/* Support for generating ACPI tables and passing them to Guests * * Copyright (C) 2008-2010 Kevin O'Connor * Copyright (C) 2006 Fabrice Bellard * Copyright (C) 2013 Red Hat Inc * * Author: Michael S. Tsirkin * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qapi/qmp/qnum.h" #include "acpi-build.h" #include "qemu-common.h" #include "qemu/bitmap.h" #include "qemu/error-report.h" #include "hw/pci/pci.h" #include "qom/cpu.h" #include "target/i386/cpu.h" #include "hw/misc/pvpanic.h" #include "hw/timer/hpet.h" #include "hw/acpi/acpi-defs.h" #include "hw/acpi/acpi.h" #include "hw/acpi/cpu.h" #include "hw/nvram/fw_cfg.h" #include "hw/acpi/bios-linker-loader.h" #include "hw/loader.h" #include "hw/isa/isa.h" #include "hw/block/fdc.h" #include "hw/acpi/memory_hotplug.h" #include "sysemu/tpm.h" #include "hw/acpi/tpm.h" #include "hw/acpi/vmgenid.h" #include "sysemu/tpm_backend.h" #include "hw/timer/mc146818rtc_regs.h" #include "hw/mem/memory-device.h" #include "sysemu/numa.h" /* Supported chipsets: */ #include "hw/acpi/piix4.h" #include "hw/acpi/pcihp.h" #include "hw/i386/ich9.h" #include "hw/pci/pci_bus.h" #include "hw/pci-host/q35.h" #include "hw/i386/x86-iommu.h" #include "hw/acpi/aml-build.h" #include "qom/qom-qobject.h" #include "hw/i386/amd_iommu.h" #include "hw/i386/intel_iommu.h" #include "hw/acpi/ipmi.h" /* These are used to size the ACPI tables for -M pc-i440fx-1.7 and * -M pc-i440fx-2.0. Even if the actual amount of AML generated grows * a little bit, there should be plenty of free space since the DSDT * shrunk by ~1.5k between QEMU 2.0 and QEMU 2.1. */ #define ACPI_BUILD_LEGACY_CPU_AML_SIZE 97 #define ACPI_BUILD_ALIGN_SIZE 0x1000 #define ACPI_BUILD_TABLE_SIZE 0x20000 /* #define DEBUG_ACPI_BUILD */ #ifdef DEBUG_ACPI_BUILD #define ACPI_BUILD_DPRINTF(fmt, ...) \ do {printf("ACPI_BUILD: " fmt, ## __VA_ARGS__); } while (0) #else #define ACPI_BUILD_DPRINTF(fmt, ...) #endif /* Default IOAPIC ID */ #define ACPI_BUILD_IOAPIC_ID 0x0 typedef struct AcpiMcfgInfo { uint64_t mcfg_base; uint32_t mcfg_size; } AcpiMcfgInfo; typedef struct AcpiPmInfo { bool s3_disabled; bool s4_disabled; bool pcihp_bridge_en; uint8_t s4_val; AcpiFadtData fadt; uint16_t cpu_hp_io_base; uint16_t pcihp_io_base; uint16_t pcihp_io_len; } AcpiPmInfo; typedef struct AcpiMiscInfo { bool is_piix4; bool has_hpet; TPMVersion tpm_version; const unsigned char *dsdt_code; unsigned dsdt_size; uint16_t pvpanic_port; uint16_t applesmc_io_base; } AcpiMiscInfo; typedef struct AcpiBuildPciBusHotplugState { GArray *device_table; GArray *notify_table; struct AcpiBuildPciBusHotplugState *parent; bool pcihp_bridge_en; } AcpiBuildPciBusHotplugState; static void init_common_fadt_data(Object *o, AcpiFadtData *data) { uint32_t io = object_property_get_uint(o, ACPI_PM_PROP_PM_IO_BASE, NULL); AmlAddressSpace as = AML_AS_SYSTEM_IO; AcpiFadtData fadt = { .rev = 3, .flags = (1 << ACPI_FADT_F_WBINVD) | (1 << ACPI_FADT_F_PROC_C1) | (1 << ACPI_FADT_F_SLP_BUTTON) | (1 << ACPI_FADT_F_RTC_S4) | (1 << ACPI_FADT_F_USE_PLATFORM_CLOCK) | /* APIC destination mode ("Flat Logical") has an upper limit of 8 * CPUs for more than 8 CPUs, "Clustered Logical" mode has to be * used */ ((max_cpus > 8) ? (1 << ACPI_FADT_F_FORCE_APIC_CLUSTER_MODEL) : 0), .int_model = 1 /* Multiple APIC */, .rtc_century = RTC_CENTURY, .plvl2_lat = 0xfff /* C2 state not supported */, .plvl3_lat = 0xfff /* C3 state not supported */, .smi_cmd = ACPI_PORT_SMI_CMD, .sci_int = object_property_get_uint(o, ACPI_PM_PROP_SCI_INT, NULL), .acpi_enable_cmd = object_property_get_uint(o, ACPI_PM_PROP_ACPI_ENABLE_CMD, NULL), .acpi_disable_cmd = object_property_get_uint(o, ACPI_PM_PROP_ACPI_DISABLE_CMD, NULL), .pm1a_evt = { .space_id = as, .bit_width = 4 * 8, .address = io }, .pm1a_cnt = { .space_id = as, .bit_width = 2 * 8, .address = io + 0x04 }, .pm_tmr = { .space_id = as, .bit_width = 4 * 8, .address = io + 0x08 }, .gpe0_blk = { .space_id = as, .bit_width = object_property_get_uint(o, ACPI_PM_PROP_GPE0_BLK_LEN, NULL) * 8, .address = object_property_get_uint(o, ACPI_PM_PROP_GPE0_BLK, NULL) }, }; *data = fadt; } static void acpi_get_pm_info(AcpiPmInfo *pm) { Object *piix = piix4_pm_find(); Object *lpc = ich9_lpc_find(); Object *obj = piix ? piix : lpc; QObject *o; pm->cpu_hp_io_base = 0; pm->pcihp_io_base = 0; pm->pcihp_io_len = 0; init_common_fadt_data(obj, &pm->fadt); if (piix) { /* w2k requires FADT(rev1) or it won't boot, keep PC compatible */ pm->fadt.rev = 1; pm->cpu_hp_io_base = PIIX4_CPU_HOTPLUG_IO_BASE; pm->pcihp_io_base = object_property_get_uint(obj, ACPI_PCIHP_IO_BASE_PROP, NULL); pm->pcihp_io_len = object_property_get_uint(obj, ACPI_PCIHP_IO_LEN_PROP, NULL); } if (lpc) { struct AcpiGenericAddress r = { .space_id = AML_AS_SYSTEM_IO, .bit_width = 8, .address = ICH9_RST_CNT_IOPORT }; pm->fadt.reset_reg = r; pm->fadt.reset_val = 0xf; pm->fadt.flags |= 1 << ACPI_FADT_F_RESET_REG_SUP; pm->cpu_hp_io_base = ICH9_CPU_HOTPLUG_IO_BASE; } assert(obj); /* The above need not be conditional on machine type because the reset port * happens to be the same on PIIX (pc) and ICH9 (q35). */ QEMU_BUILD_BUG_ON(ICH9_RST_CNT_IOPORT != RCR_IOPORT); /* Fill in optional s3/s4 related properties */ o = object_property_get_qobject(obj, ACPI_PM_PROP_S3_DISABLED, NULL); if (o) { pm->s3_disabled = qnum_get_uint(qobject_to(QNum, o)); } else { pm->s3_disabled = false; } qobject_unref(o); o = object_property_get_qobject(obj, ACPI_PM_PROP_S4_DISABLED, NULL); if (o) { pm->s4_disabled = qnum_get_uint(qobject_to(QNum, o)); } else { pm->s4_disabled = false; } qobject_unref(o); o = object_property_get_qobject(obj, ACPI_PM_PROP_S4_VAL, NULL); if (o) { pm->s4_val = qnum_get_uint(qobject_to(QNum, o)); } else { pm->s4_val = false; } qobject_unref(o); pm->pcihp_bridge_en = object_property_get_bool(obj, "acpi-pci-hotplug-with-bridge-support", NULL); } static void acpi_get_misc_info(AcpiMiscInfo *info) { Object *piix = piix4_pm_find(); Object *lpc = ich9_lpc_find(); assert(!!piix != !!lpc); if (piix) { info->is_piix4 = true; } if (lpc) { info->is_piix4 = false; } info->has_hpet = hpet_find(); info->tpm_version = tpm_get_version(tpm_find()); info->pvpanic_port = pvpanic_port(); info->applesmc_io_base = applesmc_port(); } /* * Because of the PXB hosts we cannot simply query TYPE_PCI_HOST_BRIDGE. * On i386 arch we only have two pci hosts, so we can look only for them. */ static Object *acpi_get_i386_pci_host(void) { PCIHostState *host; host = OBJECT_CHECK(PCIHostState, object_resolve_path("/machine/i440fx", NULL), TYPE_PCI_HOST_BRIDGE); if (!host) { host = OBJECT_CHECK(PCIHostState, object_resolve_path("/machine/q35", NULL), TYPE_PCI_HOST_BRIDGE); } return OBJECT(host); } static void acpi_get_pci_holes(Range *hole, Range *hole64) { Object *pci_host; pci_host = acpi_get_i386_pci_host(); g_assert(pci_host); range_set_bounds1(hole, object_property_get_uint(pci_host, PCI_HOST_PROP_PCI_HOLE_START, NULL), object_property_get_uint(pci_host, PCI_HOST_PROP_PCI_HOLE_END, NULL)); range_set_bounds1(hole64, object_property_get_uint(pci_host, PCI_HOST_PROP_PCI_HOLE64_START, NULL), object_property_get_uint(pci_host, PCI_HOST_PROP_PCI_HOLE64_END, NULL)); } static void acpi_align_size(GArray *blob, unsigned align) { /* Align size to multiple of given size. This reduces the chance * we need to change size in the future (breaking cross version migration). */ g_array_set_size(blob, ROUND_UP(acpi_data_len(blob), align)); } /* FACS */ static void build_facs(GArray *table_data, BIOSLinker *linker) { AcpiFacsDescriptorRev1 *facs = acpi_data_push(table_data, sizeof *facs); memcpy(&facs->signature, "FACS", 4); facs->length = cpu_to_le32(sizeof(*facs)); } void pc_madt_cpu_entry(AcpiDeviceIf *adev, int uid, const CPUArchIdList *apic_ids, GArray *entry) { uint32_t apic_id = apic_ids->cpus[uid].arch_id; /* ACPI spec says that LAPIC entry for non present * CPU may be omitted from MADT or it must be marked * as disabled. However omitting non present CPU from * MADT breaks hotplug on linux. So possible CPUs * should be put in MADT but kept disabled. */ if (apic_id < 255) { AcpiMadtProcessorApic *apic = acpi_data_push(entry, sizeof *apic); apic->type = ACPI_APIC_PROCESSOR; apic->length = sizeof(*apic); apic->processor_id = uid; apic->local_apic_id = apic_id; if (apic_ids->cpus[uid].cpu != NULL) { apic->flags = cpu_to_le32(1); } else { apic->flags = cpu_to_le32(0); } } else { AcpiMadtProcessorX2Apic *apic = acpi_data_push(entry, sizeof *apic); apic->type = ACPI_APIC_LOCAL_X2APIC; apic->length = sizeof(*apic); apic->uid = cpu_to_le32(uid); apic->x2apic_id = cpu_to_le32(apic_id); if (apic_ids->cpus[uid].cpu != NULL) { apic->flags = cpu_to_le32(1); } else { apic->flags = cpu_to_le32(0); } } } static void build_madt(GArray *table_data, BIOSLinker *linker, PCMachineState *pcms) { MachineClass *mc = MACHINE_GET_CLASS(pcms); const CPUArchIdList *apic_ids = mc->possible_cpu_arch_ids(MACHINE(pcms)); int madt_start = table_data->len; AcpiDeviceIfClass *adevc = ACPI_DEVICE_IF_GET_CLASS(pcms->acpi_dev); AcpiDeviceIf *adev = ACPI_DEVICE_IF(pcms->acpi_dev); bool x2apic_mode = false; AcpiMultipleApicTable *madt; AcpiMadtIoApic *io_apic; AcpiMadtIntsrcovr *intsrcovr; int i; madt = acpi_data_push(table_data, sizeof *madt); madt->local_apic_address = cpu_to_le32(APIC_DEFAULT_ADDRESS); madt->flags = cpu_to_le32(1); for (i = 0; i < apic_ids->len; i++) { adevc->madt_cpu(adev, i, apic_ids, table_data); if (apic_ids->cpus[i].arch_id > 254) { x2apic_mode = true; } } io_apic = acpi_data_push(table_data, sizeof *io_apic); io_apic->type = ACPI_APIC_IO; io_apic->length = sizeof(*io_apic); io_apic->io_apic_id = ACPI_BUILD_IOAPIC_ID; io_apic->address = cpu_to_le32(IO_APIC_DEFAULT_ADDRESS); io_apic->interrupt = cpu_to_le32(0); if (pcms->apic_xrupt_override) { intsrcovr = acpi_data_push(table_data, sizeof *intsrcovr); intsrcovr->type = ACPI_APIC_XRUPT_OVERRIDE; intsrcovr->length = sizeof(*intsrcovr); intsrcovr->source = 0; intsrcovr->gsi = cpu_to_le32(2); intsrcovr->flags = cpu_to_le16(0); /* conforms to bus specifications */ } for (i = 1; i < 16; i++) { #define ACPI_BUILD_PCI_IRQS ((1<<5) | (1<<9) | (1<<10) | (1<<11)) if (!