr->scr_ctl = val; break; case AHCI_PORT_REG_SCR_ERR: pr->scr_err &= ~val; break; case AHCI_PORT_REG_SCR_ACT: /* RW1 */ pr->scr_act |= val; break; case AHCI_PORT_REG_CMD_ISSUE: pr->cmd_issue |= val; check_cmd(s, port); break; default: trace_ahci_port_write_unimpl(s, port, AHCIPortReg_lookup[regnum], offset, val); qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: " "AHCI port %d register %s, offset 0x%x: 0x%"PRIx32, port, AHCIPortReg_lookup[regnum], offset, val); break; } } static uint64_t ahci_mem_read_32(void *opaque, hwaddr addr) { AHCIState *s = opaque; uint32_t val = 0; if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { enum AHCIHostReg regnum = addr / 4; assert(regnum < AHCI_HOST_REG__COUNT); switch (regnum) { case AHCI_HOST_REG_CAP: val = s->control_regs.cap; break; case AHCI_HOST_REG_CTL: val = s->control_regs.ghc; break; case AHCI_HOST_REG_IRQ_STAT: val = s->control_regs.irqstatus; break; case AHCI_HOST_REG_PORTS_IMPL: val = s->control_regs.impl; break; case AHCI_HOST_REG_VERSION: val = s->control_regs.version; break; default: trace_ahci_mem_read_32_host_default(s, AHCIHostReg_lookup[regnum], addr); } trace_ahci_mem_read_32_host(s, AHCIHostReg_lookup[regnum], addr, val); } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && (addr < (AHCI_PORT_REGS_START_ADDR + (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { val = ahci_port_read(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, addr & AHCI_PORT_ADDR_OFFSET_MASK); } else { trace_ahci_mem_read_32_default(s, addr, val); } trace_ahci_mem_read_32(s, addr, val); return val; } /** * AHCI 1.3 section 3 ("HBA Memory Registers") * Support unaligned 8/16/32 bit reads, and 64 bit aligned reads. * Caller is responsible for masking unwanted higher order bytes. */ static uint64_t ahci_mem_read(void *opaque, hwaddr addr, unsigned size) { hwaddr aligned = addr & ~0x3; int ofst = addr - aligned; uint64_t lo = ahci_mem_read_32(opaque, aligned); uint64_t hi; uint64_t val; /* if < 8 byte read does not cross 4 byte boundary */ if (ofst + size <= 4) { val = lo >> (ofst * 8); } else { g_assert(size > 1); /* If the 64bit read is unaligned, we will produce undefined * results. AHCI does not support unaligned 64bit reads. */ hi = ahci_mem_read_32(opaque, aligned + 4); val = (hi << 32 | lo) >> (ofst * 8); } trace_ahci_mem_read(opaque, size, addr, val); return val; } static void ahci_mem_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { AHCIState *s = opaque; trace_ahci_mem_write(s, size, addr, val); /* Only aligned reads are allowed on AHCI */ if (addr & 3) { fprintf(stderr, "ahci: Mis-aligned write to addr 0x" TARGET_FMT_plx "\n", addr); return; } if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) { enum AHCIHostReg regnum = addr / 4; assert(regnum < AHCI_HOST_REG__COUNT); switch (regnum) { case AHCI_HOST_REG_CAP: /* R/WO, RO */ /* FIXME handle R/WO */ break; case AHCI_HOST_REG_CTL: /* R/W */ if (val & HOST_CTL_RESET) { ahci_reset(s); } else { s->control_regs.ghc = (val & 0x3) | HOST_CTL_AHCI_EN; ahci_check_irq(s); } break; case AHCI_HOST_REG_IRQ_STAT: /* R/WC, RO */ s->control_regs.irqstatus &= ~val; ahci_check_irq(s); break; case AHCI_HOST_REG_PORTS_IMPL: /* R/WO, RO */ /* FIXME handle R/WO */ break; case AHCI_HOST_REG_VERSION: /* RO */ /* FIXME report write? */ break; default: qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: " "AHCI host register %s, " "offset 0x%"PRIx64": 0x%"PRIx64, AHCIHostReg_lookup[regnum], addr, val); trace_ahci_mem_write_host_unimpl(s, size, AHCIHostReg_lookup[regnum], addr); } trace_ahci_mem_write_host(s, size, AHCIHostReg_lookup[regnum], addr, val); } else if ((addr >= AHCI_PORT_REGS_START_ADDR) && (addr < (AHCI_PORT_REGS_START_ADDR + (s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) { ahci_port_write(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7, addr & AHCI_PORT_ADDR_OFFSET_MASK, val); } else { qemu_log_mask(LOG_UNIMP, "Attempted write to unimplemented register: " "AHCI global register at offset 0x%"PRIx64": 0x%"PRIx64, addr, val); trace_ahci_mem_write_unimpl(s, size, addr, val); } } static const MemoryRegionOps ahci_mem_ops = { .read = ahci_mem_read, .write = ahci_mem_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static uint64_t ahci_idp_read(void *opaque, hwaddr addr, unsigned size) { AHCIState *s = opaque; if (addr == s->idp_offset) { /* index register */ return s->idp_index; } else if (addr == s->idp_offset + 4) { /* data register - do memory read at location selected by index */ return ahci_mem_read(opaque, s->idp_index, size); } else { return 0; } } static void ahci_idp_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { