/* * Samsung exynos4210 Display Controller (FIMD) * * Copyright (c) 2000 - 2011 Samsung Electronics Co., Ltd. * All rights reserved. * Based on LCD controller for Samsung S5PC1xx-based board emulation * by Kirill Batuzov <batuzovk@ispras.ru> * * Contributed by Mitsyanko Igor <i.mitsyanko@samsung.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "qemu-common.h" #include "cpu-all.h" #include "sysbus.h" #include "console.h" #include "pixel_ops.h" #include "bswap.h" /* Debug messages configuration */ #define EXYNOS4210_FIMD_DEBUG 0 #define EXYNOS4210_FIMD_MODE_TRACE 0 #if EXYNOS4210_FIMD_DEBUG == 0 #define DPRINT_L1(fmt, args...) do { } while (0) #define DPRINT_L2(fmt, args...) do { } while (0) #define DPRINT_ERROR(fmt, args...) do { } while (0) #elif EXYNOS4210_FIMD_DEBUG == 1 #define DPRINT_L1(fmt, args...) \ do {fprintf(stderr, "QEMU FIMD: "fmt, ## args); } while (0) #define DPRINT_L2(fmt, args...) do { } while (0) #define DPRINT_ERROR(fmt, args...) \ do {fprintf(stderr, "QEMU FIMD ERROR: "fmt, ## args); } while (0) #else #define DPRINT_L1(fmt, args...) \ do {fprintf(stderr, "QEMU FIMD: "fmt, ## args); } while (0) #define DPRINT_L2(fmt, args...) \ do {fprintf(stderr, "QEMU FIMD: "fmt, ## args); } while (0) #define DPRINT_ERROR(fmt, args...) \ do {fprintf(stderr, "QEMU FIMD ERROR: "fmt, ## args); } while (0) #endif #if EXYNOS4210_FIMD_MODE_TRACE == 0 #define DPRINT_TRACE(fmt, args...) do { } while (0) #else #define DPRINT_TRACE(fmt, args...) \ do {fprintf(stderr, "QEMU FIMD: "fmt, ## args); } while (0) #endif #define NUM_OF_WINDOWS 5 #define FIMD_REGS_SIZE 0x4114 /* Video main control registers */ #define FIMD_VIDCON0 0x0000 #define FIMD_VIDCON1 0x0004 #define FIMD_VIDCON2 0x0008 #define FIMD_VIDCON3 0x000C #define FIMD_VIDCON0_ENVID_F (1 << 0) #define FIMD_VIDCON0_ENVID (1 << 1) #define FIMD_VIDCON0_ENVID_MASK ((1 << 0) | (1 << 1)) #define FIMD_VIDCON1_ROMASK 0x07FFE000 /* Video time control registers */ #define FIMD_VIDTCON_START 0x10 #define FIMD_VIDTCON_END 0x1C #define FIMD_VIDTCON2_SIZE_MASK 0x07FF #define FIMD_VIDTCON2_HOR_SHIFT 0 #define FIMD_VIDTCON2_VER_SHIFT 11 /* Window control registers */ #define FIMD_WINCON_START 0x0020 #define FIMD_WINCON_END 0x0030 #define FIMD_WINCON_ROMASK 0x82200000 #define FIMD_WINCON_ENWIN (1 << 0) #define FIMD_WINCON_BLD_PIX (1 << 6) #define FIMD_WINCON_ALPHA_MUL (1 << 7) #define FIMD_WINCON_ALPHA_SEL (1 << 1) #define FIMD_WINCON_SWAP 0x078000 #define FIMD_WINCON_SWAP_SHIFT 15 #define FIMD_WINCON_SWAP_WORD 0x1 #define FIMD_WINCON_SWAP_HWORD 0x2 #define FIMD_WINCON_SWAP_BYTE 0x4 #define FIMD_WINCON_SWAP_BITS 0x8 #define FIMD_WINCON_BUFSTAT_L (1 << 21) #define FIMD_WINCON_BUFSTAT_H (1 << 31) #define FIMD_WINCON_BUFSTATUS ((1 << 21) | (1 << 31)) #define FIMD_WINCON_BUF0_STAT ((0 << 21) | (0 << 31)) #define FIMD_WINCON_BUF1_STAT ((1 << 21) | (0 << 31)) #define FIMD_WINCON_BUF2_STAT ((0 << 21) | (1 << 31)) #define FIMD_WINCON_BUFSELECT ((1 << 20) | (1 << 30)) #define FIMD_WINCON_BUF0_SEL ((0 << 20) | (0 << 30)) #define FIMD_WINCON_BUF1_SEL ((1 << 20) | (0 << 30)) #define FIMD_WINCON_BUF2_SEL ((0 << 20) | (1 << 30)) #define FIMD_WINCON_BUFMODE (1 << 14) #define IS_PALETTIZED_MODE(w) (w->wincon & 0xC) #define PAL_MODE_WITH_ALPHA(x) ((x) == 7) #define WIN_BPP_MODE(w) ((w->wincon >> 2) & 0xF) #define WIN_BPP_MODE_WITH_ALPHA(w) \ (WIN_BPP_MODE(w) == 0xD || WIN_BPP_MODE(w) == 0xE) /* Shadow control register */ #define FIMD_SHADOWCON 0x0034 #define FIMD_WINDOW_PROTECTED(s, w) ((s) & (1 << (10 + (w)))) /* Channel mapping control register */ #define FIMD_WINCHMAP 0x003C /* Window position control registers */ #define FIMD_VIDOSD_START 0x0040 #define FIMD_VIDOSD_END 0x0088 #define FIMD_VIDOSD_COORD_MASK 0x07FF #define FIMD_VIDOSD_HOR_SHIFT 11 #define FIMD_VIDOSD_VER_SHIFT 0 #define FIMD_VIDOSD_ALPHA_AEN0 0xFFF000 #define FIMD_VIDOSD_AEN0_SHIFT 12 #define FIMD_VIDOSD_ALPHA_AEN1 0x000FFF /* Frame buffer address registers */ #define FIMD_VIDWADD0_START 0x00A0 #define