(ACPI_BUILD_PCI_IRQS & (1 << i))) { /* No need for a INT source override structure. */ continue; } intsrcovr = acpi_data_push(table_data, sizeof *intsrcovr); intsrcovr->type = ACPI_APIC_XRUPT_OVERRIDE; intsrcovr->length = sizeof(*intsrcovr); intsrcovr->source = i; intsrcovr->gsi = cpu_to_le32(i); intsrcovr->flags = cpu_to_le16(0xd); /* active high, level triggered */ } if (x2apic_mode) { AcpiMadtLocalX2ApicNmi *local_nmi; local_nmi = acpi_data_push(table_data, sizeof *local_nmi); local_nmi->type = ACPI_APIC_LOCAL_X2APIC_NMI; local_nmi->length = sizeof(*local_nmi); local_nmi->uid = 0xFFFFFFFF; /* all processors */ local_nmi->flags = cpu_to_le16(0); local_nmi->lint = 1; /* ACPI_LINT1 */ } else { AcpiMadtLocalNmi *local_nmi; local_nmi = acpi_data_push(table_data, sizeof *local_nmi); local_nmi->type = ACPI_APIC_LOCAL_NMI; local_nmi->length = sizeof(*local_nmi); local_nmi->processor_id = 0xff; /* all processors */ local_nmi->flags = cpu_to_le16(0); local_nmi->lint = 1; /* ACPI_LINT1 */ } build_header(linker, table_data, (void *)(table_data->data + madt_start), "APIC", table_data->len - madt_start, 1, NULL, NULL); } static void build_append_pcihp_notify_entry(Aml *method, int slot) { Aml *if_ctx; int32_t devfn = PCI_DEVFN(slot, 0); if_ctx = aml_if(aml_and(aml_arg(0), aml_int(0x1U << slot), NULL)); aml_append(if_ctx, aml_notify(aml_name("S%.02X", devfn), aml_arg(1))); aml_append(method, if_ctx); } static void build_append_pci_bus_devices(Aml *parent_scope, PCIBus *bus, bool pcihp_bridge_en) { Aml *dev, *notify_method = NULL, *method; QObject *bsel; PCIBus *sec; int i; bsel = object_property_get_qobject(OBJECT(bus), ACPI_PCIHP_PROP_BSEL, NULL); if (bsel) { uint64_t bsel_val = qnum_get_uint(qobject_to(QNum, bsel)); aml_append(parent_scope, aml_name_decl("BSEL", aml_int(bsel_val))); notify_method = aml_method("DVNT", 2, AML_NOTSERIALIZED); } for (i = 0; i < ARRAY_SIZE(bus->devices); i += PCI_FUNC_MAX) { DeviceClass *dc; PCIDeviceClass *pc; PCIDevice *pdev = bus->devices[i]; int slot = PCI_SLOT(i); bool hotplug_enabled_dev; bool bridge_in_acpi; if (!pdev) { if (bsel) { /* add hotplug slots for non present devices */ dev = aml_device("S%.02X", PCI_DEVFN(slot, 0)); aml_append(dev, aml_name_decl("_SUN", aml_int(slot))); aml_append(dev, aml_name_decl("_ADR", aml_int(slot << 16))); method = aml_method("_EJ0", 1, AML_NOTSERIALIZED); aml_append(method, aml_call2("PCEJ", aml_name("BSEL"), aml_name("_SUN")) ); aml_append(dev, method); aml_append(parent_scope, dev); build_append_pcihp_notify_entry(notify_method, slot); } continue; } pc = PCI_DEVICE_GET_CLASS(pdev); dc = DEVICE_GET_CLASS(pdev); /* When hotplug for bridges is enabled, bridges are * described in ACPI separately (see build_pci_bus_end). * In this case they aren't themselves hot-pluggable. * Hotplugged bridges *are* hot-pluggable. */ bridge_in_acpi = pc->is_bridge && pcihp_bridge_en && !DEVICE(pdev)->hotplugged; hotplug_enabled_dev = bsel && dc->hotpluggable && !bridge_in_acpi; if (pc->class_id == PCI_CLASS_BRIDGE_ISA) { continue; } /* start to compose PCI slot descriptor */ dev = aml_device("S%.02X", PCI_DEVFN(slot, 0)); aml_append(dev, aml_name_decl("_ADR", aml_int(slot << 16))); if (pc->class_id == PCI_CLASS_DISPLAY_VGA) { /* add VGA specific AML methods */ int s3d; if (object_dynamic_cast(OBJECT(pdev), "qxl-vga")) { s3d = 3; } else { s3d = 0; } method = aml_method("_S1D", 0, AML_NOTSERIALIZED); aml_append(method, aml_return(aml_int(0))); aml_append(dev, method); method = aml_method("_S2D", 0, AML_NOTSERIALIZED); aml_append(method, aml_return(aml_int(0))); aml_append(dev, method); method = aml_method("_S3D", 0, AML_NOTSERIALIZED); aml_append(method, aml_return(aml_int(s3d))); aml_append(dev, method); } else if (hotplug_enabled_dev) { /* add _SUN/_EJ0 to make slot hotpluggable */ aml_append(dev, aml_name_decl("_SUN", aml_int(slot))); method = aml_method("_EJ0", 1, AML_NOTSERIALIZED); aml_append(method, aml_call2("PCEJ", aml_name("BSEL"), aml_name("_SUN")) ); aml_append(dev, method); if (bsel) { build_append_pcihp_notify_entry(notify_method, slot); } } else if (bridge_in_acpi) { /* * device is coldplugged bridge, * add child device descriptions into its scope */ PCIBus *sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev)); build_append_pci_bus_devices(dev, sec_bus, pcihp_bridge_en); } /* slot descriptor has been composed, add it into parent context */ aml_append(parent_scope, dev); } if (bsel) { aml_append(parent_scope, notify_method); } /* Append PCNT method to notify about events on local and child buses. * Add unconditionally for root since DSDT expects it. */ method = aml_method("PCNT", 0, AML_NOTSERIALIZED); /* If bus supports hotplug select it and notify about local events */ if (bsel) { uint64_t bsel_val = qnum_get_uint(qobject_to(QNum, bsel)); aml_append(method, aml_store(aml_int(bsel_val), aml_name("BNUM"))); aml_append(method, aml_call2("DVNT", aml_name("PCIU"), aml_int(1) /* Device Check */) ); aml_append(method, aml_call2("DVNT", aml_name("PCID"), aml_int(3)/* Eject Request */) ); } /* Notify about child bus events in any case */ if (pcihp_bridge_en) { QLIST_FOREACH(sec, &bus->child, sibling) { int32_t devfn = sec->parent_dev->devfn; if (pci_bus_is_root(sec) || pci_bus_is_express(sec)) { continue; } aml_append(method, aml_name("^S%.02X.PCNT", devfn)); } } aml_append(parent_scope, method); qobject_unref(bsel); } /** * build_prt_entry: * @link_name: link name for PCI route entry * * build AML package containing a PCI route entry for @link_name */ static Aml *build_prt_entry(const char *link_name) { Aml *a_zero = aml_int(0); Aml *pkg = aml_package(4); aml_append(pkg, a_zero); aml_append(pkg, a_zero); aml_append(pkg, aml_name("%s", link_name)); aml_append(pkg, a_zero); return pkg; } /* * initialize_route - Initialize the interrupt routing rule * through a specific LINK: * if (lnk_idx == idx) * route using link 'link_name' */ static Aml *initialize_route(Aml *route, const char *link_name, Aml *lnk_idx, int idx) { Aml *if_ctx = aml_if(aml_equal(lnk_idx, aml_int(idx))); Aml *pkg = build_prt_entry(link_name); aml_append(if_ctx, aml_store(pkg, route)); return if_ctx; } /* * build_prt - Define interrupt rounting rules * * Returns an array of 128 routes, one for each device, * based on device location. * The main goal is to equaly distribute the interrupts * over the 4 existing ACPI links (works only for i440fx). * The hash function is (slot + pin) & 3 -> "LNK[D|A|B|C]". * */ static Aml *build_prt(bool is_pci0_prt) { Aml *method, *while_ctx, *pin, *res; method = aml_method("_PRT", 0, AML_NOTSERIALIZED); res = aml_local(0); pin = aml_local(1); aml_append(method, aml_store(aml_package(128), res)); aml_append(method, aml_store(aml_int(0), pin)); /* while (pin < 128) */ while_ctx = aml_while(aml_lless(pin, aml_int(128))); { Aml *slot = aml_local(2); Aml *lnk_idx = aml_local(3); Aml *route = aml_local(4); /* slot = pin >> 2 */ aml_append(while_ctx, aml_store(aml_shiftright(pin, aml_int(2), NULL), slot)); /* lnk_idx = (slot + pin) & 3 */ aml_append(while_ctx, aml_store(aml_and(aml_add(pin, slot, NULL), aml_int(3), NULL), lnk_idx)); /* route[2] = "LNK[D|A|B|C]", selection based on pin % 3 */ aml_append(while_ctx, initialize_route(route, "LNKD", lnk_idx, 0)); if (is_pci0_prt) { Aml *if_device_1, *if_pin_4, *else_pin_4; /* device 1 is the power-management device, needs SCI */ if_device_1 = aml_if(aml_equal(lnk_idx, aml_int(1))); { if_pin_4 = aml_if(aml_equal(pin, aml_int(4))); { aml_append(if_pin_4, aml_store(build_prt_entry("LNKS"), route)); } aml_append(if_device_1, if_pin_4); else_pin_4 = aml_else(); { aml_append(else_pin_4, aml_store(build_prt_entry("LNKA"), route)); } aml_append(if_device_1, else_pin_4); } aml_append(while_ctx, if_device_1); } else { aml_append(while_ctx, initialize_route(route, "LNKA", lnk_idx, 1)); } aml_append(while_ctx, initialize_route(route, "LNKB", lnk_idx, 2)); aml_append(while_ctx, initialize_route(route, "LNKC", lnk_idx, 3)); /* route[0] = 0x[slot]FFFF */ aml_append(while_ctx, aml_store(aml_or(aml_shiftleft(slot, aml_int(16)), aml_int(0xFFFF), NULL), aml_index(route, aml_int(0)))); /* route[1] = pin & 3 */ aml_append(while_ctx, aml_store(aml_and(pin, aml_int(3), NULL), aml_index(route, aml_int(1)))); /* res[pin] = route */ aml_append(while_ctx, aml_store(route, aml_index(res, pin))); /* pin++ */ aml_append(while_ctx, aml_increment(pin)); } aml_append(method, while_ctx); /* return res*/ aml_append(method, aml_return(res)); return method; } typedef struct CrsRangeEntry { uint64_t base; uint64_t limit; } CrsRangeEntry; static void crs_range_insert(GPtrArray *ranges, uint64_t base, uint64_t limit) { CrsRangeEntry *entry; entry = g_malloc(sizeof(*entry)); entry->base = base; entry->limit = limit; g_ptr_array_add(ranges, entry); } static void crs_range_free(gpointer data) { CrsRangeEntry *entry = (CrsRangeEntry *)data; g_free(entry); } typedef struct CrsRangeSet { GPtrArray *io_ranges; GPtrArray *mem_ranges; GPtrArray *mem_64bit_ranges; } CrsRangeSet; static void crs_range_set_init(CrsRangeSet *range_set) { range_set->io_ranges = g_ptr_array_new_with_free_func(crs_range_free); range_set->mem_ranges = g_ptr_array_new_with_free_func(crs_range_free); range_set->mem_64bit_ranges = g_ptr_array_new_with_free_func(crs_range_free); } static void crs_range_set_free(CrsRangeSet *range_set) { g_ptr_array_free(range_set->io_ranges, true); g_ptr_array_free(range_set->mem_ranges, true); g_ptr_array_free(range_set->mem_64bit_ranges, true); } static gint crs_range_compare(gconstpointer a, gconstpointer b) { CrsRangeEntry *entry_a = *(CrsRangeEntry **)a; CrsRangeEntry *entry_b = *(CrsRangeEntry **)b; return (int64_t)entry_a->base - (int64_t)entry_b->base; } /* * crs_replace_with_free_ranges - given the 'used' ranges within [start - end] * interval, computes the 'free' ranges from the same interval. * Example: If the input array is { [a1 - a2],[b1 - b2] }, the function * will return { [base - a1], [a2 - b1], [b2 - limit] }. */ static void crs_replace_with_free_ranges(GPtrArray *ranges, uint64_t start, uint64_t end) { GPtrArray *free_ranges = g_ptr_array_new(); uint64_t free_base = start; int i; g_ptr_array_sort(ranges, crs_range_compare); for (i = 0; i < ranges->len; i++) { CrsRangeEntry *used = g_ptr_array_index(ranges, i); if (free_base < used->base) { crs_range_insert(free_ranges, free_base, used->base - 1); } free_base = used->limit + 1; } if (free_base < end) { crs_range_insert(free_ranges, free_base, end); } g_ptr_array_set_size(ranges, 0); for (i = 0; i < free_ranges->len; i++) { g_ptr_array_add(ranges, g_ptr_array_index(free_ranges, i)); } g_ptr_array_free(free_ranges, true); } /* * crs_range_merge - merges adjacent ranges in the given array. * Array elements are deleted and replaced with the merged ranges. */ static void crs_range_merge(GPtrArray *range) { GPtrArray *tmp = g_ptr_array_new_with_free_func(crs_range_free); CrsRangeEntry *entry; uint64_t range_base, range_limit; int i; if (!range->len) { return; } g_ptr_array_sort(range, crs_range_compare); entry = g_ptr_array_index(range, 0); range_base = entry->base; range_limit = entry->limit; for (i = 1; i < range->len; i++) { entry = g_ptr_array_index(range, i); if (entry->base - 1 == range_limit) { range_limit = entry->limit; } else { crs_range_insert(tmp, range_base, range_limit); range_base = entry->base; range_limit = entry->limit; } } crs_range_insert(tmp, range_base, range_limit); g_ptr_array_set_size(range, 0); for (i = 0; i < tmp->len; i++) { entry = g_ptr_array_index(tmp, i); crs_range_insert(range, entry->base, entry->limit); } g_ptr_array_free(tmp, true); } static Aml *build_crs(PCIHostState *host, CrsRangeSet *range_set) { Aml *crs = aml_resource_template(); CrsRangeSet temp_range_set; CrsRangeEntry *entry; uint8_t max_bus = pci_bus_num(host->bus); uint8_t type; int devfn; int i; crs_range_set_init(&temp_range_set); for (devfn = 0; devfn < ARRAY_SIZE(host->bus->devices); devfn++) { uint64_t range_base, range_limit; PCIDevice *dev = host->bus->devices[devfn]; if (!dev) { continue; } for (i = 0; i < PCI_NUM_REGIONS; i++) { PCIIORegion *r = &dev->io_regions[i]; range_base = r->addr; range_limit = r->addr + r->size - 1; /* * Work-around for old bioses * that do not support multiple root buses */ if (!range_base || range_base > range_limit) { continue; } if (r->type & PCI_BASE_ADDRESS_SPACE_IO) { crs_range_insert(temp_range_set.io_ranges, range_base, range_limit); } else { /* "memory" */ crs_range_insert(temp_range_set.mem_ranges, range_base, range_limit); } } type = dev->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION; if (type == PCI_HEADER_TYPE_BRIDGE) { uint8_t subordinate = dev->config[PCI_SUBORDINATE_BUS]; if (subordinate > max_bus) { max_bus = subordinate; } range_base = pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_IO); range_limit = pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_IO); /* * Work-around for old bioses * that do not support multiple root buses */ if (range_base && range_base <= range_limit) { crs_range_insert(temp_range_set.io_ranges, range_base, range_limit); } range_base = pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_MEMORY); range_limit = pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_MEMORY); /* * Work-around for old bioses * that do not support multiple root buses */ if (range_base && range_base <= range_limit) { uint64_t length = range_limit - range_base + 1; if (range_limit <= UINT32_MAX && length <= UINT32_MAX) { crs_range_insert(temp_range_set.mem_ranges, range_base, range_limit); } else { crs_range_insert(temp_range_set.mem_64bit_ranges, range_base, range_limit); } } range_base = pci_bridge_get_base(dev, PCI_BASE_ADDRESS_MEM_PREFETCH); range_limit = pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_MEM_PREFETCH); /* * Work-around for old bioses * that do not support multiple root buses */ if (range_base && range_base <= range_limit) { uint64_t length = range_limit - range_base + 1; if (range_limit <= UINT32_MAX && length <= UINT32_MAX) { crs_range_insert(temp_range_set.mem_ranges, range_base, range_limit); } else { crs_range_insert(temp_range_set.mem_64bit_ranges, range_base, range_limit); } } } } crs_range_merge(temp_range_set.io_ranges); for (i = 0; i < temp_range_set.io_ranges->len; i++) { entry = g_ptr_array_index(temp_range_set.io_ranges, i); aml_append(crs, aml_word_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE, AML_ENTIRE_RANGE, 0, entry->base, entry->limit, 0, entry->limit - entry->base + 1)); crs_range_insert(range_set->io_ranges, entry->base, entry->limit); } crs_range_merge(temp_range_set.mem_ranges); for (i = 0; i < temp_range_set.mem_ranges->len; i++) { entry = g_ptr_array_index(temp_range_set.mem_ranges, i); aml_append(crs, aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, AML_NON_CACHEABLE, AML_READ_WRITE, 0, entry->base, entry->limit, 0, entry->limit - entry->base + 1)); crs_range_insert(range_set->mem_ranges, entry->base, entry->limit); } crs_range_merge(temp_range_set.mem_64bit_ranges); for (i = 0; i < temp_range_set.mem_64bit_ranges->len; i++) { entry = g_ptr_array_index(temp_range_set.mem_64bit_ranges, i); aml_append(crs, aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, AML_NON_CACHEABLE, AML_READ_WRITE, 0, entry->base, entry->limit, 0, entry->limit - entry->base + 1)); crs_range_insert(range_set->mem_64bit_ranges, entry->base, entry->limit); } crs_range_set_free(&temp_range_set); aml_append(crs, aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE, 0, pci_bus_num(host->bus), max_bus, 0, max_bus - pci_bus_num(host->bus) + 1)); return crs; } static void build_hpet_aml(Aml *table) { Aml *crs; Aml *field; Aml *method; Aml *if_ctx; Aml *scope = aml_scope("_SB"); Aml *dev = aml_device("HPET"); Aml *zero = aml_int(0); Aml *id = aml_local(0); Aml *period = aml_local(1); aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0103"))); aml_append(dev, aml_name_decl("_UID", zero)); aml_append(dev, aml_operation_region("HPTM", AML_SYSTEM_MEMORY, aml_int(HPET_BASE), HPET_LEN)); field = aml_field("HPTM", AML_DWORD_ACC, AML_LOCK, AML_PRESERVE); aml_append(field, aml_named_field("VEND", 32)); aml_append(field, aml_named_field("PRD", 32)); aml_append(dev, field); method = aml_method("_STA", 0, AML_NOTSERIALIZED); aml_append(method, aml_store(aml_name("VEND"), id)); aml_append(method, aml_store(aml_name("PRD"), period)); aml_append(method, aml_shiftright(id, aml_int(16), id)); if_ctx = aml_if(aml_lor(aml_equal(id, zero), aml_equal(id, aml_int(0xffff)))); { aml_append(if_ctx, aml_return(zero)); } aml_append(method, if_ctx); if_ctx = aml_if(aml_lor(aml_equal(period, zero), aml_lgreater(period, aml_int(100000000)))); { aml_append(if_ctx, aml_return(zero)); } aml_append(method, if_ctx); aml_append(method, aml_return(aml_int(0x0F))); aml_append(dev, method); crs = aml_resource_template(); aml_append(crs, aml_memory32_fixed(HPET_BASE, HPET_LEN, AML_READ_ONLY)); aml_append(dev, aml_name_decl("_CRS", crs)); aml_append(scope, dev); aml_append(table, scope); } static Aml *build_fdinfo_aml(int idx, FloppyDriveType type) { Aml *dev, *fdi; uint8_t maxc, maxh, maxs; isa_fdc_get_drive_max_chs(type, &maxc, &maxh, &maxs); dev = aml_device("FLP%c", 'A' + idx); aml_append(dev, aml_name_decl("_ADR", aml_int(idx))); fdi = aml_package(16); aml_append(fdi, aml_int(idx)); /* Drive Number */ aml_append(fdi, aml_int(cmos_get_fd_drive_type(type))); /* Device Type */ /* * the values below are the limits of the drive, and are thus independent * of the inserted media */ aml_append(fdi, aml_int(maxc)); /* Maximum Cylinder Number */ aml_append(fdi, aml_int(maxs)); /* Maximum Sector Number */ aml_append(fdi, aml_int(maxh)); /* Maximum Head Number */ /* * SeaBIOS returns the below values for int 0x13 func 0x08 regardless of * the drive type, so shall we */ aml_append(fdi, aml_int(0xAF)); /* disk_specify_1 */ aml_append(fdi, aml_int(0x02)); /* disk_specify_2 */ aml_append(fdi, aml_int(0x25)); /* disk_motor_wait */ aml_append(fdi, aml_int(0x02)); /* disk_sector_siz */ aml_append(fdi, aml_int(0x12)); /* disk_eot */ aml_append(fdi, aml_int(0x1B)); /* disk_rw_gap */ aml_append(fdi, aml_int(0xFF)); /* disk_dtl */ aml_append(fdi, aml_int(0x6C)); /* disk_formt_gap */ aml_append(fdi, aml_int(0xF6)); /* disk_fill */ aml_append(fdi, aml_int(0x0F)); /* disk_head_sttl */ aml_append(fdi, aml_int(0x08)); /* disk_motor_strt */ aml_append(dev, aml_name_decl("_FDI", fdi)); return dev; } static Aml *build_fdc_device_aml(ISADevice *fdc) { int i; Aml *dev; Aml *crs; #define ACPI_FDE_MAX_FD 4 uint32_t fde_buf[5] = { 0, 0, 0, 0, /* presence of floppy drives #0 - #3 */ cpu_to_le32(2) /* tape presence (2 == never present) */ }; dev = aml_device("FDC0"); aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0700"))); crs = aml_resource_template(); aml_append(crs, aml_io(AML_DECODE16, 0x03F2, 0x03F2, 0x00, 0x04)); aml_append(crs, aml_io(AML_DECODE16, 0x03F7, 0x03F7, 0x00, 0x01)); aml_append(crs, aml_irq_no_flags(6)); aml_append(crs, aml_dma(AML_COMPATIBILITY, AML_NOTBUSMASTER, AML_TRANSFER8, 2)); aml_append(dev, aml_name_decl("_CRS", crs)); for (i = 0; i < MIN(MAX_FD, ACPI_FDE_MAX_FD); i++) { FloppyDriveType type = isa_fdc_get_drive_type(fdc, i); if (type < FLOPPY_DRIVE_TYPE_NONE) { fde_buf[i] = cpu_to_le32(1); /* drive present */ aml_append(dev, build_fdinfo_aml(i, type)); } } aml_append(dev, aml_name_decl("_FDE", aml_buffer(sizeof(fde_buf), (uint8_t *)fde_buf))); return dev; } static Aml *build_rtc_device_aml(void) { Aml *dev; Aml *crs; dev = aml_device("RTC"); aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00"))); crs = aml_resource_template(); aml_append(crs, aml_io(AML_DECODE16, 0x0070, 0x0070, 0x10, 0x02)); aml_append(crs, aml_irq_no_flags(8)); aml_append(crs, aml_io(AML_DECODE16, 0x0072, 0x0072, 0x02, 0x06)); aml_append(dev, aml_name_decl("_CRS", crs)); return dev; } static Aml *build_kbd_device_aml(void) { Aml *dev; Aml *crs; Aml *method; dev = aml_device("KBD"); aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0303"))); method = aml_method("_STA", 0, AML_NOTSERIALIZED); aml_append(method, aml_return(aml_int(0x0f))); aml_append(dev, method); crs = aml_resource_template(); aml_append(crs, aml_io(AML_DECODE16, 0x0060, 0x0060, 0x01, 0x01)); aml_append(crs, aml_io(AML_DECODE16, 0x0064, 0x0064, 0x01, 0x01)); aml_append(crs, aml_irq_no_flags(1)); aml_append(dev, aml_name_decl("_CRS", crs)); return dev; } static Aml *build_mouse_device_aml(void) { Aml *dev; Aml *crs; Aml *method; dev = aml_device("MOU"); aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0F13"))); method = aml_method("_STA", 0, AML_NOTSERIALIZED); aml_append(method, aml_return(aml_int(0x0f))); aml_append(dev, method); crs = aml_resource_template(); aml_append(crs, aml_irq_no_flags(12)); aml_append(dev, aml_name_decl("_CRS", crs)); return dev; } static Aml *build_lpt_device_aml(void) { Aml *dev; Aml *crs; Aml *method; Aml *if_ctx; Aml *else_ctx; Aml *zero = aml_int(0); Aml *is_present = aml_local(0); dev = aml_device("LPT"); aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0400"))); method = aml_method("_STA", 0, AML_NOTSERIALIZED); aml_append(method, aml_store(aml_name("LPEN"), is_present)); if_ctx = aml_if(aml_equal(is_present, zero)); { aml_append(if_ctx, aml_return(aml_int(0x00))); } aml_append(method, if_ctx); else_ctx = aml_else(); { aml_append(else_ctx, aml_return(aml_int(0x0f))); } aml_append(method, else_ctx); aml_append(dev, method); crs = aml_resource_template(); aml_append(crs, aml_io(AML_DECODE16, 0x0378, 0x0378, 0x08, 0x08)); aml_append(crs, aml_irq_no_flags(7)); aml_append(dev, aml_name_decl("_CRS", crs)); return dev; } static Aml *build_com_device_aml(uint8_t uid) { Aml *dev; Aml *crs; Aml *method; Aml *if_ctx; Aml *else_ctx; Aml *zero = aml_int(0); Aml *is_present = aml_local(0); const char *enabled_field = "CAEN"; uint8_t irq = 4; uint16_t io_port = 0x03F8; assert(uid == 1 || uid == 2); if (uid == 2) { enabled_field = "CBEN"; irq = 3; io_port = 0x02F8; } dev = aml_device("COM%d", uid); aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0501"))); aml_append(dev, aml_name_decl("_UID", aml_int(uid))); method = aml_method("_STA", 0, AML_NOTSERIALIZED); aml_append(method, aml_store(aml_name("%s", enabled_field), is_present)); if_ctx = aml_if(aml_equal(is_present, zero)); { aml_append(if_ctx, aml_return(aml_int(0x00))); } aml_append(method, if_ctx); else_ctx = aml_else(); { aml_append(else_ctx, aml_return(aml_int(0x0f))); } aml_append(method, else_ctx); aml_append(dev, method); crs = aml_resource_template(); aml_append(crs, aml_io(AML_DECODE16, io_port, io_port, 0x00, 0x08)); aml_append(crs, aml_irq_no_flags(irq)); aml_append(dev, aml_name_decl("_CRS", crs)); return dev; } static void build_isa_devices_aml(Aml *table) { ISADevice *fdc = pc_find_fdc0(); bool ambiguous; Aml *scope = aml_scope("_SB.PCI0.ISA"); Object *obj = object_resolve_path_type("", TYPE_ISA_BUS, &ambiguous); aml_append(scope, build_rtc_device_aml()); aml_append(scope, build_kbd_device_aml()); aml_append(scope, build_mouse_device_aml()); if (fdc) { aml_append(scope, build_fdc_device_aml(fdc)); } aml_append(scope, build_lpt_device_aml()); aml_append(scope, build_com_device_aml(1)); aml_append(scope, build_com_device_aml(2)); if (ambiguous) { error_report("Multiple ISA busses, unable to define IPMI ACPI data"); } else if (!obj) { error_report("No ISA bus, unable to define IPMI ACPI data"); } else { build_acpi_ipmi_devices(scope, BUS(obj)); } aml_append(table, scope); } static void build_dbg_aml(Aml *table) { Aml *field; Aml *method; Aml *while_ctx; Aml *scope = aml_scope("\\"); Aml *buf = aml_local(0); Aml *len = aml_local(1); Aml *idx = aml_local(2); aml_append(scope, aml_operation_region("DBG", AML_SYSTEM_IO, aml_int(0x0402), 0x01)); field = aml_field("DBG", AML_BYTE_ACC, AML_NOLOCK, AML_PRESERVE); aml_append(field, aml_named_field("DBGB", 8)); aml_append(scope, field); method = aml_method("DBUG", 1, AML_NOTSERIALIZED); aml_append(method, aml_to_hexstring(aml_arg(0), buf)); aml_append(method, aml_to_buffer(buf, buf)); aml_append(method, aml_subtract(aml_sizeof(buf), aml_int(1), len)); aml_append(method, aml_store(aml_int(0), idx)); while_ctx = aml_while(aml_lless(idx, len)); aml_append(while_ctx, aml_store(aml_derefof(aml_index(buf, idx)), aml_name("DBGB"))); aml_append(while_ctx, aml_increment(idx)); aml_append(method, while_ctx); aml_append(method, aml_store(aml_int(0x0A), aml_name("DBGB"))); aml_append(scope, method); aml_append(table, scope); } static Aml *build_link_dev(const char *name, uint8_t uid, Aml *reg) { Aml *dev; Aml *crs; Aml *method; uint32_t irqs[] = {5, 10, 11}; dev = aml_device("%s", name); aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0C0F"))); aml_append(dev, aml_name_decl("_UID", aml_int(uid))); crs = aml_resource_template(); aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, AML_SHARED, irqs, ARRAY_SIZE(irqs))); aml_append(dev, aml_name_decl("_PRS", crs)); method = aml_method("_STA", 0, AML_NOTSERIALIZED); aml_append(method, aml_return(aml_call1("IQST", reg))); aml_append(dev, method); method = aml_method("_DIS", 0, AML_NOTSERIALIZED); aml_append(method, aml_or(reg, aml_int(0x80), reg)); aml_append(dev, method); method = aml_method("_CRS", 0, AML_NOTSERIALIZED); aml_append(method, aml_return(aml_call1("IQCR", reg))); aml_append(dev, method); method = aml_method("_SRS", 1, AML_NOTSERIALIZED); aml_append(method, aml_create_dword_field(aml_arg(0), aml_int(5), "PRRI")); aml_append(method, aml_store(aml_name("PRRI"), reg)); aml_append(dev, method); return dev; } static Aml *build_gsi_link_dev(const char *name, uint8_t uid, uint8_t gsi) { Aml *dev; Aml *crs; Aml *method; uint32_t irqs; dev = aml_device("%s", name); aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0C0F"))); aml_append(dev, aml_name_decl("_UID", aml_int(uid))); crs = aml_resource_template(); irqs = gsi; aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, AML_SHARED, &irqs, 1)); aml_append(dev, aml_name_decl("_PRS", crs)); aml_append(dev, aml_name_decl("_CRS", crs)); /* * _DIS can be no-op because the interrupt cannot be disabled. */ method = aml_method("_DIS", 0, AML_NOTSERIALIZED); aml_append(dev, method); method = aml_method("_SRS", 1, AML_NOTSERIALIZED); aml_append(dev, method); return dev; } /* _CRS method - get current settings */ static Aml *build_iqcr_method(bool is_piix4) { Aml *if_ctx; uint32_t irqs; Aml *method = aml_method("IQCR", 1, AML_SERIALIZED); Aml *crs = aml_resource_template(); irqs = 0; aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, AML_SHARED, &irqs, 1)); aml_append(method, aml_name_decl("PRR0", crs)); aml_append(method, aml_create_dword_field(aml_name("PRR0"), aml_int(5), "PRRI")); if (is_piix4) { if_ctx = aml_if(aml_lless(aml_arg(0), aml_int(0x80))); aml_append(if_ctx, aml_store(aml_arg(0), aml_name("PRRI"))); aml_append(method, if_ctx); } else { aml_append(method, aml_store(aml_and(aml_arg(0), aml_int(0xF), NULL), aml_name("PRRI"))); } aml_append(method, aml_return(aml_name("PRR0"))); return method; } /* _STA method - get status */ static Aml *build_irq_status_method(void) { Aml *if_ctx; Aml *method = aml_method("IQST", 1, AML_NOTSERIALIZED); if_ctx = aml_if(aml_and(aml_int(0x80), aml_arg(0), NULL)); aml_append(if_ctx, aml_return(aml_int(0x09))); aml_append(method, if_ctx); aml_append(method, aml_return(aml_int(0x0B))); return method; } static void build_piix4_pci0_int(Aml *table) { Aml *dev; Aml *crs; Aml *field; Aml *method; uint32_t irqs; Aml *sb_scope = aml_scope("_SB"); Aml *pci0_scope = aml_scope("PCI0"); aml_append(pci0_scope, build_prt(true)); aml_append(sb_scope, pci0_scope); field = aml_field("PCI0.ISA.P40C", AML_BYTE_ACC, AML_NOLOCK, AML_PRESERVE); aml_append(field, aml_named_field("PRQ0", 8)); aml_append(field, aml_named_field("PRQ1", 8)); aml_append(field, aml_named_field("PRQ2", 8)); aml_append(field, aml_named_field("PRQ3", 8)); aml_append(sb_scope, field); aml_append(sb_scope, build_irq_status_method()); aml_append(sb_scope, build_iqcr_method(true)); aml_append(sb_scope, build_link_dev("LNKA", 0, aml_name("PRQ0"))); aml_append(sb_scope, build_link_dev("LNKB", 1, aml_name("PRQ1"))); aml_append(sb_scope, build_link_dev("LNKC", 2, aml_name("PRQ2"))); aml_append(sb_scope, build_link_dev("LNKD", 3, aml_name("PRQ3"))); dev = aml_device("LNKS"); { aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0C0F"))); aml_append(dev, aml_name_decl("_UID", aml_int(4))); crs = aml_resource_template(); irqs = 9; aml_append(crs, aml_interrupt(AML_CONSUMER, AML_LEVEL, AML_ACTIVE_HIGH, AML_SHARED, &irqs, 1)); aml_append(dev, aml_name_decl("_PRS", crs)); /* The SCI cannot be disabled and is always attached to GSI 9, * so these are no-ops. We only need this link to override the * polarity to active high and match the content of the MADT. */ method = aml_method("_STA", 0, AML_NOTSERIALIZED); aml_append(method, aml_return(aml_int(0x0b))); aml_append(dev, method); method = aml_method("_DIS", 0, AML_NOTSERIALIZED); aml_append(dev, method); method = aml_method("_CRS", 0, AML_NOTSERIALIZED); aml_append(method, aml_return(aml_name("_PRS"))); aml_append(dev, method); method = aml_method("_SRS", 1, AML_NOTSERIALIZED); aml_append(dev, method); } aml_append(sb_scope, dev); aml_append(table, sb_scope); } static void append_q35_prt_entry(Aml *ctx, uint32_t nr, const char *name) { int i; int head; Aml *pkg; char base = name[3] < 'E' ? 'A' : 'E'; char *s = g_strdup(name); Aml *a_nr = aml_int((nr << 16) | 0xffff); assert(strlen(s) == 4); head = name[3] - base; for (i = 0; i < 4; i++) { if (head + i > 3) { head = i * -1; } s[3] = base + head + i; pkg = aml_package(4); aml_append(pkg, a_nr); aml_append(pkg, aml_int(i)); aml_append(pkg, aml_name("%s", s)); aml_append(pkg, aml_int(0)); aml_append(ctx, pkg); } g_free(s); } static Aml *build_q35_routing_table(const char *str) { int i; Aml *pkg; char *name = g_strdup_printf("%s ", str); pkg = aml_package(128); for (i = 0; i < 0x18; i++) { name[3] = 'E' + (i & 0x3); append_q35_prt_entry(pkg, i, name); } name[3] = 'E'; append_q35_prt_entry(pkg, 0x18, name); /* INTA -> PIRQA for slot 25 - 31, see the default value of DIR */ for (i = 0x0019; i < 0x1e; i++) { name[3] = 'A'; append_q35_prt_entry(pkg, i, name); } /* PCIe->PCI bridge. use PIRQ[E-H] */ name[3] = 'E'; append_q35_prt_entry(pkg, 0x1e, name); name[3] = 'A'; append_q35_prt_entry(pkg, 0x1f, name); g_free(name); return pkg; } static void build_q35_pci0_int(Aml *table) { Aml *field; Aml *method; Aml *sb_scope = aml_scope("_SB"); Aml *pci0_scope = aml_scope("PCI0"); /* Zero => PIC mode, One => APIC Mode */ aml_append(table, aml_name_decl("PICF", aml_int(0))); method = aml_method("_PIC", 1, AML_NOTSERIALIZED); { aml_append(method, aml_store(aml_arg(0), aml_name("PICF"))); } aml_append(table, method); aml_append(pci0_scope, aml_name_decl("PRTP", build_q35_routing_table("LNK"))); aml_append(pci0_scope, aml_name_decl("PRTA", build_q35_routing_table("GSI"))); method = aml_method("_PRT", 0, AML_NOTSERIALIZED); { Aml *if_ctx; Aml *else_ctx; /* PCI IRQ routing table, example from ACPI 2.0a specification, section 6.2.8.1 */ /* Note: we provide the same info as the PCI routing table of the Bochs BIOS */ if_ctx = aml_if(aml_equal(aml_name("PICF"), aml_int(0))); aml_append(if_ctx, aml_return(aml_name("PRTP"))); aml_append(method, if_ctx); else_ctx = aml_else(); aml_append(else_ctx, aml_return(aml_name("PRTA"))); aml_append(method, else_ctx); } aml_append(pci0_scope, method); aml_append(sb_scope, pci0_scope); field = aml_field("PCI0.ISA.PIRQ", AML_BYTE_ACC, AML_NOLOCK, AML_PRESERVE); aml_append(field, aml_named_field("PRQA", 8)); aml_append(field, aml_named_field("PRQB", 8)); aml_append(field, aml_named_field("PRQC", 8)); aml_append(field, aml_named_field("PRQD", 8)); aml_append(field, aml_reserved_field(0x20)); aml_append(field, aml_named_field("PRQE", 8)); aml_append(field, aml_named_field("PRQF", 8)); aml_append(field, aml_named_field("PRQG", 8)); aml_append(field, aml_named_field("PRQH", 8)); aml_append(sb_scope, field); aml_append(sb_scope, build_irq_status_method()); aml_append(sb_scope, build_iqcr_method(false)); aml_append(sb_scope, build_link_dev("LNKA", 0, aml_name("PRQA"))); aml_append(sb_scope, build_link_dev("LNKB", 1, aml_name("PRQB"))); aml_append(sb_scope, build_link_dev("LNKC", 2, aml_name("PRQC"))); aml_append(sb_scope, build_link_dev("LNKD", 3, aml_name("PRQD"))); aml_append(sb_scope, build_link_dev("LNKE", 4, aml_name("PRQE"))); aml_append(sb_scope, build_link_dev("LNKF", 5, aml_name("PRQF"))); aml_append(sb_scope, build_link_dev("LNKG", 6, aml_name("PRQG"))); aml_append(sb_scope, build_link_dev("LNKH", 7, aml_name("PRQH"))); aml_append(sb_scope, build_gsi_link_dev("GSIA", 0x10, 0x10)); aml_append(sb_scope, build_gsi_link_dev("GSIB", 0x11, 0x11)); aml_append(sb_scope, build_gsi_link_dev("GSIC", 0x12, 0x12)); aml_append(sb_scope, build_gsi_link_dev("GSID", 0x13, 0x13)); aml_append(sb_scope, build_gsi_link_dev("GSIE", 0x14, 0x14)); aml_append(sb_scope, build_gsi_link_dev("GSIF", 0x15, 0x15)); aml_append(sb_scope, build_gsi_link_dev("GSIG", 0x16, 0x16)); aml_append(sb_scope, build_gsi_link_dev("GSIH", 0x17, 0x17)); aml_append(table, sb_scope); } static void build_q35_isa_bridge(Aml *table) { Aml *dev; Aml *scope; Aml *field; scope = aml_scope("_SB.PCI0"); dev = aml_device("ISA"); aml_append(dev, aml_name_decl("_ADR", aml_int(0x001F0000))); /* ICH9 PCI to ISA irq remapping */ aml_append(dev, aml_operation_region("PIRQ", AML_PCI_CONFIG, aml_int(0x60), 0x0C)); aml_append(dev, aml_operation_region("LPCD", AML_PCI_CONFIG, aml_int(0x80), 0x02)); field = aml_field("LPCD", AML_ANY_ACC, AML_NOLOCK, AML_PRESERVE); aml_append(field, aml_named_field("COMA", 3)); aml_append(field, aml_reserved_field(1)); aml_append(field, aml_named_field("COMB", 3)); aml_append(field, aml_reserved_field(1)); aml_append(field, aml_named_field("LPTD", 2)); aml_append(dev, field); aml_append(dev, aml_operation_region("LPCE", AML_PCI_CONFIG, aml_int(0x82), 0x02)); /* enable bits */ field = aml_field("LPCE", AML_ANY_ACC, AML_NOLOCK, AML_PRESERVE); aml_append(field, aml_named_field("CAEN", 1)); aml_append(field, aml_named_field("CBEN", 1)); aml_append(field, aml_named_field("LPEN", 1)); aml_append(dev, field); aml_append(scope, dev); aml_append(table, scope); } static void build_piix4_pm(Aml *table) { Aml *dev; Aml *scope; scope = aml_scope("_SB.PCI0"); dev = aml_device("PX13"); aml_append(dev, aml_name_decl("_ADR", aml_int(0x00010003))); aml_append(dev, aml_operation_region("P13C", AML_PCI_CONFIG, aml_int(0x00), 0xff)); aml_append(scope, dev); aml_append(table, scope); } static void build_piix4_isa_bridge(Aml *table) { Aml *dev; Aml *scope; Aml *field; scope = aml_scope("_SB.PCI0"); dev = aml_device("ISA"); aml_append(dev, aml_name_decl("_ADR", aml_int(0x00010000))); /* PIIX PCI to ISA irq remapping */ aml_append(dev, aml_operation_region("P40C", AML_PCI_CONFIG, aml_int(0x60), 0x04)); /* enable bits */ field = aml_field("^PX13.P13C", AML_ANY_ACC, AML_NOLOCK, AML_PRESERVE); /* Offset(0x5f),, 7, */ aml_append(field, aml_reserved_field(0x2f8)); aml_append(field, aml_reserved_field(7)); aml_append(field, aml_named_field("LPEN", 1)); /* Offset(0x67),, 3, */ aml_append(field, aml_reserved_field(0x38)); aml_append(field, aml_reserved_field(3)); aml_append(field, aml_named_field("CAEN", 1)); aml_append(field, aml_reserved_field(3)); aml_append(field, aml_named_field("CBEN", 1)); aml_append(dev, field); aml_append(scope, dev); aml_append(table, scope); } static void build_piix4_pci_hotplug(Aml *table) { Aml *scope; Aml *field; Aml *method; scope = aml_scope("_SB.PCI0"); aml_append(scope, aml_operation_region("PCST", AML_SYSTEM_IO, aml_int(0xae00), 0x08)); field = aml_field("PCST", AML_DWORD_ACC, AML_NOLOCK, AML_WRITE_AS_ZEROS); aml_append(field, aml_named_field("PCIU", 32)); aml_append(field, aml_named_field("PCID", 32)); aml_append(scope, field); aml_append(scope, aml_operation_region("SEJ", AML_SYSTEM_IO, aml_int(0xae08), 0x04)); field = aml_field("SEJ", AML_DWORD_ACC, AML_NOLOCK, AML_WRITE_AS_ZEROS); aml_append(field, aml_named_field("B0EJ", 32)); aml_append(scope, field); aml_append(scope, aml_operation_region("BNMR", AML_SYSTEM_IO, aml_int(0xae10), 0x04)); field = aml_field("BNMR", AML_DWORD_ACC, AML_NOLOCK, AML_WRITE_AS_ZEROS); aml_append(field, aml_named_field("BNUM", 32)); aml_append(scope, field); aml_append(scope, aml_mutex("BLCK", 0)); method = aml_method("PCEJ", 2, AML_NOTSERIALIZED); aml_append(method, aml_acquire(aml_name("BLCK"), 0xFFFF)); aml_append(method, aml_store(aml_arg(0), aml_name("BNUM"))); aml_append(method, aml_store(aml_shiftleft(aml_int(1), aml_arg(1)), aml_name("B0EJ"))); aml_append(method, aml_release(aml_name("BLCK"))); aml_append(method, aml_return(aml_int(0))); aml_append(scope, method); aml_append(table, scope); } static Aml *build_q35_osc_method(void) { Aml *if_ctx; Aml *if_ctx2; Aml *else_ctx; Aml *method; Aml *a_cwd1 = aml_name("CDW1"); Aml *a_ctrl = aml_local(0); method = aml_method("_OSC", 4, AML_NOTSERIALIZED); aml_append(method, aml_create_dword_field(aml_arg(3), aml_int(0), "CDW1")); if_ctx = aml_if(aml_equal( aml_arg(0), aml_touuid("33DB4D5B-1FF7-401C-9657-7441C03DD766"))); aml_append(if_ctx, aml_create_dword_field(aml_arg(3), aml_int(4), "CDW2")); aml_append(if_ctx, aml_create_dword_field(aml_arg(3), aml_int(8), "CDW3")); aml_append(if_ctx, aml_store(aml_name("CDW3"), a_ctrl)); /* * Always allow native PME, AER (no dependencies) * Allow SHPC (PCI bridges can have SHPC controller) */ aml_append(if_ctx, aml_and(a_ctrl, aml_int(0x1F), a_ctrl)); if_ctx2 = aml_if(aml_lnot(aml_equal(aml_arg(1), aml_int(1)))); /* Unknown revision */ aml_append(if_ctx2, aml_or(a_cwd1, aml_int(0x08), a_cwd1)); aml_append(if_ctx, if_ctx2); if_ctx2 = aml_if(aml_lnot(aml_equal(aml_name("CDW3"), a_ctrl))); /* Capabilities bits were masked */ aml_append(if_ctx2, aml_or(a_cwd1, aml_int(0x10), a_cwd1)); aml_append(if_ctx, if_ctx2); /* Update DWORD3 in the buffer */ aml_append(if_ctx, aml_store(a_ctrl, aml_name("CDW3"))); aml_append(method, if_ctx); else_ctx = aml_else(); /* Unrecognized UUID */ aml_append(else_ctx, aml_or(a_cwd1, aml_int(4), a_cwd1)); aml_append(method, else_ctx); aml_append(method, aml_return(aml_arg(3))); return method; } static void build_dsdt(GArray *table_data, BIOSLinker *linker, AcpiPmInfo *pm, AcpiMiscInfo *misc, Range *pci_hole, Range *pci_hole64, MachineState *machine) { CrsRangeEntry *entry; Aml *dsdt, *sb_scope, *scope, *dev, *method, *field, *pkg, *crs; CrsRangeSet crs_range_set; PCMachineState *pcms = PC_MACHINE(machine); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine); uint32_t nr_mem = machine->ram_slots; int root_bus_limit = 0xFF; PCIBus *bus = NULL; int i; dsdt = init_aml_allocator(); /* Reserve space for header */ acpi_data_push(dsdt->buf, sizeof(AcpiTableHeader)); build_dbg_aml(dsdt); if (misc->is_piix4) { sb_scope = aml_scope("_SB"); dev = aml_device("PCI0"); aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0A03"))); aml_append(dev, aml_name_decl("_ADR", aml_int(0))); aml_append(dev, aml_name_decl("_UID", aml_int(1))); aml_append(sb_scope, dev); aml_append(dsdt, sb_scope); build_hpet_aml(dsdt); build_piix4_pm(dsdt); build_piix4_isa_bridge(dsdt); build_isa_devices_aml(dsdt); build_piix4_pci_hotplug(dsdt); build_piix4_pci0_int(dsdt); } else { sb_scope = aml_scope("_SB"); dev = aml_device("PCI0"); aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0A08"))); aml_append(dev, aml_name_decl("_CID", aml_eisaid("PNP0A03"))); aml_append(dev, aml_name_decl("_ADR", aml_int(0))); aml_append(dev, aml_name_decl("_UID", aml_int(1))); aml_append(dev, build_q35_osc_method()); aml_append(sb_scope, dev); aml_append(dsdt, sb_scope); build_hpet_aml(dsdt); build_q35_isa_bridge(dsdt); build_isa_devices_aml(dsdt); build_q35_pci0_int(dsdt); } if (pcmc->legacy_cpu_hotplug) { build_legacy_cpu_hotplug_aml(dsdt, machine, pm->cpu_hp_io_base); } else { CPUHotplugFeatures opts = { .apci_1_compatible = true, .has_legacy_cphp = true }; build_cpus_aml(dsdt, machine, opts, pm->cpu_hp_io_base, "\\_SB.PCI0", "\\_GPE._E02"); } build_memory_hotplug_aml(dsdt, nr_mem, "\\_SB.PCI0", "\\_GPE._E03"); scope = aml_scope("_GPE"); { aml_append(scope, aml_name_decl("_HID", aml_string("ACPI0006"))); if (misc->is_piix4) { method = aml_method("_E01", 0, AML_NOTSERIALIZED); aml_append(method, aml_acquire(aml_name("\\_SB.PCI0.BLCK"), 0xFFFF)); aml_append(method, aml_call0("\\_SB.PCI0.PCNT")); aml_append(method, aml_release(aml_name("\\_SB.PCI0.BLCK"))); aml_append(scope, method); } if (pcms->acpi_nvdimm_state.is_enabled) { method = aml_method("_E04", 0, AML_NOTSERIALIZED); aml_append(method, aml_notify(aml_name("\\_SB.NVDR"), aml_int(0x80))); aml_append(scope, method); } } aml_append(dsdt, scope); crs_range_set_init(&crs_range_set); bus = PC_MACHINE(machine)->bus; if (bus) { QLIST_FOREACH(bus, &bus->child, sibling) { uint8_t bus_num = pci_bus_num(bus); uint8_t numa_node = pci_bus_numa_node(bus); /* look only for expander root buses */ if (!pci_bus_is_root(bus)) { continue; } if (bus_num < root_bus_limit) { root_bus_limit = bus_num - 1; } scope = aml_scope("\\_SB"); dev = aml_device("PC%.02X", bus_num); aml_append(dev, aml_name_decl("_UID", aml_int(bus_num))); aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0A03"))); aml_append(dev, aml_name_decl("_BBN", aml_int(bus_num))); if (pci_bus_is_express(bus)) { aml_append(dev, build_q35_osc_method()); } if (numa_node != NUMA_NODE_UNASSIGNED) { aml_append(dev, aml_name_decl("_PXM", aml_int(numa_node))); } aml_append(dev, build_prt(false)); crs = build_crs(PCI_HOST_BRIDGE(BUS(bus)->parent), &crs_range_set); aml_append(dev, aml_name_decl("_CRS", crs)); aml_append(scope, dev); aml_append(dsdt, scope); } } scope = aml_scope("\\_SB.PCI0"); /* build PCI0._CRS */ crs = aml_resource_template(); aml_append(crs, aml_word_bus_number(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE, 0x0000, 0x0, root_bus_limit, 0x0000, root_bus_limit + 1)); aml_append(crs, aml_io(AML_DECODE16, 0x0CF8, 0x0CF8, 0x01, 0x08)); aml_append(crs, aml_word_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE, AML_ENTIRE_RANGE, 0x0000, 0x0000, 0x0CF7, 0x0000, 0x0CF8)); crs_replace_with_free_ranges(crs_range_set.io_ranges, 0x0D00, 0xFFFF); for (i = 0; i < crs_range_set.io_ranges->len; i++) { entry = g_ptr_array_index(crs_range_set.io_ranges, i); aml_append(crs, aml_word_io(AML_MIN_FIXED, AML_MAX_FIXED, AML_POS_DECODE, AML_ENTIRE_RANGE, 0x0000, entry->base, entry->limit, 0x0000, entry->limit - entry->base + 1)); } aml_append(crs, aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, AML_CACHEABLE, AML_READ_WRITE, 0, 0x000A0000, 0x000BFFFF, 0, 0x00020000)); crs_replace_with_free_ranges(crs_range_set.mem_ranges, range_lob(pci_hole), range_upb(pci_hole)); for (i = 0; i < crs_range_set.mem_ranges->len; i++) { entry = g_ptr_array_index(crs_range_set.mem_ranges, i); aml_append(crs, aml_dword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, AML_NON_CACHEABLE, AML_READ_WRITE, 0, entry->base, entry->limit, 0, entry->limit - entry->base + 1)); } if (!range_is_empty(pci_hole64)) { crs_replace_with_free_ranges(crs_range_set.mem_64bit_ranges, range_lob(pci_hole64), range_upb(pci_hole64)); for (i = 0; i < crs_range_set.mem_64bit_ranges->len; i++) { entry = g_ptr_array_index(crs_range_set.mem_64bit_ranges, i); aml_append(crs, aml_qword_memory(AML_POS_DECODE, AML_MIN_FIXED, AML_MAX_FIXED, AML_CACHEABLE, AML_READ_WRITE, 0, entry->base, entry->limit, 0, entry->limit - entry->base + 1)); } } if (TPM_IS_TIS(tpm_find())) { aml_append(crs, aml_memory32_fixed(TPM_TIS_ADDR_BASE, TPM_TIS_ADDR_SIZE, AML_READ_WRITE)); } aml_append(scope, aml_name_decl("_CRS", crs)); /* reserve GPE0 block resources */ dev = aml_device("GPE0"); aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A06"))); aml_append(dev, aml_name_decl("_UID", aml_string("GPE0 resources"))); /* device present, functioning, decoding, not shown in UI */ aml_append(dev, aml_name_decl("_STA", aml_int(0xB))); crs = aml_resource_template(); aml_append(crs, aml_io( AML_DECODE16, pm->fadt.gpe0_blk.address, pm->fadt.gpe0_blk.address, 1, pm->fadt.gpe0_blk.bit_width / 8) ); aml_append(dev, aml_name_decl("_CRS", crs)); aml_append(scope, dev); crs_range_set_free(&crs_range_set); /* reserve PCIHP resources */ if (pm->pcihp_io_len) { dev = aml_device("PHPR"); aml_append(dev, aml_name_decl("_HID", aml_string("PNP0A06"))); aml_append(dev, aml_name_decl("_UID", aml_string("PCI Hotplug resources"))); /* device present, functioning, decoding, not shown in UI */ aml_append(dev, aml_name_decl("_STA", aml_int(0xB))); crs = aml_resource_template(); aml_append(crs, aml_io(AML_DECODE16, pm->pcihp_io_base, pm->pcihp_io_base, 1, pm->pcihp_io_len) ); aml_append(dev, aml_name_decl("_CRS", crs)); aml_append(scope, dev); } aml_append(dsdt, scope); /* create S3_ / S4_ / S5_ packages if necessary */ scope = aml_scope("\\"); if (!pm->s3_disabled) { pkg = aml_package(4); aml_append(pkg, aml_int(1)); /* PM1a_CNT.SLP_TYP */ aml_append(pkg, aml_int(1)); /* PM1b_CNT.SLP_TYP, FIXME: not impl. */ aml_append(pkg, aml_int(0)); /* reserved */ aml_append(pkg, aml_int(0)); /* reserved */ aml_append(scope, aml_name_decl("_S3", pkg)); } if (!pm->s4_disabled) { pkg = aml_package(4); aml_append(pkg, aml_int(pm->s4_val)); /* PM1a_CNT.SLP_TYP */ /* PM1b_CNT.SLP_TYP, FIXME: not impl. */ aml_append(pkg, aml_int(pm->s4_val)); aml_append(pkg, aml_int(0)); /* reserved */ aml_append(pkg, aml_int(0)); /* reserved */ aml_append(scope, aml_name_decl("_S4", pkg)); } pkg = aml_package(4); aml_append(pkg, aml_int(0)); /* PM1a_CNT.SLP_TYP */ aml_append(pkg, aml_int(0)); /* PM1b_CNT.SLP_TYP not impl. */ aml_append(pkg, aml_int(0)); /* reserved */ aml_append(pkg, aml_int(0)); /* reserved */ aml_append(scope, aml_name_decl("_S5", pkg)); aml_append(dsdt, scope); /* create fw_cfg node, unconditionally */ { /* when using port i/o, the 8-bit data register *always* overlaps * with half of the 16-bit control register. Hence, the total size * of the i/o region used is FW_CFG_CTL_SIZE; when using DMA, the * DMA control register is located at FW_CFG_DMA_IO_BASE + 4 */ uint8_t io_size = object_property_get_bool(OBJECT(pcms->fw_cfg), "dma_enabled", NULL) ? ROUND_UP(FW_CFG_CTL_SIZE, 4) + sizeof(dma_addr_t) : FW_CFG_CTL_SIZE; scope = aml_scope("\\_SB.PCI0"); dev = aml_device("FWCF"); aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002"))); /* device present, functioning, decoding, not shown in UI */ aml_append(dev, aml_name_decl("_STA", aml_int(0xB))); crs = aml_resource_template(); aml_append(crs, aml_io(AML_DECODE16, FW_CFG_IO_BASE, FW_CFG_IO_BASE, 0x01, io_size) ); aml_append(dev, aml_name_decl("_CRS", crs)); aml_append(scope, dev); aml_append(dsdt, scope); } if (misc->applesmc_io_base) { scope = aml_scope("\\_SB.PCI0.ISA"); dev = aml_device("SMC"); aml_append(dev, aml_name_decl("_HID", aml_eisaid("APP0001"))); /* device present, functioning, decoding, not shown in UI */ aml_append(dev, aml_name_decl("_STA", aml_int(0xB))); crs = aml_resource_template(); aml_append(crs, aml_io(AML_DECODE16, misc->applesmc_io_base, misc->applesmc_io_base, 0x01, APPLESMC_MAX_DATA_LENGTH) ); aml_append(crs, aml_irq_no_flags(6)); aml_append(dev, aml_name_decl("_CRS", crs)); aml_append(scope, dev); aml_append(dsdt, scope); } if (misc->pvpanic_port) { scope = aml_scope("\\_SB.PCI0.ISA"); dev = aml_device("PEVT"); aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0001"))); crs = aml_resource_template(); aml_append(crs, aml_io(AML_DECODE16, misc->pvpanic_port, misc->pvpanic_port, 1, 1) ); aml_append(dev, aml_name_decl("_CRS", crs)); aml_append(dev, aml_operation_region("PEOR", AML_SYSTEM_IO, aml_int(misc->pvpanic_port), 1)); field = aml_field("PEOR", AML_BYTE_ACC, AML_NOLOCK, AML_PRESERVE); aml_append(field, aml_named_field("PEPT", 8)); aml_append(dev, field); /* device present, functioning, decoding, shown in UI */ aml_append(dev, aml_name_decl("_STA", aml_int(0xF))); method = aml_method("RDPT", 0, AML_NOTSERIALIZED); aml_append(method, aml_store(aml_name("PEPT"), aml_local(0))); aml_append(method, aml_return(aml_local(0))); aml_append(dev, method); method = aml_method("WRPT", 1, AML_NOTSERIALIZED); aml_append(method, aml_store(aml_arg(0), aml_name("PEPT"))); aml_append(dev, method); aml_append(scope, dev); aml_append(dsdt, scope); } sb_scope = aml_scope("\\_SB"); { Object *pci_host; PCIBus *bus = NULL; pci_host = acpi_get_i386_pci_host(); if (pci_host) { bus = PCI_HOST_BRIDGE(pci_host)->bus; } if (bus) { Aml *scope = aml_scope("PCI0"); /* Scan all PCI buses. Generate tables to support hotplug. */ build_append_pci_bus_devices(scope, bus, pm->pcihp_bridge_en); if (TPM_IS_TIS(tpm_find())) { dev = aml_device("ISA.TPM"); aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0C31"))); aml_append(dev, aml_name_decl("_STA", aml_int(0xF))); crs = aml_resource_template(); aml_append(crs, aml_memory32_fixed(TPM_TIS_ADDR_BASE, TPM_TIS_ADDR_SIZE, AML_READ_WRITE)); /* FIXME: TPM_TIS_IRQ=5 conflicts with PNP0C0F irqs, Rewrite to take IRQ from TPM device model and fix default IRQ value there to use some unused IRQ */ /* aml_append(crs, aml_irq_no_flags(TPM_TIS_IRQ)); */ aml_append(dev, aml_name_decl("_CRS", crs)); aml_append(scope, dev); } aml_append(sb_scope, scope); } } if (TPM_IS_CRB(tpm_find())) { dev = aml_device("TPM"); aml_append(dev, aml_name_decl("_HID", aml_string("MSFT0101"))); crs = aml_resource_template(); aml_append(crs, aml_memory32_fixed(TPM_CRB_ADDR_BASE, TPM_CRB_ADDR_SIZE, AML_READ_WRITE)); aml_append(dev, aml_name_decl("_CRS", crs)); method = aml_method("_STA", 0, AML_NOTSERIALIZED); aml_append(method, aml_return(aml_int(0x0f))); aml_append(dev, method); aml_append(sb_scope, dev); } aml_append(dsdt, sb_scope); /* copy AML table into ACPI tables blob and patch header there */ g_array_append_vals(table_data, dsdt->buf->data, dsdt->buf->len); build_header(linker, table_data, (void *)(table_data->data + table_data->len - dsdt->buf->len), "DSDT", dsdt->buf->len, 1, NULL, NULL); free_aml_allocator(); } static void build_hpet(GArray *table_data, BIOSLinker *linker) { Acpi20Hpet *hpet; hpet = acpi_data_push(table_data, sizeof(*hpet)); /* Note timer_block_id value must be kept in sync with value advertised by * emulated hpet */ hpet->timer_block_id = cpu_to_le32(0x8086a201); hpet->addr.address = cpu_to_le64(HPET_BASE); build_header(linker, table_data, (void *)hpet, "HPET", sizeof(*hpet), 1, NULL, NULL); } static void build_tpm_tcpa(GArray *table_data, BIOSLinker *linker, GArray *tcpalog) { Acpi20Tcpa *tcpa = acpi_data_push(table_data, sizeof *tcpa); unsigned log_addr_size = sizeof(tcpa->log_area_start_address); unsigned log_addr_offset = (char *)&tcpa->log_area_start_address - table_data->data; tcpa->platform_class = cpu_to_le16(TPM_TCPA_ACPI_CLASS_CLIENT); tcpa->log_area_minimum_length = cpu_to_le32(TPM_LOG_AREA_MINIMUM_SIZE); acpi_data_push(tcpalog, le32_to_cpu(tcpa->log_area_minimum_length)); bios_linker_loader_alloc(linker, ACPI_BUILD_TPMLOG_FILE, tcpalog, 1, false /* high memory */); /* log area start address to be filled by Guest linker */ bios_linker_loader_add_pointer(linker, ACPI_BUILD_TABLE_FILE, log_addr_offset, log_addr_size, ACPI_BUILD_TPMLOG_FILE, 0); build_header(linker, table_data, (void *)tcpa, "TCPA", sizeof(*tcpa), 2, NULL, NULL); } static void build_tpm2(GArray *table_data, BIOSLinker *linker, GArray *tcpalog) { Acpi20TPM2 *tpm2_ptr = acpi_data_push(table_data, sizeof *tpm2_ptr); unsigned log_addr_size = sizeof(tpm2_ptr->log_area_start_address); unsigned log_addr_offset = (char *)&tpm2_ptr->log_area_start_address - table_data->data; tpm2_ptr->platform_class = cpu_to_le16(TPM2_ACPI_CLASS_CLIENT); if (TPM_IS_TIS(tpm_find())) { tpm2_ptr->control_area_address = cpu_to_le64(0); tpm2_ptr->start_method = cpu_to_le32(TPM2_START_METHOD_MMIO); } else if (TPM_IS_CRB(tpm_find())) { tpm2_ptr->control_area_address = cpu_to_le64(TPM_CRB_ADDR_CTRL); tpm2_ptr->start_method = cpu_to_le32(TPM2_START_METHOD_CRB); } else { g_warn_if_reached(); } tpm2_ptr->log_area_minimum_length = cpu_to_le32(TPM_LOG_AREA_MINIMUM_SIZE); /* log