AHCIState *s = opaque; if (addr == s->idp_offset) { /* index register - mask off reserved bits */ s->idp_index = (uint32_t)val & ((AHCI_MEM_BAR_SIZE - 1) & ~3); } else if (addr == s->idp_offset + 4) { /* data register - do memory write at location selected by index */ ahci_mem_write(opaque, s->idp_index, val, size); } } static const MemoryRegionOps ahci_idp_ops = { .read = ahci_idp_read, .write = ahci_idp_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void ahci_reg_init(AHCIState *s) { int i; s->control_regs.cap = (s->ports - 1) | (AHCI_NUM_COMMAND_SLOTS << 8) | (AHCI_SUPPORTED_SPEED_GEN1 << AHCI_SUPPORTED_SPEED) | HOST_CAP_NCQ | HOST_CAP_AHCI | HOST_CAP_64; s->control_regs.impl = (1 << s->ports) - 1; s->control_regs.version = AHCI_VERSION_1_0; for (i = 0; i < s->ports; i++) { s->dev[i].port_state = STATE_RUN; } } static void check_cmd(AHCIState *s, int port) { AHCIPortRegs *pr = &s->dev[port].port_regs; uint8_t slot; if ((pr->cmd & PORT_CMD_START) && pr->cmd_issue) { for (slot = 0; (slot < 32) && pr->cmd_issue; slot++) { if ((pr->cmd_issue & (1U << slot)) && !handle_cmd(s, port, slot)) { pr->cmd_issue &= ~(1U << slot); } } } } static void ahci_check_cmd_bh(void *opaque) { AHCIDevice *ad = opaque; qemu_bh_delete(ad->check_bh); ad->check_bh = NULL; check_cmd(ad->hba, ad->port_no); } static void ahci_init_d2h(AHCIDevice *ad) { IDEState *ide_state = &ad->port.ifs[0]; AHCIPortRegs *pr = &ad->port_regs; if (ad->init_d2h_sent) { return; } if (ahci_write_fis_d2h(ad)) { ad->init_d2h_sent = true; /* We're emulating receiving the first Reg H2D Fis from the device; * Update the SIG register, but otherwise proceed as normal. */ pr->sig = ((uint32_t)ide_state->hcyl << 24) | (ide_state->lcyl << 16) | (ide_state->sector << 8) | (ide_state->nsector & 0xFF); } } static void ahci_set_signature(AHCIDevice *ad, uint32_t sig) { IDEState *s = &ad->port.ifs[0]; s->hcyl = sig >> 24 & 0xFF; s->lcyl = sig >> 16 & 0xFF; s->sector = sig >> 8 & 0xFF; s->nsector = sig & 0xFF; trace_ahci_set_signature(ad->hba, ad->port_no, s->nsector, s->sector, s->lcyl, s->hcyl, sig); } static void ahci_reset_port(AHCIState *s, int port) { AHCIDevice *d = &s->dev[port]; AHCIPortRegs *pr = &d->port_regs; IDEState *ide_state = &d->port.ifs[0]; int i; trace_ahci_reset_port(s, port); ide_bus_reset(&d->port); ide_state->ncq_queues = AHCI_MAX_CMDS; pr->scr_stat = 0; pr->scr_err = 0; pr->scr_act = 0; pr->tfdata = 0x7F; pr->sig = 0xFFFFFFFF; d->busy_slot = -1; d->init_d2h_sent = false; ide_state = &s->dev[port].port.ifs[0]; if (!ide_state->blk) { return; } /* reset ncq queue */ for (i = 0; i < AHCI_MAX_CMDS; i++) { NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[i]; ncq_tfs->halt = false; if (!ncq_tfs->used) { continue; } if (ncq_tfs->aiocb) { blk_aio_cancel(ncq_tfs->aiocb); ncq_tfs->aiocb = NULL; } /* Maybe we just finished the request thanks to blk_aio_cancel() */ if (!ncq_tfs->used) { continue; } qemu_sglist_destroy(&ncq_tfs->sglist); ncq_tfs->used = 0; } s->dev[port].port_state = STATE_RUN; if (ide_state->drive_kind == IDE_CD) { ahci_set_signature(d, SATA_SIGNATURE_CDROM);\ ide_state->status = SEEK_STAT | WRERR_STAT | READY_STAT; } else { ahci_set_signature(d, SATA_SIGNATURE_DISK); ide_state->status = SEEK_STAT | WRERR_STAT; } ide_state->error = 1; ahci_init_d2h(d); } /* Buffer pretty output based on a raw FIS structure. */ static char *ahci_pretty_buffer_fis(uint8_t *fis, int cmd_len) { int i; GString *s = g_string_new("FIS:"); for (i = 0; i < cmd_len; i++) { if ((i & 0xf) == 0) { g_string_append_printf(s, "\n0x%02x: ", i); } g_string_append_printf(s, "%02x ", fis[i]); } g_string_append_c(s, '\n'); return g_string_free(s, FALSE); } static bool ahci_map_fis_address(AHCIDevice *ad) { AHCIPortRegs *pr = &ad->port_regs; map_page(ad->hba->as, &ad->res_fis, ((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256); if (ad->res_fis != NULL) { pr->cmd |= PORT_CMD_FIS_ON; return true; } pr->cmd &= ~PORT_CMD_FIS_ON; return false; } static void ahci_unmap_fis_address(AHCIDevice *ad) { if (ad->res_fis == NULL) { trace_ahci_unmap_fis_address_null(ad->hba, ad->port_no); return; } ad->port_regs.cmd &= ~PORT_CMD_FIS_ON; dma_memory_unmap(ad->hba->as, ad->res_fis, 256, DMA_DIRECTION_FROM_DEVICE, 256); ad->res_fis = NULL; } static bool ahci_map_clb_address(AHCIDevice *ad) { AHCIPortRegs *pr = &ad->port_regs; ad->cur_cmd = NULL; map_page(ad->hba->as, &ad->lst, ((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024); if (ad->lst != NULL) { pr->cmd |= PORT_CMD_LIST_ON; return true; } pr->cmd &= ~PORT_CMD_LIST_ON; return false; } static void ahci_unmap_clb_address(AHCIDevice *ad) { if (ad->lst == NULL) { trace_ahci_unmap_clb_address_null(ad->hba, ad->port_no); return; } ad->port_regs.cmd &= ~PORT_CMD_LIST_ON; dma_memory_unmap(ad->hba->as, ad->lst, 1024, DMA_DIRECTION_FROM_DEVICE, 1024); ad->lst = NULL; } static void ahci_write_fis_sdb(AHCIState *s, NCQTransferState *ncq_tfs) { AHCIDevice *ad = ncq_tfs->drive; AHCIPortRegs *pr = &ad->port_regs; IDEState *ide_state; SDBFIS *sdb_fis; if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { return; } sdb_fis = (SDBFIS *)&ad->res_fis[RES_FIS_SDBFIS]; ide_state = &ad->port.ifs[0]; sdb_fis->type = SATA_FIS_TYPE_SDB; /* Interrupt pending & Notification bit */ sdb_fis->flags = 0x40; /* Interrupt bit, always 1 for NCQ */ sdb_fis->status = ide_state->status & 0x77; sdb_fis->error = ide_state->error; /* update SAct field in SDB_FIS */ sdb_fis->payload = cpu_to_le32(ad->finished); /* Update shadow registers (except BSY 0x80 and DRQ 0x08) */ pr->tfdata = (ad->port.ifs[0].error << 8) | (ad->port.ifs[0].status & 0x77) | (pr->tfdata & 0x88); pr->scr_act &= ~ad->finished; ad->finished = 0; /* Trigger IRQ if interrupt bit is set (which currently, it always is) */ if (sdb_fis->flags & 0x40) { ahci_trigger_irq(s, ad, AHCI_PORT_IRQ_BIT_SDBS); } } static void ahci_write_fis_pio(AHCIDevice *ad, uint16_t len, bool pio_fis_i) { AHCIPortRegs *pr = &ad->port_regs; uint8_t *pio_fis; IDEState *s = &ad->port.ifs[0]; if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { return; } pio_fis = &ad->res_fis[RES_FIS_PSFIS]; pio_fis[0] = SATA_FIS_TYPE_PIO_SETUP; pio_fis[1] = (pio_fis_i ? (1 << 6) : 0); pio_fis[2] = s->status; pio_fis[3] = s->error; pio_fis[4] = s->sector; pio_fis[5] = s->lcyl; pio_fis[6] = s->hcyl; pio_fis[7] = s->select; pio_fis[8] = s->hob_sector; pio_fis[9] = s->hob_lcyl; pio_fis[10] = s->hob_hcyl; pio_fis[11] = 0; pio_fis[12] = s->nsector & 0xFF; pio_fis[13] = (s->nsector >> 8) & 0xFF; pio_fis[14] = 0; pio_fis[15] = s->status; pio_fis[16] = len & 255; pio_fis[17] = len >> 8; pio_fis[18] = 0; pio_fis[19] = 0; /* Update shadow registers: */ pr->tfdata = (ad->port.ifs[0].error << 8) | ad->port.ifs[0].status; if (pio_fis[2] & ERR_STAT) { ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES); } } static bool ahci_write_fis_d2h(AHCIDevice *ad) { AHCIPortRegs *pr = &ad->port_regs; uint8_t *d2h_fis; int i; IDEState *s = &ad->port.ifs[0]; if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) { return false; } d2h_fis = &ad->res_fis[RES_FIS_RFIS]; d2h_fis[0] = SATA_FIS_TYPE_REGISTER_D2H; d2h_fis[1] = (1 << 6); /* interrupt bit */ d2h_fis[2] = s->status; d2h_fis[3] = s->error; d2h_fis[4] = s->sector; d2h_fis[5] = s->lcyl; d2h_fis[6] = s->hcyl; d2h_fis[7] = s->select; d2h_fis[8] = s->hob_sector; d2h_fis[9] = s->hob_lcyl; d2h_fis[10] = s->hob_hcyl; d2h_fis[11] = 0; d2h_fis[12] = s->nsector & 0xFF; d2h_fis[13] = (s->nsector >> 8) & 0xFF; for (i = 14; i < 20; i++) { d2h_fis[i] = 0; } /* Update shadow registers: */ pr->tfdata = (ad->port.ifs[0].error << 8) | ad->port.ifs[0].status; if (d2h_fis[2] & ERR_STAT) { ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES); } ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_DHRS); return true; } static int prdt_tbl_entry_size(const AHCI_SG *tbl) { /* flags_size is zero-based */ return (le32_to_cpu(tbl->flags_size) & AHCI_PRDT_SIZE_MASK) + 1; } /** * Fetch entries in a guest-provided PRDT and convert it into a QEMU SGlist. * @ad: The AHCIDevice for whom we are building the SGList. * @sglist: The SGList target to add PRD entries to. * @cmd: The AHCI Command Header that describes where the PRDT is. * @limit: The remaining size of the S/ATA transaction, in bytes. * @offset: The number of bytes already transferred, in bytes. * * The AHCI PRDT can describe up to 256GiB. S/ATA only support transactions of * up to 32MiB as of ATA8-ACS3 rev 1b, assuming a 512 byte sector size. We stop * building the sglist from the PRDT as soon as we hit @limit bytes, * which is <= INT32_MAX/2GiB. */ static int ahci_populate_sglist(AHCIDevice *ad, QEMUSGList *sglist, AHCICmdHdr *cmd, int64_t limit, uint64_t offset) { uint16_t opts = le16_to_cpu(cmd->opts); uint16_t prdtl = le16_to_cpu(cmd->prdtl); uint64_t cfis_addr = le64_to_cpu(cmd->tbl_addr); uint64_t prdt_addr = cfis_addr + 0x80; dma_addr_t prdt_len = (prdtl * sizeof(AHCI_SG)); dma_addr_t real_prdt_len = prdt_len; uint8_t *prdt; int i; int r = 0; uint64_t sum = 0; int off_idx = -1; int64_t off_pos = -1; int tbl_entry_size; IDEBus *bus = &ad->port; BusState *qbus = BUS(bus); trace_ahci_populate_sglist(ad->hba, ad->port_no); if (!prdtl) { trace_ahci_populate_sglist_no_prdtl(ad->hba, ad->port_no, opts); return -1; } /* map PRDT */ if (!