/* * QEMU fw_cfg helpers (X86 specific) * * Copyright (c) 2019 Red Hat, Inc. * * Author: * Philippe Mathieu-Daudé <philmd@redhat.com> * * SPDX-License-Identifier: GPL-2.0-or-later * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "sysemu/numa.h" #include "hw/acpi/acpi.h" #include "hw/firmware/smbios.h" #include "hw/i386/fw_cfg.h" #include "hw/timer/hpet.h" #include "hw/nvram/fw_cfg.h" #include "e820_memory_layout.h" #include "kvm_i386.h" #include "config-devices.h" struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; const char *fw_cfg_arch_key_name(uint16_t key) { static const struct { uint16_t key; const char *name; } fw_cfg_arch_wellknown_keys[] = { {FW_CFG_ACPI_TABLES, "acpi_tables"}, {FW_CFG_SMBIOS_ENTRIES, "smbios_entries"}, {FW_CFG_IRQ0_OVERRIDE, "irq0_override"}, {FW_CFG_E820_TABLE, "e820_table"}, {FW_CFG_HPET, "hpet"}, }; for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) { if (fw_cfg_arch_wellknown_keys[i].key == key) { return fw_cfg_arch_wellknown_keys[i].name; } } return NULL; } void fw_cfg_build_smbios(MachineState *ms, FWCfgState *fw_cfg) { #ifdef CONFIG_SMBIOS uint8_t *smbios_tables, *smbios_anchor; size_t smbios_tables_len, smbios_anchor_len; struct smbios_phys_mem_area *mem_array; unsigned i, array_count; X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); /* tell smbios about cpuid version and features */ smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len); if (smbios_tables) { fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, smbios_tables, smbios_tables_len); } /* build the array of physical mem area from e820 table */ mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { uint64_t addr, len; if (e820_get_entry(i, E820_RAM, &addr, &len)) { mem_array[array_count].address = addr; mem_array[array_count].length = len; array_count++; } } smbios_get_tables(ms, mem_array, array_count, &smbios_tables, &smbios_tables_len, &smbios_anchor, &smbios_anchor_len); g_free(mem_array); if (smbios_anchor) { fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", smbios_tables, smbios_tables_len); fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", smbios_anchor, smbios_anchor_len); } #endif } FWCfgState *fw_cfg_arch_create(MachineState *ms, uint16_t boot_cpus, uint16_t apic_id_limit) { FWCfgState *fw_cfg; uint64_t *numa_fw_cfg; int i; MachineClass *mc = MACHINE_GET_CLASS(ms); const CPUArchIdList *cpus = mc->possible_cpu_arch_ids(ms); int nb_numa_nodes = ms->numa_state->num_nodes; fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, &address_space_memory); fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, boot_cpus); /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: * * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface * for CPU hotplug also uses APIC ID and not "CPU index". * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", * but the "limit to the APIC ID values SeaBIOS may see". * * So for compatibility reasons with old BIOSes we are stuck with * "etc/max-cpus" actually being apic_id_limit */ fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, apic_id_limit); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); #ifdef CONFIG_ACPI fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, acpi_tables, acpi_tables_len); #endif fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, &e820_reserve, sizeof(e820_reserve)); fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, sizeof(struct e820_entry) * e820_get_num_entries()); fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); /* allocate memory for the NUMA channel: one (64bit) word for the number * of nodes, one word for each VCPU->node and one word for each node to * hold the amount of memory. */ numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes); numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); for (i = 0; i < cpus->len; i++) { unsigned int apic_id = cpus->cpus[i].arch_id; assert(apic_id < apic_id_limit); numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); } for (i = 0; i < nb_numa_nodes; i++) { numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(ms->numa_state->nodes[i].node_mem); } fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, (1 + apic_id_limit + nb_numa_nodes) * sizeof(*numa_fw_cfg)); return fw_cfg; } void fw_cfg_build_feature_control(MachineState *ms, FWCfgState *fw_cfg) { X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); CPUX86State *env = &cpu->env; uint32_t unused, ecx, edx; uint64_t feature_control_bits = 0; uint64_t *val; cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); if (ecx & CPUID_EXT_VMX) { feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; } if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && (env->mcg_cap & MCG_LMCE_P)) { feature_control_bits |= FEATURE_CONTROL_LMCE; } if (!feature_control_bits) { return; } val = g_malloc(sizeof(*val)); *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); fw_cfg_add_file(fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); }