FIMD_VIDWADD0_END 0x00C4 #define FIMD_VIDWADD0_END 0x00C4 #define FIMD_VIDWADD1_START 0x00D0 #define FIMD_VIDWADD1_END 0x00F4 #define FIMD_VIDWADD2_START 0x0100 #define FIMD_VIDWADD2_END 0x0110 #define FIMD_VIDWADD2_PAGEWIDTH 0x1FFF #define FIMD_VIDWADD2_OFFSIZE 0x1FFF #define FIMD_VIDWADD2_OFFSIZE_SHIFT 13 #define FIMD_VIDW0ADD0_B2 0x20A0 #define FIMD_VIDW4ADD0_B2 0x20C0 /* Video interrupt control registers */ #define FIMD_VIDINTCON0 0x130 #define FIMD_VIDINTCON1 0x134 /* Window color key registers */ #define FIMD_WKEYCON_START 0x140 #define FIMD_WKEYCON_END 0x15C #define FIMD_WKEYCON0_COMPKEY 0x00FFFFFF #define FIMD_WKEYCON0_CTL_SHIFT 24 #define FIMD_WKEYCON0_DIRCON (1 << 24) #define FIMD_WKEYCON0_KEYEN (1 << 25) #define FIMD_WKEYCON0_KEYBLEN (1 << 26) /* Window color key alpha control register */ #define FIMD_WKEYALPHA_START 0x160 #define FIMD_WKEYALPHA_END 0x16C /* Dithering control register */ #define FIMD_DITHMODE 0x170 /* Window alpha control registers */ #define FIMD_VIDALPHA_ALPHA_LOWER 0x000F0F0F #define FIMD_VIDALPHA_ALPHA_UPPER 0x00F0F0F0 #define FIMD_VIDWALPHA_START 0x21C #define FIMD_VIDWALPHA_END 0x240 /* Window color map registers */ #define FIMD_WINMAP_START 0x180 #define FIMD_WINMAP_END 0x190 #define FIMD_WINMAP_EN (1 << 24) #define FIMD_WINMAP_COLOR_MASK 0x00FFFFFF /* Window palette control registers */ #define FIMD_WPALCON_HIGH 0x019C #define FIMD_WPALCON_LOW 0x01A0 #define FIMD_WPALCON_UPDATEEN (1 << 9) #define FIMD_WPAL_W0PAL_L 0x07 #define FIMD_WPAL_W0PAL_L_SHT 0 #define FIMD_WPAL_W1PAL_L 0x07 #define FIMD_WPAL_W1PAL_L_SHT 3 #define FIMD_WPAL_W2PAL_L 0x01 #define FIMD_WPAL_W2PAL_L_SHT 6 #define FIMD_WPAL_W2PAL_H 0x06 #define FIMD_WPAL_W2PAL_H_SHT 8 #define FIMD_WPAL_W3PAL_L 0x01 #define FIMD_WPAL_W3PAL_L_SHT 7 #define FIMD_WPAL_W3PAL_H 0x06 #define FIMD_WPAL_W3PAL_H_SHT 12 #define FIMD_WPAL_W4PAL_L 0x01 #define FIMD_WPAL_W4PAL_L_SHT 8 #define FIMD_WPAL_W4PAL_H 0x06 #define FIMD_WPAL_W4PAL_H_SHT 16 /* Trigger control registers */ #define FIMD_TRIGCON 0x01A4 #define FIMD_TRIGCON_ROMASK 0x00000004 /* LCD I80 Interface Control */ #define FIMD_I80IFCON_START 0x01B0 #define FIMD_I80IFCON_END 0x01BC /* Color gain control register */ #define FIMD_COLORGAINCON 0x01C0 /* LCD i80 Interface Command Control */ #define FIMD_LDI_CMDCON0 0x01D0 #define FIMD_LDI_CMDCON1 0x01D4 /* I80 System Interface Manual Command Control */ #define FIMD_SIFCCON0 0x01E0 #define FIMD_SIFCCON2 0x01E8 /* Hue Control Registers */ #define FIMD_HUECOEFCR_START 0x01EC #define FIMD_HUECOEFCR_END 0x01F4 #define FIMD_HUECOEFCB_START 0x01FC #define FIMD_HUECOEFCB_END 0x0208 #define FIMD_HUEOFFSET 0x020C /* Video interrupt control registers */ #define FIMD_VIDINT_INTFIFOPEND (1 << 0) #define FIMD_VIDINT_INTFRMPEND (1 << 1) #define FIMD_VIDINT_INTI80PEND (1 << 2) #define FIMD_VIDINT_INTEN (1 << 0) #define FIMD_VIDINT_INTFIFOEN (1 << 1) #define FIMD_VIDINT_INTFRMEN (1 << 12) #define FIMD_VIDINT_I80IFDONE (1 << 17) /* Window blend equation control registers */ #define FIMD_BLENDEQ_START 0x0244 #define FIMD_BLENDEQ_END 0x0250 #define FIMD_BLENDCON 0x0260 #define FIMD_ALPHA_8BIT (1 << 0) #define FIMD_BLENDEQ_COEF_MASK 0xF /* Window RTQOS Control Registers */ #define FIMD_WRTQOSCON_START 0x0264 #define FIMD_WRTQOSCON_END 0x0274 /* LCD I80 Interface Command */ #define FIMD_I80IFCMD_START 0x0280 #define FIMD_I80IFCMD_END 0x02AC /* Shadow windows control registers */ #define FIMD_SHD_ADD0_START 0x40A0 #define FIMD_SHD_ADD0_END 0x40C0 #define FIMD_SHD_ADD1_START 0x40D0 #define FIMD_SHD_ADD1_END 0x40F0 #define FIMD_SHD_ADD2_START 0x4100 #define FIMD_SHD_ADD2_END 0x4110 /* Palette memory */ #define FIMD_PAL_MEM_START 0x2400 #define FIMD_PAL_MEM_END 0x37FC /* Palette memory aliases for windows 0 and 1 */ #define FIMD_PALMEM_AL_START 0x0400 #define FIMD_PALMEM_AL_END 0x0BFC typedef struct { uint8_t r, g, b; /* D[31..24]dummy, D[23..16]rAlpha, D[15..8]gAlpha, D[7..0]bAlpha */ uint32_t a; } rgba; #define RGBA_SIZE 7 typedef void