(prdt = dma_memory_map(ad->hba->as, prdt_addr, &prdt_len, DMA_DIRECTION_TO_DEVICE))){ trace_ahci_populate_sglist_no_map(ad->hba, ad->port_no); return -1; } if (prdt_len < real_prdt_len) { trace_ahci_populate_sglist_short_map(ad->hba, ad->port_no); r = -1; goto out; } /* Get entries in the PRDT, init a qemu sglist accordingly */ if (prdtl > 0) { AHCI_SG *tbl = (AHCI_SG *)prdt; sum = 0; for (i = 0; i < prdtl; i++) { tbl_entry_size = prdt_tbl_entry_size(&tbl[i]); if (offset < (sum + tbl_entry_size)) { off_idx = i; off_pos = offset - sum; break; } sum += tbl_entry_size; } if ((off_idx == -1) || (off_pos < 0) || (off_pos > tbl_entry_size)) { trace_ahci_populate_sglist_bad_offset(ad->hba, ad->port_no, off_idx, off_pos); r = -1; goto out; } qemu_sglist_init(sglist, qbus->parent, (prdtl - off_idx), ad->hba->as); qemu_sglist_add(sglist, le64_to_cpu(tbl[off_idx].addr) + off_pos, MIN(prdt_tbl_entry_size(&tbl[off_idx]) - off_pos, limit)); for (i = off_idx + 1; i < prdtl && sglist->size < limit; i++) { qemu_sglist_add(sglist, le64_to_cpu(tbl[i].addr), MIN(prdt_tbl_entry_size(&tbl[i]), limit - sglist->size)); } } out: dma_memory_unmap(ad->hba->as, prdt, prdt_len, DMA_DIRECTION_TO_DEVICE, prdt_len); return r; } static void ncq_err(NCQTransferState *ncq_tfs) { IDEState *ide_state = &ncq_tfs->drive->port.ifs[0]; ide_state->error = ABRT_ERR; ide_state->status = READY_STAT | ERR_STAT; ncq_tfs->drive->port_regs.scr_err |= (1 << ncq_tfs->tag); qemu_sglist_destroy(&ncq_tfs->sglist); ncq_tfs->used = 0; } static void ncq_finish(NCQTransferState *ncq_tfs) { /* If we didn't error out, set our finished bit. Errored commands * do not get a bit set for the SDB FIS ACT register, nor do they * clear the outstanding bit in scr_act (PxSACT). */ if (!(ncq_tfs->drive->port_regs.scr_err & (1 << ncq_tfs->tag))) { ncq_tfs->drive->finished |= (1 << ncq_tfs->tag); } ahci_write_fis_sdb(ncq_tfs->drive->hba, ncq_tfs); trace_ncq_finish(ncq_tfs->drive->hba, ncq_tfs->drive->port_no, ncq_tfs->tag); block_acct_done(blk_get_stats(ncq_tfs->drive->port.ifs[0].blk), &ncq_tfs->acct); qemu_sglist_destroy(&ncq_tfs->sglist); ncq_tfs->used = 0; } static void ncq_cb(void *opaque, int ret) { NCQTransferState *ncq_tfs = (NCQTransferState *)opaque; IDEState *ide_state = &ncq_tfs->drive->port.ifs[0]; ncq_tfs->aiocb = NULL; if (ret == -ECANCELED) { return; } if (ret < 0) { bool is_read = ncq_tfs->cmd == READ_FPDMA_QUEUED; BlockErrorAction action = blk_get_error_action(ide_state->blk, is_read, -ret); if (action == BLOCK_ERROR_ACTION_STOP) { ncq_tfs->halt = true; ide_state->bus->error_status = IDE_RETRY_HBA; } else if (action == BLOCK_ERROR_ACTION_REPORT) { ncq_err(ncq_tfs); } blk_error_action(ide_state->blk, action, is_read, -ret); } else { ide_state->status = READY_STAT | SEEK_STAT; } if (!ncq_tfs->halt) { ncq_finish(ncq_tfs); } } static int is_ncq(uint8_t ata_cmd) { /* Based on SATA 3.2 section 13.6.3.2 */ switch (ata_cmd) { case READ_FPDMA_QUEUED: case WRITE_FPDMA_QUEUED: case NCQ_NON_DATA: case RECEIVE_FPDMA_QUEUED: case SEND_FPDMA_QUEUED: return 1; default: return 0; } } static void execute_ncq_command(NCQTransferState *ncq_tfs) { AHCIDevice *ad = ncq_tfs->drive; IDEState *ide_state = &ad->port.ifs[0]; int port = ad->port_no; g_assert(is_ncq(ncq_tfs->cmd)); ncq_tfs->halt = false; switch (ncq_tfs->cmd) { case READ_FPDMA_QUEUED: trace_execute_ncq_command_read(ad->hba, port, ncq_tfs->tag, ncq_tfs->sector_count, ncq_tfs->lba); dma_acct_start(ide_state->blk, &ncq_tfs->acct, &ncq_tfs->sglist, BLOCK_ACCT_READ); ncq_tfs->aiocb = dma_blk_read(ide_state->blk, &ncq_tfs->sglist, ncq_tfs->lba << BDRV_SECTOR_BITS, BDRV_SECTOR_SIZE, ncq_cb, ncq_tfs); break; case WRITE_FPDMA_QUEUED: trace_execute_ncq_command_read(ad->hba, port, ncq_tfs->tag, ncq_tfs->sector_count, ncq_tfs->lba); dma_acct_start(ide_state->blk, &ncq_tfs->acct, &ncq_tfs->sglist, BLOCK_ACCT_WRITE); ncq_tfs->aiocb = dma_blk_write(ide_state->blk, &ncq_tfs->sglist, ncq_tfs->lba << BDRV_SECTOR_BITS, BDRV_SECTOR_SIZE, ncq_cb, ncq_tfs); break; default: trace_execute_ncq_command_unsup(ad->hba, port, ncq_tfs->tag, ncq_tfs->cmd); ncq_err(ncq_tfs); } } static void process_ncq_command(AHCIState *s, int port, uint8_t *cmd_fis, uint8_t slot) { AHCIDevice *ad = &s->dev[port]; NCQFrame *ncq_fis = (NCQFrame*)cmd_fis; uint8_t tag = ncq_fis->tag >> 3; NCQTransferState *ncq_tfs = &ad->ncq_tfs[tag]; size_t size; g_assert(is_ncq(ncq_fis->command)); if (ncq_tfs->used) { /* error - already in use */ fprintf(stderr, "%s: tag %d already used\n", __func__, tag); return; } ncq_tfs->used = 1; ncq_tfs->drive = ad; ncq_tfs->slot = slot; ncq_tfs->cmdh = &((AHCICmdHdr *)ad->lst)[slot]; ncq_tfs->cmd = ncq_fis->command; ncq_tfs->lba = ((uint64_t)ncq_fis->lba5 << 40) | ((uint64_t)ncq_fis->lba4 << 32) | ((uint64_t)ncq_fis->lba3 << 24) | ((uint64_t)ncq_fis->lba2 << 16) | ((uint64_t)ncq_fis->lba1 << 8) | (uint64_t)ncq_fis->lba0; ncq_tfs->tag = tag; /* Sanity-check the NCQ packet */ if (tag != slot) { trace_process_ncq_command_mismatch(s, port, tag, slot); } if (ncq_fis->aux0 || ncq_fis->aux1 || ncq_fis->aux2 || ncq_fis->aux3) { trace_process_ncq_command_aux(s, port, tag); } if (ncq_fis->prio || ncq_fis->icc) { trace_process_ncq_command_prioicc(s, port, tag); } if (ncq_fis->fua & NCQ_FIS_FUA_MASK) { trace_process_ncq_command_fua(s, port, tag); } if (ncq_fis->tag & NCQ_FIS_RARC_MASK) { trace_process_ncq_command_rarc(s, port, tag); } ncq_tfs->sector_count = ((ncq_fis->sector_count_high << 8) | ncq_fis->sector_count_low); if (!ncq_tfs->sector_count) { ncq_tfs->sector_count = 0x10000; } size = ncq_tfs->sector_count * 512; ahci_populate_sglist(ad, &ncq_tfs->sglist, ncq_tfs->cmdh, size, 0); if (ncq_tfs->sglist.size < size) { error_report("ahci: PRDT length for NCQ command (0x%zx) " "is smaller than the requested size (0x%zx)", ncq_tfs->sglist.size, size); ncq_err(ncq_tfs); ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_OFS); return; } else if (ncq_tfs->sglist.size != size) { trace_process_ncq_command_large(s, port, tag, ncq_tfs->sglist.size, size); } trace_process_ncq_command(s, port, tag, ncq_fis->command, ncq_tfs->lba, ncq_tfs->lba + ncq_tfs->sector_count - 1); execute_ncq_command(ncq_tfs); } static AHCICmdHdr *get_cmd_header(AHCIState *s, uint8_t port, uint8_t slot) { if (port >= s->ports || slot >= AHCI_MAX_CMDS) { return NULL; } return s->dev[port].lst ? &((AHCICmdHdr *)s->dev[port].lst)[slot] : NULL; } static void handle_reg_h2d_fis(AHCIState *s, int port, uint8_t slot, uint8_t *cmd_fis) { IDEState *ide_state = &s->dev[port].port.ifs[0]; AHCICmdHdr *cmd = get_cmd_header(s, port, slot); uint16_t opts = le16_to_cpu(cmd->opts); if (cmd_fis[1] & 0x0F) { trace_handle_reg_h2d_fis_pmp(s, port, cmd_fis[1], cmd_fis[2], cmd_fis[3]); return; } if (cmd_fis[1] & 0x70) { trace_handle_reg_h2d_fis_res(s, port, cmd_fis[1], cmd_fis[2], cmd_fis[3]); return; } if (!(cmd_fis[1] & SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER)) { switch (s->dev[port].port_state) { case STATE_RUN: if (cmd_fis[15] & ATA_SRST) { s->dev[port].port_state = STATE_RESET; } break; case STATE_RESET: if (!(cmd_fis[15] & ATA_SRST)) { ahci_reset_port(s, port); } break; } return; } /* Check for NCQ command */ if (is_ncq(cmd_fis[2])) { process_ncq_command(s, port, cmd_fis, slot); return; } /* Decompose the FIS: * AHCI does not interpret FIS packets, it only forwards them. * SATA 1.0 describes how to decode LBA28 and CHS FIS packets. * Later specifications, e.g, SATA 3.2, describe LBA48 FIS packets. * * ATA4 describes sector number for LBA28/CHS commands. * ATA6 describes sector number for LBA48 commands. * ATA8 deprecates CHS fully, describing only LBA28/48. * * We dutifully convert the FIS into IDE registers, and allow the * core layer to interpret them as needed. */ ide_state->feature = cmd_fis[3]; ide_state->sector = cmd_fis[4]; /* LBA 7:0 */ ide_state->lcyl = cmd_fis[5]; /* LBA 15:8 */ ide_state->hcyl = cmd_fis[6]; /* LBA 23:16 */ ide_state->select = cmd_fis[7]; /* LBA 27:24 (LBA28) */ ide_state->hob_sector = cmd_fis[8]; /* LBA 31:24 */ ide_state->hob_lcyl = cmd_fis[9]; /* LBA 39:32 */ ide_state->hob_hcyl = cmd_fis[10]; /* LBA 47:40 */ ide_state->hob_feature = cmd_fis[11]; ide_state->nsector = (int64_t)((cmd_fis[13] << 8) | cmd_fis[12]); /* 14, 16, 17, 18, 19: Reserved (SATA 1.0) */ /* 15: Only valid when UPDATE_COMMAND not set. */ /* Copy the ACMD field (ATAPI packet, if any) from the AHCI command * table to ide_state->io_buffer */ if (opts & AHCI_CMD_ATAPI) { memcpy(ide_state->io_buffer, &cmd_fis[AHCI_COMMAND_TABLE_ACMD], 0x10); if (trace_event_get_state_backends(TRACE_HANDLE_REG_H2D_FIS_DUMP)) { char *pretty_fis = ahci_pretty_buffer_fis(ide_state->io_buffer, 0x10); trace_handle_reg_h2d_fis_dump(s, port, pretty_fis); g_free(pretty_fis); } } ide_state->error = 0; s->dev[port].done_first_drq = false; /* Reset transferred byte counter */ cmd->status = 0; /* We're ready to process the command in FIS byte 2. */ ide_exec_cmd(&s->dev[port].port, cmd_fis[2]); } static int handle_cmd(AHCIState *s, int port, uint8_t slot) { IDEState *ide_state; uint64_t tbl_addr; AHCICmdHdr *cmd; uint8_t *cmd_fis; dma_addr_t cmd_len; if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) { /* Engine currently busy, try again later */ trace_handle_cmd_busy(s, port); return -1; } if (!s->dev[port].lst) { trace_handle_cmd_nolist(s, port); return -1; } cmd = get_cmd_header(s, port, slot); /* remember current slot handle for later */ s->dev[port].cur_cmd = cmd; /* The device we are working for */ ide_state = &s->dev[port].port.ifs[0]; if (!ide_state->blk) { trace_handle_cmd_badport(s, port); return -1; } tbl_addr = le64_to_cpu(cmd->tbl_addr); cmd_len = 0x80; cmd_fis = dma_memory_map(s->as, tbl_addr, &cmd_len, DMA_DIRECTION_FROM_DEVICE); if (!cmd_fis) { trace_handle_cmd_badfis(s, port); return -1; } else if (cmd_len != 0x80) { ahci_trigger_irq(s, &s->dev[port], AHCI_PORT_IRQ_BIT_HBFS); trace_handle_cmd_badmap(s, port, cmd_len); goto out; } if (trace_event_get_state_backends(TRACE_HANDLE_CMD_FIS_DUMP)) { char *pretty_fis = ahci_pretty_buffer_fis(cmd_fis, 0x80); trace_handle_cmd_fis_dump(s, port, pretty_fis); g_free(pretty_fis); } switch (cmd_fis[0]) { case SATA_FIS_TYPE_REGISTER_H2D: handle_reg_h2d_fis(s, port, slot, cmd_fis); break; default: trace_handle_cmd_unhandled_fis(s, port, cmd_fis[0], cmd_fis[1], cmd_fis[2]); break; } out: dma_memory_unmap(s->as, cmd_fis, cmd_len, DMA_DIRECTION_FROM_DEVICE, cmd_len); if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) { /* async command, complete later */ s->dev[port].busy_slot = slot; return -1; } /* done handling the command */ return 0; } /* Transfer PIO data between RAM and device */ static void ahci_pio_transfer(IDEDMA *dma) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); IDEState *s = &ad->port.ifs[0]; uint32_t size = (uint32_t)(s->data_end - s->data_ptr); /* write == ram -> device */ uint16_t opts = le16_to_cpu(ad->cur_cmd->opts); int is_write = opts & AHCI_CMD_WRITE; int is_atapi = opts & AHCI_CMD_ATAPI; int has_sglist = 0; bool pio_fis_i; /* The PIO Setup FIS is received prior to transfer, but the interrupt * is only triggered after data is received. * * The device only sets the 'I' bit in the PIO Setup FIS for device->host * requests (see "DPIOI1" in the SATA spec), or for host->device DRQs after * the first (see "DPIOO1"). The latter is consistent with the spec's * description of the PACKET protocol, where the command part of ATAPI requests * ("DPKT0") has the 'I' bit clear, while the data part of PIO ATAPI requests * ("DPKT4a" and "DPKT7") has the 'I' bit set for both directions for all DRQs. */ pio_fis_i = ad->done_first_drq || (!is_atapi && !is_write); ahci_write_fis_pio(ad, size, pio_fis_i); if (is_atapi && !ad->done_first_drq) { /* already prepopulated iobuffer */ goto out; } if (ahci_dma_prepare_buf(dma, size)) { has_sglist = 1; } trace_ahci_pio_transfer(ad->hba, ad->port_no, is_write ? "writ" : "read", size, is_atapi ? "atapi" : "ata", has_sglist ? "" : "o"); if (has_sglist && size) { if (is_write) { dma_buf_write(s->data_ptr, size, &s->sg); } else { dma_buf_read(s->data_ptr, size, &s->sg); } } /* Update number of transferred bytes, destroy sglist */ dma_buf_commit(s, size); out: /* declare that we processed everything */ s->data_ptr = s->data_end; ad->done_first_drq = true; if (pio_fis_i) { ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_PSS); } } static void ahci_start_dma(IDEDMA *dma, IDEState *s, BlockCompletionFunc *dma_cb) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); trace_ahci_start_dma(ad->hba, ad->port_no); s->io_buffer_offset = 0; dma_cb(s, 0); } static void ahci_restart_dma(IDEDMA *dma) { /* Nothing to do, ahci_start_dma already resets s->io_buffer_offset. */ } /** * IDE/PIO restarts are handled by the core layer, but NCQ commands * need an extra kick from the AHCI HBA. */ static void ahci_restart(IDEDMA *dma) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); int i; for (i = 0; i < AHCI_MAX_CMDS; i++) { NCQTransferState *ncq_tfs = &ad->ncq_tfs[i]; if (ncq_tfs->halt) { execute_ncq_command(ncq_tfs); } } } /** * Called in DMA and PIO R/W chains to read the PRDT. * Not shared with NCQ pathways. */ static int32_t ahci_dma_prepare_buf(IDEDMA *dma, int32_t limit) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); IDEState *s = &ad->port.ifs[0]; if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd, limit, s->io_buffer_offset) == -1) { trace_ahci_dma_prepare_buf_fail(ad->hba, ad->port_no); return -1; } s->io_buffer_size = s->sg.size; trace_ahci_dma_prepare_buf(ad->hba, ad->port_no, limit, s->io_buffer_size); return s->io_buffer_size; } /** * Updates the command header with a bytes-read value. * Called via dma_buf_commit, for both DMA and PIO paths. * sglist destruction is handled within dma_buf_commit. */ static void ahci_commit_buf(IDEDMA *dma, uint32_t tx_bytes) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); tx_bytes += le32_to_cpu(ad->cur_cmd->status); ad->cur_cmd->status = cpu_to_le32(tx_bytes); } static int ahci_dma_rw_buf(IDEDMA *dma, int is_write) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); IDEState *s = &ad->port.ifs[0]; uint8_t *p = s->io_buffer + s->io_buffer_index; int l = s->io_buffer_size - s->io_buffer_index; if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd, l, s->io_buffer_offset)) { return 0; } if (is_write) { dma_buf_read(p, l, &s->sg); } else { dma_buf_write(p, l, &s->sg); } /* free sglist, update byte count */ dma_buf_commit(s, l); s->io_buffer_index += l; trace_ahci_dma_rw_buf(ad->hba, ad->port_no, l); return 1; } static void ahci_cmd_done(IDEDMA *dma) { AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma); trace_ahci_cmd_done(ad->hba, ad->port_no); /* no longer busy */ if (ad->busy_slot != -1) { ad->port_regs.cmd_issue &= ~(1 << ad->busy_slot); ad->busy_slot = -1; } /* update d2h status */ ahci_write_fis_d2h(ad); if (ad->port_regs.cmd_issue && !ad->check_bh) { ad->check_bh = qemu_bh_new(ahci_check_cmd_bh, ad); qemu_bh_schedule(ad->check_bh); } } static void ahci_irq_set(void *opaque, int n, int level) { } static const IDEDMAOps ahci_dma_ops = { .start_dma = ahci_start_dma, .restart = ahci_restart, .restart_dma = ahci_restart_dma, .pio_transfer = ahci_pio_transfer, .prepare_buf = ahci_dma_prepare_buf, .commit_buf = ahci_commit_buf, .rw_buf = ahci_dma_rw_buf, .cmd_done = ahci_cmd_done, }; void ahci_init(AHCIState *s, DeviceState *qdev) { s->container = qdev; /* XXX BAR size should be 1k, but that breaks, so bump it to 4k for now */ memory_region_init_io(&s->mem, OBJECT(qdev), &ahci_mem_ops, s, "ahci", AHCI_MEM_BAR_SIZE); memory_region_init_io(&s->idp, OBJECT(qdev), &ahci_idp_ops, s, "ahci-idp", 32); } void ahci_realize(AHCIState *s, DeviceState *qdev, AddressSpace *as, int ports) { qemu_irq *irqs; int i; s->as = as; s->ports = ports; s->dev = g_new0(AHCIDevice, ports); ahci_reg_init(s); irqs = qemu_allocate_irqs(ahci_irq_set, s, s->ports); for (i = 0; i < s->ports; i++) { AHCIDevice *ad = &s->dev[i]; ide_bus_new(&ad->port, sizeof(ad->port), qdev, i, 1); ide_init2(&ad->port, irqs[i]); ad->hba = s; ad->port_no = i; ad->port.dma = &ad->dma; ad->port.dma->ops = &ahci_dma_ops; ide_register_restart_cb(&ad->port); } g_free(irqs); } void ahci_uninit(AHCIState *s) { int i, j; for (i = 0; i < s->ports; i++) { AHCIDevice *ad = &s->dev[i]; for (j = 0; j < 2; j++) { IDEState *s = &ad->port.ifs[j]; ide_exit(s); } object_unparent(OBJECT(&ad->port)); } g_free(s->dev); } void ahci_reset(AHCIState *s) { AHCIPortRegs *pr; int i; trace_ahci_reset(s); s->control_regs.irqstatus = 0; /* AHCI Enable (AE) * The implementation of this bit is dependent upon the value of the * CAP.SAM bit. If CAP.SAM is '0', then GHC.AE shall be read-write and * shall have a reset value of '0'. If CAP.SAM is '1', then AE shall be * read-only and shall have a reset value of '1'. * * We set HOST_CAP_AHCI so we must enable AHCI at reset. */ s->control_regs.ghc = HOST_CTL_AHCI_EN; for (i = 0; i < s->ports; i++) { pr = &s->dev[i].port_regs; pr->irq_stat = 0; pr->irq_mask = 0; pr->scr_ctl = 0; pr->cmd = PORT_CMD_SPIN_UP | PORT_CMD_POWER_ON; ahci_reset_port(s, i); } } static const VMStateDescription vmstate_ncq_tfs = { .name = "ncq state", .version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(sector_count, NCQTransferState), VMSTATE_UINT64(lba, NCQTransferState), VMSTATE_UINT8(tag, NCQTransferState), VMSTATE_UINT8(cmd, NCQTransferState), VMSTATE_UINT8(slot, NCQTransferState), VMSTATE_BOOL(used, NCQTransferState), VMSTATE_BOOL(halt, NCQTransferState), VMSTATE_END_OF_LIST() }, }; static const VMStateDescription vmstate_ahci_device = { .name = "ahci port", .version_id = 1, .fields = (VMStateField[]) { VMSTATE_IDE_BUS(port, AHCIDevice), VMSTATE_IDE_DRIVE(port.ifs[0], AHCIDevice), VMSTATE_UINT32(port_state, AHCIDevice), VMSTATE_UINT32(finished, AHCIDevice), VMSTATE_UINT32(port_regs.lst_addr, AHCIDevice), VMSTATE_UINT32(port_regs.lst_addr_hi, AHCIDevice), VMSTATE_UINT32(port_regs.fis_addr, AHCIDevice), VMSTATE_UINT32(port_regs.fis_addr_hi, AHCIDevice), VMSTATE_UINT32(port_regs.irq_stat, AHCIDevice), VMSTATE_UINT32(port_regs.irq_mask, AHCIDevice), VMSTATE_UINT32(port_regs.cmd, AHCIDevice), VMSTATE_UINT32(port_regs.tfdata, AHCIDevice), VMSTATE_UINT32(port_regs.sig, AHCIDevice), VMSTATE_UINT32(port_regs.scr_stat, AHCIDevice), VMSTATE_UINT32(port_regs.scr_ctl, AHCIDevice), VMSTATE_UINT32(port_regs.scr_err, AHCIDevice), VMSTATE_UINT32(port_regs.scr_act, AHCIDevice), VMSTATE_UINT32(port_regs.cmd_issue, AHCIDevice), VMSTATE_BOOL(done_first_drq, AHCIDevice), VMSTATE_INT32(busy_slot, AHCIDevice), VMSTATE_BOOL(init_d2h_sent, AHCIDevice), VMSTATE_STRUCT_ARRAY(ncq_tfs, AHCIDevice, AHCI_MAX_CMDS, 1, vmstate_ncq_tfs, NCQTransferState), VMSTATE_END_OF_LIST() }, }; static int ahci_state_post_load(void *opaque, int version_id) { int i, j; struct AHCIDevice *ad; NCQTransferState *ncq_tfs; AHCIPortRegs *pr; AHCIState *s = opaque; for (i = 0; i < s->ports; i++) { ad = &s->dev[i]; pr = &ad->port_regs; if (!