area start address to be filled by Guest linker */ bios_linker_loader_add_pointer(linker, ACPI_BUILD_TABLE_FILE, log_addr_offset, log_addr_size, ACPI_BUILD_TPMLOG_FILE, 0); build_header(linker, table_data, (void *)tpm2_ptr, "TPM2", sizeof(*tpm2_ptr), 4, NULL, NULL); } #define HOLE_640K_START (640 * 1024) #define HOLE_640K_END (1024 * 1024) static void build_srat_hotpluggable_memory(GArray *table_data, uint64_t base, uint64_t len, int default_node) { MemoryDeviceInfoList *info_list = qmp_memory_device_list(); MemoryDeviceInfoList *info; MemoryDeviceInfo *mi; PCDIMMDeviceInfo *di; uint64_t end = base + len, cur, size; bool is_nvdimm; AcpiSratMemoryAffinity *numamem; MemoryAffinityFlags flags; for (cur = base, info = info_list; cur < end; cur += size, info = info->next) { numamem = acpi_data_push(table_data, sizeof *numamem); if (!info) { build_srat_memory(numamem, cur, end - cur, default_node, MEM_AFFINITY_HOTPLUGGABLE | MEM_AFFINITY_ENABLED); break; } mi = info->value; is_nvdimm = (mi->type == MEMORY_DEVICE_INFO_KIND_NVDIMM); di = !is_nvdimm ? mi->u.dimm.data : mi->u.nvdimm.data; if (cur < di->addr) { build_srat_memory(numamem, cur, di->addr - cur, default_node, MEM_AFFINITY_HOTPLUGGABLE | MEM_AFFINITY_ENABLED); numamem = acpi_data_push(table_data, sizeof *numamem); } size = di->size; flags = MEM_AFFINITY_ENABLED; if (di->hotpluggable) { flags |= MEM_AFFINITY_HOTPLUGGABLE; } if (is_nvdimm) { flags |= MEM_AFFINITY_NON_VOLATILE; } build_srat_memory(numamem, di->addr, size, di->node, flags); } qapi_free_MemoryDeviceInfoList(info_list); } static void build_srat(GArray *table_data, BIOSLinker *linker, MachineState *machine) { AcpiSystemResourceAffinityTable *srat; AcpiSratMemoryAffinity *numamem; int i; int srat_start, numa_start, slots; uint64_t mem_len, mem_base, next_base; MachineClass *mc = MACHINE_GET_CLASS(machine); const CPUArchIdList *apic_ids = mc->possible_cpu_arch_ids(machine); PCMachineState *pcms = PC_MACHINE(machine); ram_addr_t hotplugabble_address_space_size = object_property_get_int(OBJECT(pcms), PC_MACHINE_MEMHP_REGION_SIZE, NULL); srat_start = table_data->len; srat = acpi_data_push(table_data, sizeof *srat); srat->reserved1 = cpu_to_le32(1); for (i = 0; i < apic_ids->len; i++) { int node_id = apic_ids->cpus[i].props.node_id; uint32_t apic_id = apic_ids->cpus[i].arch_id; if (apic_id < 255) { AcpiSratProcessorAffinity *core; core = acpi_data_push(table_data, sizeof *core); core->type = ACPI_SRAT_PROCESSOR_APIC; core->length = sizeof(*core); core->local_apic_id = apic_id; core->proximity_lo = node_id; memset(core->proximity_hi, 0, 3); core->local_sapic_eid = 0; core->flags = cpu_to_le32(1); } else { AcpiSratProcessorX2ApicAffinity *core; core = acpi_data_push(table_data, sizeof *core); core->type = ACPI_SRAT_PROCESSOR_x2APIC; core->length = sizeof(*core); core->x2apic_id = cpu_to_le32(apic_id); core->proximity_domain = cpu_to_le32(node_id); core->flags = cpu_to_le32(1); } } /* the memory map is a bit tricky, it contains at least one hole * from 640k-1M and possibly another one from 3.5G-4G. */ next_base = 0; numa_start = table_data->len; for (i = 1; i < pcms->numa_nodes + 1; ++i) { mem_base = next_base; mem_len = pcms->node_mem[i - 1]; next_base = mem_base + mem_len; /* Cut out the 640K hole */ if (mem_base <= HOLE_640K_START && next_base > HOLE_640K_START) { mem_len -= next_base - HOLE_640K_START; if (mem_len > 0) { numamem = acpi_data_push(table_data, sizeof *numamem); build_srat_memory(numamem, mem_base, mem_len, i - 1, MEM_AFFINITY_ENABLED); } /* Check for the rare case: 640K < RAM < 1M */ if (next_base <= HOLE_640K_END) { next_base = HOLE_640K_END; continue; } mem_base = HOLE_640K_END; mem_len = next_base - HOLE_640K_END; } /* Cut out the ACPI_PCI hole */ if (mem_base <= pcms->below_4g_mem_size && next_base > pcms->below_4g_mem_size) { mem_len -= next_base - pcms->below_4g_mem_size; if (mem_len > 0) { numamem = acpi_data_push(table_data, sizeof *numamem); build_srat_memory(numamem, mem_base, mem_len, i - 1, MEM_AFFINITY_ENABLED); } mem_base = 1ULL << 32; mem_len = next_base - pcms->below_4g_mem_size; next_base = mem_base + mem_len; } numamem = acpi_data_push(table_data, sizeof *numamem); build_srat_memory(numamem, mem_base, mem_len, i - 1, MEM_AFFINITY_ENABLED); } slots = (table_data->len - numa_start) / sizeof *numamem; for (; slots < pcms->numa_nodes + 2; slots++) { numamem = acpi_data_push(table_data, sizeof *numamem); build_srat_memory(numamem, 0, 0, 0, MEM_AFFINITY_NOFLAGS); } /* * Entry is required for Windows to enable memory hotplug in OS * and for Linux to enable SWIOTLB when booted with less than * 4G of RAM. Windows works better if the entry sets proximity * to the highest NUMA node in the machine. * Memory devices may override proximity set by this entry, * providing _PXM method if necessary. */ if (hotplugabble_address_space_size) { build_srat_hotpluggable_memory(table_data, machine->device_memory->base, hotplugabble_address_space_size, pcms->numa_nodes - 1); } build_header(linker, table_data, (void *)(table_data->data + srat_start), "SRAT", table_data->len - srat_start, 1, NULL, NULL); } static void build_mcfg_q35(GArray *table_data, BIOSLinker *linker, AcpiMcfgInfo *info) { AcpiTableMcfg *mcfg; const char *sig; int len = sizeof(*mcfg) + 1 * sizeof(mcfg->allocation[0]); mcfg = acpi_data_push(table_data, len); mcfg->allocation[0].address = cpu_to_le64(info->mcfg_base); /* Only a single allocation so no need to play with segments */ mcfg->allocation[0].pci_segment = cpu_to_le16(0); mcfg->allocation[0].start_bus_number = 0; mcfg->allocation[0].end_bus_number = PCIE_MMCFG_BUS(info->mcfg_size - 1); /* MCFG is used for ECAM which can be enabled or disabled by guest. * To avoid table size changes (which create migration issues), * always create the table even if there are no allocations, * but set the signature to a reserved value in this case. * ACPI spec requires OSPMs to ignore such tables. */ if (info->mcfg_base == PCIE_BASE_ADDR_UNMAPPED) { /* Reserved signature: ignored by OSPM */ sig = "QEMU"; } else { sig = "MCFG"; } build_header(linker, table_data, (void *)mcfg, sig, len, 1, NULL, NULL); } /* * VT-d spec 8.1 DMA Remapping Reporting Structure * (version Oct. 2014 or later) */ static void build_dmar_q35(GArray *table_data, BIOSLinker *linker) { int dmar_start = table_data->len; AcpiTableDmar *dmar; AcpiDmarHardwareUnit *drhd; AcpiDmarRootPortATS *atsr; uint8_t dmar_flags = 0; X86IOMMUState *iommu = x86_iommu_get_default(); AcpiDmarDeviceScope *scope = NULL; /* Root complex IOAPIC use one path[0] only */ size_t ioapic_scope_size = sizeof(*scope) + sizeof(scope->path[0]); IntelIOMMUState *intel_iommu = INTEL_IOMMU_DEVICE(iommu); assert(iommu); if (iommu->intr_supported) { dmar_flags |= 0x1; /* Flags: 0x1: INT_REMAP */ } dmar = acpi_data_push(table_data, sizeof(*dmar)); dmar->host_address_width = intel_iommu->aw_bits - 1; dmar->flags = dmar_flags; /* DMAR Remapping Hardware Unit Definition structure */ drhd = acpi_data_push(table_data, sizeof(*drhd) + ioapic_scope_size); drhd->type = cpu_to_le16(ACPI_DMAR_TYPE_HARDWARE_UNIT); drhd->length = cpu_to_le16(sizeof(*drhd) + ioapic_scope_size); drhd->flags = ACPI_DMAR_INCLUDE_PCI_ALL; drhd->pci_segment = cpu_to_le16(0); drhd->address = cpu_to_le64(Q35_HOST_BRIDGE_IOMMU_ADDR); /* Scope definition for the root-complex IOAPIC. See VT-d spec * 8.3.1 (version Oct. 2014 or later). */ scope = &drhd->scope[0]; scope->entry_type = 0x03; /* Type: 0x03 for IOAPIC */ scope->length = ioapic_scope_size; scope->enumeration_id = ACPI_BUILD_IOAPIC_ID; scope->bus = Q35_PSEUDO_BUS_PLATFORM; scope->path[0].device = PCI_SLOT(Q35_PSEUDO_DEVFN_IOAPIC); scope->path[0].function = PCI_FUNC(Q35_PSEUDO_DEVFN_IOAPIC); if (iommu->dt_supported) { atsr = acpi_data_push(table_data, sizeof(*atsr)); atsr->type = cpu_to_le16(ACPI_DMAR_TYPE_ATSR); atsr->length = cpu_to_le16(sizeof(*atsr)); atsr->flags = ACPI_DMAR_ATSR_ALL_PORTS; atsr->pci_segment = cpu_to_le16(0); } build_header(linker, table_data, (void *)(table_data->data + dmar_start), "DMAR", table_data->len - dmar_start, 1, NULL, NULL); } /* * IVRS table as specified in AMD IOMMU Specification v2.62, Section 5.2 * accessible here http://support.amd.com/TechDocs/48882_IOMMU.pdf */ static void build_amd_iommu(GArray *table_data, BIOSLinker *linker) { int iommu_start = table_data->len; AMDVIState *s = AMD_IOMMU_DEVICE(x86_iommu_get_default()); /* IVRS header */ acpi_data_push(table_data, sizeof(AcpiTableHeader)); /* IVinfo - IO virtualization information common to all * IOMMU units in a system */ build_append_int_noprefix(table_data, 40UL << 8/* PASize */, 4); /* reserved */ build_append_int_noprefix(table_data, 0, 8); /* IVHD definition - type 10h */ build_append_int_noprefix(table_data, 0x10, 1); /* virtualization flags */ build_append_int_noprefix(table_data, (1UL << 0) | /* HtTunEn */ (1UL << 4) | /* iotblSup */ (1UL << 6) | /* PrefSup */ (1UL << 7), /* PPRSup */ 1); /* IVHD length */ build_append_int_noprefix(table_data, 0x24, 2); /* DeviceID */ build_append_int_noprefix(table_data, s->devid, 2); /* Capability offset */ build_append_int_noprefix(table_data, s->capab_offset, 2); /* IOMMU base address */ build_append_int_noprefix(table_data, s->mmio.addr, 8); /* PCI Segment Group */ build_append_int_noprefix(table_data, 0, 2); /* IOMMU info */ build_append_int_noprefix(table_data, 0, 2); /* IOMMU Feature Reporting */ build_append_int_noprefix(table_data, (48UL << 30) | /* HATS */ (48UL << 28) | /* GATS */ (1UL << 2), /* GTSup */ 4); /* * Type 1 device entry reporting all devices * These are 4-byte device entries currently reporting the range of * Refer to Spec - Table 95:IVHD Device Entry Type Codes(4-byte) */ build_append_int_noprefix(table_data, 0x0000001, 4); build_header(linker, table_data, (void *)(table_data->data + iommu_start), "IVRS", table_data->len - iommu_start, 1, NULL, NULL); } static GArray * build_rsdp(GArray *rsdp_table, BIOSLinker *linker, unsigned rsdt_tbl_offset) { AcpiRsdpDescriptor *rsdp = acpi_data_push(rsdp_table, sizeof *rsdp); unsigned rsdt_pa_size = sizeof(rsdp->rsdt_physical_address); unsigned rsdt_pa_offset = (char *)&rsdp->rsdt_physical_address - rsdp_table->data; bios_linker_loader_alloc(linker, ACPI_BUILD_RSDP_FILE, rsdp_table, 16, true /* fseg memory */); memcpy(&rsdp->signature, "RSD PTR ", 