pixel_to_rgb_func(uint32_t pixel, rgba *p); typedef struct Exynos4210fimdWindow Exynos4210fimdWindow; struct Exynos4210fimdWindow { uint32_t wincon; /* Window control register */ uint32_t buf_start[3]; /* Start address for video frame buffer */ uint32_t buf_end[3]; /* End address for video frame buffer */ uint32_t keycon[2]; /* Window color key registers */ uint32_t keyalpha; /* Color key alpha control register */ uint32_t winmap; /* Window color map register */ uint32_t blendeq; /* Window blending equation control register */ uint32_t rtqoscon; /* Window RTQOS Control Registers */ uint32_t palette[256]; /* Palette RAM */ uint32_t shadow_buf_start; /* Start address of shadow frame buffer */ uint32_t shadow_buf_end; /* End address of shadow frame buffer */ uint32_t shadow_buf_size; /* Virtual shadow screen width */ pixel_to_rgb_func *pixel_to_rgb; void (*draw_line)(Exynos4210fimdWindow *w, uint8_t *src, uint8_t *dst, bool blend); uint32_t (*get_alpha)(Exynos4210fimdWindow *w, uint32_t pix_a); uint16_t lefttop_x, lefttop_y; /* VIDOSD0 register */ uint16_t rightbot_x, rightbot_y; /* VIDOSD1 register */ uint32_t osdsize; /* VIDOSD2&3 register */ uint32_t alpha_val[2]; /* VIDOSD2&3, VIDWALPHA registers */ uint16_t virtpage_width; /* VIDWADD2 register */ uint16_t virtpage_offsize; /* VIDWADD2 register */ MemoryRegionSection mem_section; /* RAM fragment containing framebuffer */ uint8_t *host_fb_addr; /* Host pointer to window's framebuffer */ target_phys_addr_t fb_len; /* Framebuffer length */ }; typedef struct { SysBusDevice busdev; MemoryRegion iomem; DisplayState *console; qemu_irq irq[3]; uint32_t vidcon[4]; /* Video main control registers 0-3 */ uint32_t vidtcon[4]; /* Video time control registers 0-3 */ uint32_t shadowcon; /* Window shadow control register */ uint32_t winchmap; /* Channel mapping control register */ uint32_t vidintcon[2]; /* Video interrupt control registers */ uint32_t dithmode; /* Dithering control register */ uint32_t wpalcon[2]; /* Window palette control registers */ uint32_t trigcon; /* Trigger control register */ uint32_t i80ifcon[4]; /* I80 interface control registers */ uint32_t colorgaincon; /* Color gain control register */ uint32_t ldi_cmdcon[2]; /* LCD I80 interface command control */ uint32_t sifccon[3]; /* I80 System Interface Manual Command Control */ uint32_t huecoef_cr[4]; /* Hue control registers */ uint32_t huecoef_cb[4]; /* Hue control registers */ uint32_t hueoffset; /* Hue offset control register */ uint32_t blendcon; /* Blending control register */ uint32_t i80ifcmd[12]; /* LCD I80 Interface Command */ Exynos4210fimdWindow window[5]; /* Window-specific registers */ uint8_t *ifb; /* Internal frame buffer */ bool invalidate; /* Image needs to be redrawn */ bool enabled; /* Display controller is enabled */ } Exynos4210fimdState; /* Perform byte/halfword/word swap of data according to WINCON */ static inline void fimd_swap_data(unsigned int swap_ctl, uint64_t *data) { int i; uint64_t res; uint64_t x = *data; if (swap_ctl & FIMD_WINCON_SWAP_BITS) { res = 0; for (i = 0; i < 64; i++) { if (x & (1ULL << (64 - i))) { res |= (1ULL << i); } } x = res; } if (swap_ctl & FIMD_WINCON_SWAP_BYTE) { x = bswap64(x); } if (swap_ctl & FIMD_WINCON_SWAP_HWORD) { x = ((x & 0x000000000000FFFFULL) << 48) | ((x & 0x00000000FFFF0000ULL) << 16) | ((x & 0x0000FFFF00000000ULL) >> 16) | ((x & 0xFFFF000000000000ULL) >> 48); } if (swap_ctl & FIMD_WINCON_SWAP_WORD) { x = ((x & 0x00000000FFFFFFFFULL) << 32) | ((x & 0xFFFFFFFF00000000ULL) >> 32); } *data = x; } /* Conversion routines of Pixel data from frame buffer area to internal RGBA * pixel representation. * Every color component internally represented as 8-bit value. If original * data has less than 8 bit for component, data is extended to 8 bit. For * example, if blue component has only two possible values 0 and 1 it will be * extended to 0 and 0xFF */ /* One bit for alpha representation */ #define DEF_PIXEL_TO_RGB_A1(N, R, G, B) \ static void N(uint32_t pixel, rgba *p) \ { \ p->b = ((pixel & ((1 << (B)) - 1)) << (8 - (B))) | \ ((pixel >> (2 * (B) - 8)) & ((1 << (8 - (B))) - 1)); \ pixel >>= (B); \ p->g = (pixel & ((1 << (G)) - 1)) << (8 - (G)) | \ ((pixel >> (2 * (G) - 8)) & ((1 << (8 - (G))) - 1)); \ pixel >>= (G); \ p->r = (pixel & ((1 << (R)) - 1)) << (8 - (R)) | \ ((pixel >> (2 * (R) - 8)) & ((1 << (8 - (R))) - 1)); \ pixel >>= (R); \ p->a = (pixel & 0x1); \ } DEF_PIXEL_TO_RGB_A1(pixel_a444_to_rgb, 4, 4, 4) DEF_PIXEL_TO_RGB_A1(pixel_a555_to_rgb, 5, 5, 5) DEF_PIXEL_TO_RGB_A1(pixel_a666_to_rgb, 6, 6, 6) DEF_PIXEL_TO_RGB_A1(pixel_a665_to_rgb, 6, 6, 5) DEF_PIXEL_TO_RGB_A1(pixel_a888_to_rgb, 8, 8, 8) DEF_PIXEL_TO_RGB_A1(pixel_a887_to_rgb, 8, 8, 7) /* Alpha component is always zero */ #define DEF_PIXEL_TO_RGB_A0(N, R, G, B) \ static void N(uint32_t pixel, rgba *p) \ { \ p->b = ((pixel & ((1 << (B)) - 1)) << (8 - (B))) | \ ((pixel >> (2 * (B) - 8)) & ((1 << (8 - (B))) - 1)); \ pixel >>= (B); \ p->g = (pixel & ((1 << (G)) - 1)) << (8 - (G)) | \ ((pixel >> (2 * (G) - 8)) & ((1 << (8 - (G))) - 1)); \ pixel >>= (G); \ p->r = (pixel & ((1 << (R)) - 1)) << (8 - (R)) | \ ((pixel >> (2 * (R) - 8)) & ((1 << (8 - (R))) - 1)); \ p->a = 0x0; \ } DEF_PIXEL_TO_RGB_A0(pixel_565_to_rgb, 5, 6, 5) DEF_PIXEL_TO_RGB_A0(pixel_555_to_rgb, 5, 5, 5) DEF_PIXEL_TO_RGB_A0(pixel_666_to_rgb, 6, 6, 6) DEF_PIXEL_TO_RGB_A0(pixel_888_to_rgb, 8, 8, 8) /* Alpha component has some meaningful value */ #define DEF_PIXEL_TO_RGB_A(N, R, G, B, A) \ static void N(uint32_t pixel, rgba *p) \ { \ p->b = ((pixel & ((1 << (B)) - 1)) << (8 - (B))) | \ ((pixel >> (2 * (B) - 8)) & ((1 << (8 - (B))) - 1)); \ pixel >>= (B); \ p->g = (pixel & ((1 << (G)) - 1)) << (8 - (G)) | \ ((pixel >> (2 * (G) - 8)) & ((1 << (8 - (G))) - 1)); \ pixel >>= (G); \ p->r = (pixel & ((1 << (R)) - 1)) << (8 - (R)) | \ ((pixel >> (2 * (R) - 8)) & ((1 << (8 - (R))) - 1)); \ pixel >>= (R); \ p->a = (pixel & ((1 << (A)) - 1)) << (8 - (A)) | \ ((pixel >> (2 * (A) - 8)) & ((1 << (8 - (A))) - 1)); \ p->a = p->a | (p->a << 8) | (p->a << 16); \ } DEF_PIXEL_TO_RGB_A(pixel_4444_to_rgb, 4, 4, 4, 4) DEF_PIXEL_TO_RGB_A(pixel_8888_to_rgb, 8, 8, 8, 8) /* Lookup table to extent 2-bit color component to 8 bit */ static const uint8_t pixel_lutable_2b[4] = { 0x0, 0x55, 0xAA, 0xFF }; /* Lookup table to extent 3-bit color component to 8 bit */ static const uint8_t pixel_lutable_3b[8] = { 0x0, 0x24, 0x49, 0x6D, 0x92, 0xB6, 0xDB, 0xFF }; /* Special case for a232 bpp mode */ static void pixel_a232_to_rgb(uint32_t pixel, rgba *p) { p->b = pixel_lutable_2b[(pixel & 0x3)]; pixel >>= 2; p->g = pixel_lutable_3b[(pixel & 0x7)]; pixel >>= 3; p->r = pixel_lutable_2b[(pixel & 0x3)]; pixel >>= 2; p->a = (pixel & 0x1); } /* Special case for (5+1, 5+1, 5+1) mode. Data bit 15 is common LSB * for all three color components */ static void pixel_1555_to_rgb(uint32_t pixel, rgba *p) { uint8_t comm = (pixel >> 15) & 1; p->b = ((((pixel & 0x1F) << 1) | comm) << 2) | ((pixel >> 3) & 0x3); pixel >>= 5; p->g = ((((pixel & 0x1F) << 1) | comm) << 2) | ((pixel >> 3) & 0x3); pixel >>= 5; p->r = ((((pixel & 0x1F) << 1) | comm) << 2) | ((pixel >> 3) & 0x3); p->a = 0x0; } /* Put/get pixel to/from internal LCD Controller framebuffer */ static int put_pixel_ifb(const rgba p, uint8_t *d) { *(uint8_t *)d++ = p.r; *(uint8_t *)d++ = p.g; *(uint8_t *)d++ = p.b; *(uint32_t *)d = p.a; return RGBA_SIZE; } static int get_pixel_ifb(const uint8_t *s, rgba *p) { p->r = *(uint8_t *)s++; p->g = *(uint8_t *)s++; p->b = *(uint8_t *)s++; p->a = (*(uint32_t *)s) & 0x00FFFFFF; return RGBA_SIZE; } static pixel_to_rgb_func *palette_data_format[8] = { [0] = pixel_565_to_rgb, [1] = pixel_a555_to_rgb, [2] = pixel_666_to_rgb, [3] = pixel_a665_to_rgb, [4] = pixel_a666_to_rgb, [5] = pixel_888_to_rgb, [6] = pixel_a888_to_rgb, [7] = pixel_8888_to_rgb }; /* Returns Index in palette data formats table for given window number WINDOW */ static uint32_t exynos4210_fimd_palette_format(Exynos4210fimdState *s, int window) { uint32_t ret; switch (window) { case 0: ret = (s->wpalcon[1] >> FIMD_WPAL_W0PAL_L_SHT) & FIMD_WPAL_W0PAL_L; if (ret != 7) { ret = 6 - ret; } break; case 1: ret = (s->wpalcon[1] >> FIMD_WPAL_W1PAL_L_SHT) & FIMD_WPAL_W1PAL_L; if (ret != 7) { ret = 6 - ret; } break; case 2: ret = ((s->wpalcon[0] >> FIMD_WPAL_W2PAL_H_SHT) & FIMD_WPAL_W2PAL_H) | ((s->wpalcon[1] >> FIMD_WPAL_W2PAL_L_SHT) & FIMD_WPAL_W2PAL_L); break; case 3: ret = ((s->wpalcon[0] >> FIMD_WPAL_W3PAL_H_SHT) & FIMD_WPAL_W3PAL_H) | ((s->wpalcon[1] >> FIMD_WPAL_W3PAL_L_SHT) & FIMD_WPAL_W3PAL_L); break; case 4: ret = ((s->wpalcon[0] >> FIMD_WPAL_W4PAL_H_SHT) & FIMD_WPAL_W4PAL_H) | ((s->wpalcon[1] >> FIMD_WPAL_W4PAL_L_SHT) & FIMD_WPAL_W4PAL_L); break; default: hw_error("exynos4210.fimd: incorrect window number %d\n", window); ret = 0; break; } return ret; } #define FIMD_1_MINUS_COLOR(x) \ ((0xFF - ((x) & 0xFF)) | (0xFF00 - ((x) & 0xFF00)) | \ (0xFF0000 - ((x) & 0xFF0000))) #define EXTEND_LOWER_HALFBYTE(x) (((x) & 0xF0F0F) | (((x) << 4) & 0xF0F0F0)) #define EXTEND_UPPER_HALFBYTE(x) (((x) & 0xF0F0F0) | (((x) >> 4) & 0xF0F0F)) /* Multiply three lower bytes of two 32-bit words with each other. * Each byte with values 0-255 is considered as a number with possible values * in a range [0 - 1] */ static inline uint32_t fimd_mult_each_byte(uint32_t a, uint32_t b) { uint32_t tmp; uint32_t ret; ret = ((tmp = (((a & 0xFF) * (b & 0xFF)) / 0xFF)) > 0xFF) ? 0xFF : tmp; ret |= ((tmp = ((((a >> 8) & 0xFF) * ((b >> 8) & 0xFF)) / 0xFF)) > 0xFF) ? 0xFF00 : tmp << 8; ret |= ((tmp = ((((a >> 16) & 0xFF) * ((b >> 16) & 0xFF)) / 0xFF)) > 0xFF) ? 0xFF0000 : tmp << 16; return ret; } /* For each corresponding bytes of two 32-bit words: (a*b + c*d) * Byte values 0-255 are mapped to a range [0 .. 1] */ static inline uint32_t fimd_mult_and_sum_each_byte(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { uint32_t tmp; uint32_t ret; ret = ((tmp = (((a & 0xFF) * (b & 0xFF) + (c & 0xFF) * (d & 0xFF)) / 0xFF)) > 0xFF) ? 0xFF : tmp; ret |= ((tmp = ((((a >> 8) & 0xFF) * ((b >> 8) & 0xFF) + ((c >> 8) & 0xFF) * ((d >> 8) & 0xFF)) / 0xFF)) > 0xFF) ? 0xFF00 : tmp << 8; ret |= ((tmp = ((((a >> 16) & 0xFF) * ((b >> 16) & 0xFF) + ((c >> 16) & 0xFF) * ((d >> 16) & 0xFF)) / 0xFF)) > 0xFF) ? 0xFF0000 : tmp << 16; return ret; } /* These routines cover all possible sources of window's transparent factor * used in blending equation. Choice of routine is affected by WPALCON * registers, BLENDCON register and window's WINCON register */ static uint32_t fimd_get_alpha_pix(Exynos4210fimdWindow *w, uint32_t pix_a) { return pix_a; } static uint32_t fimd_get_alpha_pix_extlow(Exynos4210fimdWindow *w, uint32_t pix_a) { return EXTEND_LOWER_HALFBYTE(pix_a); } static uint32_t fimd_get_alpha_pix_exthigh(Exynos4210fimdWindow *w, uint32_t pix_a) { return EXTEND_UPPER_HALFBYTE(pix_a); } static uint32_t fimd_get_alpha_mult(Exynos4210fimdWindow *w, uint32_t pix_a) { return fimd_mult_each_byte(pix_a, w->alpha_val[0]); } static uint32_t fimd_get_alpha_mult_ext(Exynos4210fimdWindow *w, uint32_t pix_a) { return fimd_mult_each_byte(EXTEND_LOWER_HALFBYTE(pix_a), EXTEND_UPPER_HALFBYTE(w->alpha_val[0])); } static uint32_t fimd_get_alpha_aen(Exynos4210fimdWindow *w, uint32_t pix_a) { return w->alpha_val[pix_a]; } static uint32_t fimd_get_alpha_aen_ext(Exynos4210fimdWindow *w, uint32_t pix_a) { return EXTEND_UPPER_HALFBYTE(w->alpha_val[pix_a]); } static uint32_t fimd_get_alpha_sel(Exynos4210fimdWindow *w, uint32_t pix_a) { return w->alpha_val[(w->wincon & FIMD_WINCON_ALPHA_SEL) ? 1 : 0]; } static uint32_t fimd_get_alpha_sel_ext(Exynos4210fimdWindow *w, uint32_t pix_a) { return EXTEND_UPPER_HALFBYTE(w->alpha_val[(w->wincon & FIMD_WINCON_ALPHA_SEL) ? 