(pr->cmd & PORT_CMD_START) && (pr->cmd & PORT_CMD_LIST_ON)) { error_report("AHCI: DMA engine should be off, but status bit " "indicates it is still running."); return -1; } if (!(pr->cmd & PORT_CMD_FIS_RX) && (pr->cmd & PORT_CMD_FIS_ON)) { error_report("AHCI: FIS RX engine should be off, but status bit " "indicates it is still running."); return -1; } /* After a migrate, the DMA/FIS engines are "off" and * need to be conditionally restarted */ pr->cmd &= ~(PORT_CMD_LIST_ON | PORT_CMD_FIS_ON); if (ahci_cond_start_engines(ad) != 0) { return -1; } for (j = 0; j < AHCI_MAX_CMDS; j++) { ncq_tfs = &ad->ncq_tfs[j]; ncq_tfs->drive = ad; if (ncq_tfs->used != ncq_tfs->halt) { return -1; } if (!ncq_tfs->halt) { continue; } if (!is_ncq(ncq_tfs->cmd)) { return -1; } if (ncq_tfs->slot != ncq_tfs->tag) { return -1; } /* If ncq_tfs->halt is justly set, the engine should be engaged, * and the command list buffer should be mapped. */ ncq_tfs->cmdh = get_cmd_header(s, i, ncq_tfs->slot); if (!ncq_tfs->cmdh) { return -1; } ahci_populate_sglist(ncq_tfs->drive, &ncq_tfs->sglist, ncq_tfs->cmdh, ncq_tfs->sector_count * 512, 0); if (ncq_tfs->sector_count != ncq_tfs->sglist.size >> 9) { return -1; } } /* * If an error is present, ad->busy_slot will be valid and not -1. * In this case, an operation is waiting to resume and will re-check * for additional AHCI commands to execute upon completion. * * In the case where no error was present, busy_slot will be -1, * and we should check to see if there are additional commands waiting. */ if (ad->busy_slot == -1) { check_cmd(s, i); } else { /* We are in the middle of a command, and may need to access * the command header in guest memory again. */ if (ad->busy_slot < 0 || ad->busy_slot >= AHCI_MAX_CMDS) { return -1; } ad->cur_cmd = get_cmd_header(s, i, ad->busy_slot); } } return 0; } const VMStateDescription vmstate_ahci = { .name = "ahci", .version_id = 1, .post_load = ahci_state_post_load, .fields = (VMStateField[]) { VMSTATE_STRUCT_VARRAY_POINTER_INT32(dev, AHCIState, ports, vmstate_ahci_device, AHCIDevice), VMSTATE_UINT32(control_regs.cap, AHCIState), VMSTATE_UINT32(control_regs.ghc, AHCIState), VMSTATE_UINT32(control_regs.irqstatus, AHCIState), VMSTATE_UINT32(control_regs.impl, AHCIState), VMSTATE_UINT32(control_regs.version, AHCIState), VMSTATE_UINT32(idp_index, AHCIState), VMSTATE_INT32_EQUAL(ports, AHCIState, NULL), VMSTATE_END_OF_LIST() }, }; static const VMStateDescription vmstate_sysbus_ahci = { .name = "sysbus-ahci", .fields = (VMStateField[]) { VMSTATE_AHCI(ahci, SysbusAHCIState), VMSTATE_END_OF_LIST() }, }; static void sysbus_ahci_reset(DeviceState *dev) { SysbusAHCIState *s = SYSBUS_AHCI(dev); ahci_reset(&s->ahci); } static void sysbus_ahci_init(Object *obj) { SysbusAHCIState *s = SYSBUS_AHCI(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(obj); ahci_init(&s->ahci, DEVICE(obj)); sysbus_init_mmio(sbd, &s->ahci.mem); sysbus_init_irq(sbd, &s->ahci.irq); } static void sysbus_ahci_realize(DeviceState *dev, Error **errp) { SysbusAHCIState *s = SYSBUS_AHCI(dev); ahci_realize(&s->ahci, dev, &address_space_memory, s->num_ports); } static Property sysbus_ahci_properties[] = { DEFINE_PROP_UINT32("num-ports", SysbusAHCIState, num_ports, 1), DEFINE_PROP_END_OF_LIST(), }; static void sysbus_ahci_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = sysbus_ahci_realize; dc->vmsd = &vmstate_sysbus_ahci; dc->props = sysbus_ahci_properties; dc->reset = sysbus_ahci_reset; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); } static const TypeInfo sysbus_ahci_info = { .name = TYPE_SYSBUS_AHCI, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(SysbusAHCIState), .instance_init = sysbus_ahci_init, .class_init = sysbus_ahci_class_init, }; static void sysbus_ahci_register_types(void) { type_register_static(&sysbus_ahci_info); } type_init(sysbus_ahci_register_types) int32_t ahci_get_num_ports(PCIDevice *dev) { AHCIPCIState *d = ICH_AHCI(dev); AHCIState *ahci = &d->ahci; return ahci->ports; } void ahci_ide_create_devs(PCIDevice *dev, DriveInfo **hd) { AHCIPCIState *d = ICH_AHCI(dev); AHCIState *ahci = &d->ahci; int i; for (i = 0; i < ahci->ports; i++) { if (hd[i] == NULL) { continue; } ide_create_drive(&ahci->dev[i].port, 0, hd[i]); } }