/* * QEMU Firmware configuration device emulation * * Copyright (c) 2008 Gleb Natapov * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "sysemu.h" #include "isa.h" #include "fw_cfg.h" /* debug firmware config */ //#define DEBUG_FW_CFG #ifdef DEBUG_FW_CFG #define FW_CFG_DPRINTF(fmt, args...) \ do { printf("FW_CFG: " fmt , ##args); } while (0) #else #define FW_CFG_DPRINTF(fmt, args...) #endif #define FW_CFG_SIZE 2 typedef struct _FWCfgEntry { uint16_t len; uint8_t *data; void *callback_opaque; FWCfgCallback callback; } FWCfgEntry; typedef struct _FWCfgState { FWCfgEntry entries[2][FW_CFG_MAX_ENTRY]; uint16_t cur_entry; uint16_t cur_offset; } FWCfgState; static void fw_cfg_write(FWCfgState *s, uint8_t value) { int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; FW_CFG_DPRINTF("write %d\n", value); if (s->cur_entry & FW_CFG_WRITE_CHANNEL && s->cur_offset < e->len) { e->data[s->cur_offset++] = value; if (s->cur_offset == e->len) { e->callback(e->callback_opaque, e->data); s->cur_offset = 0; } } } static int fw_cfg_select(FWCfgState *s, uint16_t key) { int ret; s->cur_offset = 0; if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) { s->cur_entry = FW_CFG_INVALID; ret = 0; } else { s->cur_entry = key; ret = 1; } FW_CFG_DPRINTF("select key %d (%sfound)\n", key, ret ? "" : "not "); return ret; } static uint8_t fw_cfg_read(FWCfgState *s) { int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; uint8_t ret; if (s->cur_entry == FW_CFG_INVALID || !e->data || s->cur_offset >= e->len) ret = 0; else ret = e->data[s->cur_offset++]; FW_CFG_DPRINTF("read %d\n", ret); return ret; } static uint32_t fw_cfg_io_readb(void *opaque, uint32_t addr) { return fw_cfg_read(opaque); } static void fw_cfg_io_writeb(void *opaque, uint32_t addr, uint32_t value) { return fw_cfg_write(opaque, (uint8_t)value); } static void fw_cfg_io_writew(void *opaque, uint32_t addr, uint32_t value) { fw_cfg_select(opaque, (uint16_t)value); } static uint32_t fw_cfg_mem_readb(void *opaque, target_phys_addr_t addr) { return fw_cfg_read(opaque); } static void fw_cfg_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t value) { return fw_cfg_write(opaque, (uint8_t)value); } static void fw_cfg_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t value) { fw_cfg_select(opaque, (uint16_t)value); } static CPUReadMemoryFunc *fw_cfg_ctl_mem_read[3] = { NULL, NULL, NULL, }; static CPUWriteMemoryFunc *fw_cfg_ctl_mem_write[3] = { NULL, fw_cfg_mem_writew, NULL, }; static CPUReadMemoryFunc *fw_cfg_data_mem_read[3] = { fw_cfg_mem_readb, NULL, NULL, }; static CPUWriteMemoryFunc *fw_cfg_data_mem_write[3] = { fw_cfg_mem_writeb, NULL, NULL, }; static void fw_cfg_reset(void *opaque) { FWCfgState *s = opaque; fw_cfg_select(s, 0); } static void fw_cfg_save(QEMUFile *f, void *opaque) { FWCfgState *s = opaque; qemu_put_be16s(f, &s->cur_entry); qemu_put_be16s(f, &s->cur_offset); } static int fw_cfg_load(QEMUFile *f, void *opaque, int version_id) { FWCfgState *s = opaque; if (version_id > 1) return -EINVAL; qemu_get_be16s(f, &s->cur_entry); qemu_get_be16s(f, &s->cur_offset); return 0; } int fw_cfg_add_bytes(void *opaque, uint16_t key, uint8_t *data, uint16_t len) { FWCfgState *s = opaque; int arch = !!(key & FW_CFG_ARCH_LOCAL); key &= FW_CFG_ENTRY_MASK; if (key >= FW_CFG_MAX_ENTRY) return 0; s->entries[arch][key].data = data; s->entries[arch][key].len = len; return 1; } int fw_cfg_add_i16(void *opaque, uint16_t key, uint16_t value) { uint16_t *copy; copy = qemu_malloc(sizeof(value)); if (!copy) return 0; *copy = cpu_to_le16(value); return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value)); } int fw_cfg_add_i32(void *opaque, uint16_t key, uint32_t value) { uint32_t *copy; copy = qemu_malloc(sizeof(value)); if (!copy) return 0; *copy = cpu_to_le32(value); return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value)); } int fw_cfg_add_i64(void *opaque, uint16_t key, uint64_t value) { uint64_t *copy; copy = qemu_malloc(sizeof(value)); if (!copy) return 0; *copy = cpu_to_le64(value); return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value)); } int fw_cfg_add_callback(void *opaque, uint16_t key, FWCfgCallback callback, void *callback_opaque, uint8_t *data, size_t len) { FWCfgState *s = opaque; int arch = !!(key & FW_CFG_ARCH_LOCAL); key &= FW_CFG_ENTRY_MASK; if (key >= FW_CFG_MAX_ENTRY || !(key & FW_CFG_WRITE_CHANNEL) || len > 65535) return 0; s->entries[arch][key].data = data; s->entries[arch][key].len = len; s->entries[arch][key].callback_opaque = callback_opaque; s->entries[arch][key].callback = callback; return 1; } void *fw_cfg_init(uint32_t ctl_port, uint32_t data_port, target_phys_addr_t ctl_addr, target_phys_addr_t data_addr) { FWCfgState *s; int io_ctl_memory, io_data_memory; s = qemu_mallocz(sizeof(FWCfgState)); if (!s) return NULL; if (ctl_port) { register_ioport_write(ctl_port, 2, 2, fw_cfg_io_writew, s); } if (data_port) { register_ioport_read(data_port, 1, 1, fw_cfg_io_readb, s); register_ioport_write(data_port, 1, 1, fw_cfg_io_writeb, s); } if (ctl_addr) { io_ctl_memory = cpu_register_io_memory(0, fw_cfg_ctl_mem_read, fw_cfg_ctl_mem_write, s); cpu_register_physical_memory(ctl_addr, FW_CFG_SIZE, io_ctl_memory); } if (data_addr) { io_data_memory = cpu_register_io_memory(0, fw_cfg_data_mem_read, fw_cfg_data_mem_write, s); cpu_register_physical_memory(data_addr, FW_CFG_SIZE, io_data_memory); } fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (uint8_t *)"QEMU", 4); fw_cfg_add_bytes(s, FW_CFG_UUID, qemu_uuid, 16); register_savevm("fw_cfg", -1, 1, fw_cfg_save, fw_cfg_load, s); qemu_register_reset(fw_cfg_reset, s); fw_cfg_reset(s); return s; }