1 : 0]); } /* Updates currently active alpha value get function for specified window */ static void fimd_update_get_alpha(Exynos4210fimdState *s, int win) { Exynos4210fimdWindow *w = &s->window[win]; const bool alpha_is_8bit = s->blendcon & FIMD_ALPHA_8BIT; if (w->wincon & FIMD_WINCON_BLD_PIX) { if ((w->wincon & FIMD_WINCON_ALPHA_SEL) && WIN_BPP_MODE_WITH_ALPHA(w)) { /* In this case, alpha component contains meaningful value */ if (w->wincon & FIMD_WINCON_ALPHA_MUL) { w->get_alpha = alpha_is_8bit ? fimd_get_alpha_mult : fimd_get_alpha_mult_ext; } else { w->get_alpha = alpha_is_8bit ? fimd_get_alpha_pix : fimd_get_alpha_pix_extlow; } } else { if (IS_PALETTIZED_MODE(w) && PAL_MODE_WITH_ALPHA(exynos4210_fimd_palette_format(s, win))) { /* Alpha component has 8-bit numeric value */ w->get_alpha = alpha_is_8bit ? fimd_get_alpha_pix : fimd_get_alpha_pix_exthigh; } else { /* Alpha has only two possible values (AEN) */ w->get_alpha = alpha_is_8bit ? fimd_get_alpha_aen : fimd_get_alpha_aen_ext; } } } else { w->get_alpha = alpha_is_8bit ? fimd_get_alpha_sel : fimd_get_alpha_sel_ext; } } /* Blends current window's (w) pixel (foreground pixel *ret) with background * window (w_blend) pixel p_bg according to formula: * NEW_COLOR = a_coef x FG_PIXEL_COLOR + b_coef x BG_PIXEL_COLOR * NEW_ALPHA = p_coef x FG_ALPHA + q_coef x BG_ALPHA */ static void exynos4210_fimd_blend_pixel(Exynos4210fimdWindow *w, rgba p_bg, rgba *ret) { rgba p_fg = *ret; uint32_t bg_color = ((p_bg.r & 0xFF) << 16) | ((p_bg.g & 0xFF) << 8) | (p_bg.b & 0xFF); uint32_t fg_color = ((p_fg.r & 0xFF) << 16) | ((p_fg.g & 0xFF) << 8) | (p_fg.b & 0xFF); uint32_t alpha_fg = p_fg.a; int i; /* It is possible that blending equation parameters a and b do not * depend on window BLENEQ register. Account for this with first_coef */ enum { A_COEF = 0, B_COEF = 1, P_COEF = 2, Q_COEF = 3, COEF_NUM = 4}; uint32_t first_coef = A_COEF; uint32_t blend_param[COEF_NUM]; if (w->keycon[0] & FIMD_WKEYCON0_KEYEN) { uint32_t colorkey = (w->keycon[1] & ~(w->keycon[0] & FIMD_WKEYCON0_COMPKEY)) & FIMD_WKEYCON0_COMPKEY; if ((w->keycon[0] & FIMD_WKEYCON0_DIRCON) && (bg_color & ~(w->keycon[0] & FIMD_WKEYCON0_COMPKEY)) == colorkey) { /* Foreground pixel is displayed */ if (w->keycon[0] & FIMD_WKEYCON0_KEYBLEN) { alpha_fg = w->keyalpha; blend_param[A_COEF] = alpha_fg; blend_param[B_COEF] = FIMD_1_MINUS_COLOR(alpha_fg); } else { alpha_fg = 0; blend_param[A_COEF] = 0xFFFFFF; blend_param[B_COEF] = 0x0; } first_coef = P_COEF; } else if ((w->keycon[0] & FIMD_WKEYCON0_DIRCON) == 0 && (fg_color & ~(w->keycon[0] & FIMD_WKEYCON0_COMPKEY)) == colorkey) { /* Background pixel is displayed */ if (w->keycon[0] & FIMD_WKEYCON0_KEYBLEN) { alpha_fg = w->keyalpha; blend_param[A_COEF] = alpha_fg; blend_param[B_COEF] = FIMD_1_MINUS_COLOR(alpha_fg); } else { alpha_fg = 0; blend_param[A_COEF] = 0x0; blend_param[B_COEF] = 0xFFFFFF; } first_coef = P_COEF; } } for (i = first_coef; i < COEF_NUM; i++) { switch ((w->blendeq >> i * 6) & FIMD_BLENDEQ_COEF_MASK) { case 0: blend_param[i] = 0; break; case 1: blend_param[i] = 0xFFFFFF; break; case 2: blend_param[i] = alpha_fg; break; case 3: blend_param[i] = FIMD_1_MINUS_COLOR(alpha_fg); break; case 4: blend_param[i] = p_bg.a; break; case 5: blend_param[i] = FIMD_1_MINUS_COLOR(p_bg.a); break; case 6: blend_param[i] = w->alpha_val[0]; break; case 10: blend_param[i] = fg_color; break; case 11: blend_param[i] = FIMD_1_MINUS_COLOR(fg_color); break; case 12: blend_param[i] = bg_color; break; case 13: blend_param[i] = FIMD_1_MINUS_COLOR(bg_color); break; default: hw_error("exynos4210.fimd: blend equation coef illegal value\n"); break; } } fg_color = fimd_mult_and_sum_each_byte(bg_color, blend_param[B_COEF], fg_color, blend_param[A_COEF]); ret->b = fg_color & 0xFF; fg_color >>= 8; ret->g = fg_color & 0xFF; fg_color >>= 8; ret->r = fg_color & 0xFF; ret->a = fimd_mult_and_sum_each_byte(alpha_fg, blend_param[P_COEF], p_bg.a, blend_param[Q_COEF]); } /* These routines read data from video frame buffer in system RAM, convert * this data to display controller internal representation, if necessary, * perform pixel blending with data, currently presented in internal buffer. * Result is stored in display