8); memcpy(rsdp->oem_id, ACPI_BUILD_APPNAME6, 6); /* Address to be filled by Guest linker */ bios_linker_loader_add_pointer(linker, ACPI_BUILD_RSDP_FILE, rsdt_pa_offset, rsdt_pa_size, ACPI_BUILD_TABLE_FILE, rsdt_tbl_offset); /* Checksum to be filled by Guest linker */ bios_linker_loader_add_checksum(linker, ACPI_BUILD_RSDP_FILE, (char *)rsdp - rsdp_table->data, sizeof *rsdp, (char *)&rsdp->checksum - rsdp_table->data); return rsdp_table; } typedef struct AcpiBuildState { /* Copy of table in RAM (for patching). */ MemoryRegion *table_mr; /* Is table patched? */ uint8_t patched; void *rsdp; MemoryRegion *rsdp_mr; MemoryRegion *linker_mr; } AcpiBuildState; static bool acpi_get_mcfg(AcpiMcfgInfo *mcfg) { Object *pci_host; QObject *o; pci_host = acpi_get_i386_pci_host(); g_assert(pci_host); o = object_property_get_qobject(pci_host, PCIE_HOST_MCFG_BASE, NULL); if (!o) { return false; } mcfg->mcfg_base = qnum_get_uint(qobject_to(QNum, o)); qobject_unref(o); o = object_property_get_qobject(pci_host, PCIE_HOST_MCFG_SIZE, NULL); assert(o); mcfg->mcfg_size = qnum_get_uint(qobject_to(QNum, o)); qobject_unref(o); return true; } static void acpi_build(AcpiBuildTables *tables, MachineState *machine) { PCMachineState *pcms = PC_MACHINE(machine); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); GArray *table_offsets; unsigned facs, dsdt, rsdt, fadt; AcpiPmInfo pm; AcpiMiscInfo misc; AcpiMcfgInfo mcfg; Range pci_hole, pci_hole64; uint8_t *u; size_t aml_len = 0; GArray *tables_blob = tables->table_data; AcpiSlicOem slic_oem = { .id = NULL, .table_id = NULL }; Object *vmgenid_dev; acpi_get_pm_info(&pm); acpi_get_misc_info(&misc); acpi_get_pci_holes(&pci_hole, &pci_hole64); acpi_get_slic_oem(&slic_oem); table_offsets = g_array_new(false, true /* clear */, sizeof(uint32_t)); ACPI_BUILD_DPRINTF("init ACPI tables\n"); bios_linker_loader_alloc(tables->linker, ACPI_BUILD_TABLE_FILE, tables_blob, 64 /* Ensure FACS is aligned */, false /* high memory */); /* * FACS is pointed to by FADT. * We place it first since it's the only table that has alignment * requirements. */ facs = tables_blob->len; build_facs(tables_blob, tables->linker); /* DSDT is pointed to by FADT */ dsdt = tables_blob->len; build_dsdt(tables_blob, tables->linker, &pm, &misc, &pci_hole, &pci_hole64, machine); /* Count the size of the DSDT and SSDT, we will need it for legacy * sizing of ACPI tables. */ aml_len += tables_blob->len - dsdt; /* ACPI tables pointed to by RSDT */ fadt = tables_blob->len; acpi_add_table(table_offsets, tables_blob); pm.fadt.facs_tbl_offset = &facs; pm.fadt.dsdt_tbl_offset = &dsdt; pm.fadt.xdsdt_tbl_offset = &dsdt; build_fadt(tables_blob, tables->linker, &pm.fadt, slic_oem.id, slic_oem.table_id); aml_len += tables_blob->len - fadt; acpi_add_table(table_offsets, tables_blob); build_madt(tables_blob, tables->linker, pcms); vmgenid_dev = find_vmgenid_dev(); if (vmgenid_dev) { acpi_add_table(table_offsets, tables_blob); vmgenid_build_acpi(VMGENID(vmgenid_dev), tables_blob, tables->vmgenid, tables->linker); } if (misc.has_hpet) { acpi_add_table(table_offsets, tables_blob); build_hpet(tables_blob, tables->linker); } if (misc.tpm_version != TPM_VERSION_UNSPEC) { acpi_add_table(table_offsets, tables_blob); build_tpm_tcpa(tables_blob, tables->linker, tables->tcpalog); if (misc.tpm_version == TPM_VERSION_2_0) { acpi_add_table(table_offsets, tables_blob); build_tpm2(tables_blob, tables->linker, tables->tcpalog); } } if (pcms->numa_nodes) { acpi_add_table(table_offsets, tables_blob); build_srat(tables_blob, tables->linker, machine); if (have_numa_distance) { acpi_add_table(table_offsets, tables_blob); build_slit(tables_blob, tables->linker); } } if (acpi_get_mcfg(&mcfg)) { acpi_add_table(table_offsets, tables_blob); build_mcfg_q35(tables_blob, tables->linker, &mcfg); } if (x86_iommu_get_default()) { IommuType IOMMUType = x86_iommu_get_type(); if (IOMMUType == TYPE_AMD) { acpi_add_table(table_offsets, tables_blob); build_amd_iommu(tables_blob, tables->linker); } else if (IOMMUType == TYPE_INTEL) { acpi_add_table(table_offsets, tables_blob); build_dmar_q35(tables_blob, tables->linker); } } if (pcms->acpi_nvdimm_state.is_enabled) { nvdimm_build_acpi(table_offsets, tables_blob, tables->linker, &pcms->acpi_nvdimm_state, machine->ram_slots); } /* Add tables supplied by user (if any) */ for (u = acpi_table_first(); u; u = acpi_table_next(u)) { unsigned len = acpi_table_len(u); acpi_add_table(table_offsets, tables_blob); g_array_append_vals(tables_blob, u, len); } /* RSDT is pointed to by RSDP */ rsdt = tables_blob->len; build_rsdt(tables_blob, tables->linker, table_offsets, slic_oem.id, slic_oem.table_id); /* RSDP is in FSEG memory, so allocate it separately */ build_rsdp(tables->rsdp, tables->linker, rsdt); /* We'll expose it all to Guest so we want to reduce * chance of size changes. * * We used to align the tables to 4k, but of course this would * too simple to be enough. 4k turned out to be too small an * alignment very soon, and in fact it is almost impossible to * keep the table size stable for all (max_cpus, max_memory_slots) * combinations. So the table size is always 64k for pc-i440fx-2.1 * and we give an error if the table grows beyond that limit. * * We still have the problem of migrating from "-M pc-i440fx-2.0". For * that, we exploit the fact that QEMU 2.1 generates _smaller_ tables * than 2.0 and we can always pad the smaller tables with zeros. We can * then use the exact size of the 2.0 tables. * * All this is for PIIX4, since QEMU 2.0 didn't support Q35 migration. */ if (pcmc->legacy_acpi_table_size) { /* Subtracting aml_len gives the size of fixed tables. Then add the * size of the PIIX4 DSDT/SSDT in QEMU 2.0. */ int legacy_aml_len = pcmc->legacy_acpi_table_size + ACPI_BUILD_LEGACY_CPU_AML_SIZE * pcms->apic_id_limit; int legacy_table_size = ROUND_UP(tables_blob->len - aml_len + legacy_aml_len, ACPI_BUILD_ALIGN_SIZE); if (tables_blob->len > legacy_table_size) { /* Should happen only with PCI bridges and -M pc-i440fx-2.0. */ warn_report("ACPI table size %u exceeds %d bytes," " migration may not work", tables_blob->len, legacy_table_size); error_printf("Try removing CPUs, NUMA nodes, memory slots" " or PCI bridges."); } g_array_set_size(tables_blob, legacy_table_size); } else { /* Make sure we have a buffer in case we need to resize the tables. */ if (tables_blob->len > ACPI_BUILD_TABLE_SIZE / 2) { /* As of QEMU 2.1, this fires with 160 VCPUs and 255 memory slots. */ warn_report("ACPI table size %u exceeds %d bytes," " migration may not work", tables_blob->len, ACPI_BUILD_TABLE_SIZE / 2); error_printf("Try removing CPUs, NUMA nodes, memory slots" " or PCI bridges."); } acpi_align_size(tables_blob, ACPI_BUILD_TABLE_SIZE); } acpi_align_size(tables->linker->cmd_blob, ACPI_BUILD_ALIGN_SIZE); /* Cleanup memory that's no longer used. */ g_array_free(table_offsets, true); } static void acpi_ram_update(MemoryRegion *mr, GArray *data) { uint32_t size = acpi_data_len(data); /* Make sure RAM size is correct - in case it got changed e.g. by migration */ memory_region_ram_resize(mr, size, &error_abort); memcpy(memory_region_get_ram_ptr(mr), data->data, size); memory_region_set_dirty(mr, 0, size); } static void acpi_build_update(void *build_opaque) { AcpiBuildState *build_state = build_opaque; AcpiBuildTables tables; /* No state to update or already patched? Nothing to do. */ if (!build_state || build_state->patched) { return; } build_state->patched = 1; acpi_build_tables_init(&tables); acpi_build(&tables, MACHINE(qdev_get_machine())); acpi_ram_update(build_state->table_mr, tables.table_data); if (build_state->rsdp) { memcpy(build_state->rsdp, tables.rsdp->data, acpi_data_len(tables.rsdp)); } else { acpi_ram_update(build_state->rsdp_mr, tables.rsdp); } acpi_ram_update(build_state->linker_mr, tables.linker->cmd_blob); acpi_build_tables_cleanup(&tables, true); } static void acpi_build_reset(void *build_opaque) { AcpiBuildState *build_state = build_opaque; build_state->patched = 0; } static MemoryRegion *acpi_add_rom_blob(AcpiBuildState *build_state, GArray *blob, const char *name, uint64_t max_size) { return rom_add_blob(name, blob->data, acpi_data_len(blob), max_size, -1, name, acpi_build_update, build_state, NULL, true); } static const VMStateDescription vmstate_acpi_build = { .name = "acpi_build", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(patched, AcpiBuildState), VMSTATE_END_OF_LIST() }, }; void acpi_setup(void) { PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); AcpiBuildTables tables; AcpiBuildState *build_state; Object *vmgenid_dev; if (!pcms->fw_cfg) { ACPI_BUILD_DPRINTF("No fw cfg. Bailing out.\n"); return; } if (!pcms->acpi_build_enabled) { ACPI_BUILD_DPRINTF("ACPI build disabled. Bailing out.\n"); return; } if (!acpi_enabled) { ACPI_BUILD_DPRINTF("ACPI disabled. Bailing out.\n"); return; } build_state = g_malloc0(sizeof *build_state); acpi_build_tables_init(&tables); acpi_build(&tables, MACHINE(pcms)); /* Now expose it all to Guest */ build_state->table_mr = acpi_add_rom_blob(build_state, tables.table_data, ACPI_BUILD_TABLE_FILE, ACPI_BUILD_TABLE_MAX_SIZE); assert(build_state->table_mr != NULL); build_state->linker_mr = acpi_add_rom_blob(build_state, tables.linker->cmd_blob, "etc/table-loader", 0); fw_cfg_add_file(pcms->fw_cfg, ACPI_BUILD_TPMLOG_FILE, tables.tcpalog->data, acpi_data_len(tables.tcpalog)); vmgenid_dev = find_vmgenid_dev(); if (vmgenid_dev) { vmgenid_add_fw_cfg(VMGENID(vmgenid_dev), pcms->fw_cfg, tables.vmgenid); } if (!pcmc->rsdp_in_ram) { /* * Keep for compatibility with old machine types. * Though RSDP is small, its contents isn't immutable, so * we'll update it along with the rest of tables on guest access. */ uint32_t rsdp_size = acpi_data_len(tables.rsdp); build_state->rsdp = g_memdup(tables.rsdp->data, rsdp_size); fw_cfg_add_file_callback(pcms->fw_cfg, ACPI_BUILD_RSDP_FILE, acpi_build_update, NULL, build_state, build_state->rsdp, rsdp_size, true); build_state->rsdp_mr = NULL; } else { build_state->rsdp = NULL; build_state->rsdp_mr = acpi_add_rom_blob(build_state, tables.rsdp, ACPI_BUILD_RSDP_FILE, 0); } qemu_register_reset(acpi_build_reset, build_state); acpi_build_reset(build_state); vmstate_register(NULL, 0, &vmstate_acpi_build, build_state); /* Cleanup tables but don't free the memory: we track it * in build_state. */ acpi_build_tables_cleanup(&tables, false); }