controller internal frame buffer. */ /* Draw line with index in palette table in RAM frame buffer data */ #define DEF_DRAW_LINE_PALETTE(N) \ static void glue(draw_line_palette_, N)(Exynos4210fimdWindow *w, uint8_t *src, \ uint8_t *dst, bool blend) \ { \ int width = w->rightbot_x - w->lefttop_x + 1; \ uint8_t *ifb = dst; \ uint8_t swap = (w->wincon & FIMD_WINCON_SWAP) >> FIMD_WINCON_SWAP_SHIFT; \ uint64_t data; \ rgba p, p_old; \ int i; \ do { \ data = ldq_raw((void *)src); \ src += 8; \ fimd_swap_data(swap, &data); \ for (i = (64 / (N) - 1); i >= 0; i--) { \ w->pixel_to_rgb(w->palette[(data >> ((N) * i)) & \ ((1ULL << (N)) - 1)], &p); \ p.a = w->get_alpha(w, p.a); \ if (blend) { \ ifb += get_pixel_ifb(ifb, &p_old); \ exynos4210_fimd_blend_pixel(w, p_old, &p); \ } \ dst += put_pixel_ifb(p, dst); \ } \ width -= (64 / (N)); \ } while (width > 0); \ } /* Draw line with direct color value in RAM frame buffer data */ #define DEF_DRAW_LINE_NOPALETTE(N) \ static void glue(draw_line_, N)(Exynos4210fimdWindow *w, uint8_t *src, \ uint8_t *dst, bool blend) \ { \ int width = w->rightbot_x - w->lefttop_x + 1; \ uint8_t *ifb = dst; \ uint8_t swap = (w->wincon & FIMD_WINCON_SWAP) >> FIMD_WINCON_SWAP_SHIFT; \ uint64_t data; \ rgba p, p_old; \ int i; \ do { \ data = ldq_raw((void *)src); \ src += 8; \ fimd_swap_data(swap, &data); \ for (i = (64 / (N) - 1); i >= 0; i--) { \ w->pixel_to_rgb((data >> ((N) * i)) & ((1ULL << (N)) - 1), &p); \ p.a = w->get_alpha(w, p.a); \ if (blend) { \ ifb += get_pixel_ifb(ifb, &p_old); \ exynos4210_fimd_blend_pixel(w, p_old, &p); \ } \ dst += put_pixel_ifb(p, dst); \ } \ width -= (64 / (N)); \ } while (width > 0); \ } DEF_DRAW_LINE_PALETTE(1) DEF_DRAW_LINE_PALETTE(2) DEF_DRAW_LINE_PALETTE(4) DEF_DRAW_LINE_PALETTE(8) DEF_DRAW_LINE_NOPALETTE(8) /* 8bpp mode has palette and non-palette versions */ DEF_DRAW_LINE_NOPALETTE(16) DEF_DRAW_LINE_NOPALETTE(32) /* Special draw line routine for window color map case */ static void draw_line_mapcolor(Exynos4210fimdWindow *w, uint8_t *src, uint8_t *dst, bool blend) { rgba p, p_old; uint8_t *ifb = dst; int width = w->rightbot_x - w->lefttop_x + 1; uint32_t map_color = w->winmap & FIMD_WINMAP_COLOR_MASK; do { pixel_888_to_rgb(map_color, &p); p.a = w->get_alpha(w, p.a); if (blend) { ifb += get_pixel_ifb(ifb, &p_old); exynos4210_fimd_blend_pixel(w, p_old, &p); } dst += put_pixel_ifb(p, dst); } while (--width); } /* Write RGB to QEMU's GraphicConsole framebuffer */ static int put_to_qemufb_pixel8(const rgba p, uint8_t *d) { uint32_t pixel = rgb_to_pixel8(p.r, p.g, p.b); *(uint8_t *)d = pixel; return 1; } static int put_to_qemufb_pixel15(const rgba p, uint8_t *d) { uint32_t pixel = rgb_to_pixel15(p.r, p.g, p.b); *(uint16_t *)d = pixel; return 2; } static int put_to_qemufb_pixel16(const rgba p, uint8_t *d) { uint32_t pixel = rgb_to_pixel16(p.r, p.g, p.b); *(uint16_t *)d = pixel; return 2; } static int put_to_qemufb_pixel24(const rgba p, uint8_t *d) { uint32_t pixel = rgb_to_pixel24(p.r, p.g, p.b); *(uint8_t *)d++ = (pixel >> 0) & 0xFF; *(uint8_t *)d++ = (pixel >> 8) & 0xFF; *(uint8_t *)d++ = (pixel >> 16) & 0xFF; return 3; } static int put_to_qemufb_pixel32(const rgba p, uint8_t *d) { uint32_t pixel = rgb_to_pixel24(p.r, p.g, p.b); *(uint32_t *)d = pixel; return 4; } /* Routine to copy pixel from internal buffer to QEMU buffer */ static int (*put_pixel_toqemu)(const rgba p, uint8_t *pixel); static inline void fimd_update_putpix_qemu(int bpp) { switch (bpp) { case 8: put_pixel_toqemu = put_to_qemufb_pixel8; break; case 15: put_pixel_toqemu = put_to_qemufb_pixel15; break; case 16: put_pixel_toqemu = put_to_qemufb_pixel16; break; case 24: put_pixel_toqemu = put_to_qemufb_pixel24; break; case 32: put_pixel_toqemu = put_to_qemufb_pixel32; break; default: hw_error("exynos4210.fimd: unsupported BPP (%d)", bpp); break; } } /* Routine to copy a line from internal frame buffer to QEMU display */ static void fimd_copy_line_toqemu(int width, uint8_t *src, uint8_t *dst) { rgba p; do { src += get_pixel_ifb(src, &p); dst += put_pixel_toqemu(p, dst); } while (--width); } /* Parse BPPMODE_F = WINCON1[5:2] bits */ static void exynos4210_fimd_update_win_bppmode(Exynos4210fimdState *s, int win) { Exynos4210fimdWindow *w = &s->window[win]; if (w->winmap & FIMD_WINMAP_EN) { w->draw_line = draw_line_mapcolor; return; } switch (WIN_BPP_MODE(w)) { case 0: w->draw_line = draw_line_palette_1; w->pixel_to_rgb = palette_data_format[exynos4210_fimd_palette_format(s, win)]; break; case 1: w->draw_line = draw_line_palette_2; w->pixel_to_rgb = palette_data_format[exynos4210_fimd_palette_format(s, win)]; break; case 2: w->draw_line = draw_line_palette_4; w->pixel_to_rgb = palette_data_format[exynos4210_fimd_palette_format(s, win)]; break; case 3: w->draw_line = draw_line_palette_8; w->pixel_to_rgb = palette_data_format[exynos4210_fimd_palette_format(s, win)]; break; case 4: w->draw_line = draw_line_8; w->pixel_to_rgb = pixel_a232_to_rgb; break; case 5: w->draw_line = draw_line_16; w->pixel_to_rgb = pixel_565_to_rgb; break; case 6: w->draw_line = draw_line_16; w->pixel_to_rgb = pixel_a555_to_rgb; break; case 7: w->draw_line = draw_line_16; w->pixel_to_rgb = pixel_1555_to_rgb; break; case 8: w->draw_line = draw_line_32; w->pixel_to_rgb = pixel_666_to_rgb; break; case 9: w->draw_line = draw_line_32; w->pixel_to_rgb = pixel_a665_to_rgb; break; case 10: w->draw_line = draw_line_32; w->pixel_to_rgb = pixel_a666_to_rgb; break; case 11: w->draw_line = draw_line_32; w->pixel_to_rgb = pixel_888_to_rgb; break; case 12: w->draw_line = draw_line_32; w->pixel_to_rgb = pixel_a887_to_rgb; break; case 13: w->draw_line = draw_line_32; if ((w->wincon & FIMD_WINCON_BLD_PIX) && (w->wincon & FIMD_WINCON_ALPHA_SEL)) { w->pixel_to_rgb = pixel_8888_to_rgb; } else { w->pixel_to_rgb = pixel_a888_to_rgb; } break; case 14: w->draw_line = draw_line_16; if ((w->wincon & FIMD_WINCON_BLD_PIX) && (w->wincon & FIMD_WINCON_ALPHA_SEL)) { w->pixel_to_rgb = pixel_4444_to_rgb; } else { w->pixel_to_rgb = pixel_a444_to_rgb; } break; case 15: w->draw_line = draw_line_16; w->pixel_to_rgb = pixel_555_to_rgb; break; } } #if EXYNOS4210_FIMD_MODE_TRACE > 0 static const char *exynos4210_fimd_get_bppmode(int mode_code) { switch (mode_code) { case 0: return "1 bpp"; case 1: return "2 bpp"; case 2: return "4 bpp"; case 3: return "8 bpp (palettized)"; case 4: return "8 bpp (non-palettized, A: 1-R:2-G:3-B:2)"; case 5: return "16 bpp (non-palettized, R:5-G:6-B:5)"; case 6: return "16 bpp (non-palettized, A:1-R:5-G:5-B:5)"; case 7: return "16 bpp (non-palettized, I :1-R:5-G:5-B:5)"; case 8: return "Unpacked 18 bpp (non-palettized, R:6-G:6-B:6)"; case 9: return "Unpacked 18bpp (non-palettized,A:1-R:6-G:6-B:5)"; case 10: return "Unpacked 19bpp (non-palettized,A:1-R:6-G:6-B:6)"; case 11: return "Unpacked 24 bpp (non-palettized R:8-G:8-B:8)"; case 12: return "Unpacked 24 bpp (non-palettized A:1-R:8-G:8-B:7)"; case 13: return "Unpacked 25 bpp (non-palettized A:1-R:8-G:8-B:8)"; case 14: return "Unpacked 13 bpp (non-palettized A:1-R:4-G:4-B:4)"; case 15: return "Unpacked 15 bpp (non-palettized R:5-G:5-B:5)"; default: return "Non-existing bpp mode"; } } static inline void exynos4210_fimd_trace_bppmode(Exynos4210fimdState *s, int win_num, uint32_t val) { Exynos4210fimdWindow *w = &s->window[win_num]; if (w->winmap & FIMD_WINMAP_EN) { printf("QEMU FIMD: Window %d is mapped with MAPCOLOR=0x%x\n", win_num, w->winmap & 0xFFFFFF); return; } if ((val != 0xFFFFFFFF) && ((w->wincon >> 2) & 0xF) == ((val >> 2) & 0xF)) { return; } printf("QEMU FIMD: Window %d BPP mode set to %s\n", win_num, exynos4210_fimd_get_bppmode((val >> 2) & 0xF)); } #else static inline void exynos4210_fimd_trace_bppmode(Exynos4210fimdState *s, int win_num, uint32_t val) { } #endif static inline int fimd_get_buffer_id(Exynos4210fimdWindow *w) { switch (w->wincon & FIMD_WINCON_BUFSTATUS) { case FIMD_WINCON_BUF0_STAT: return 0; case FIMD_WINCON_BUF1_STAT: return 1; case FIMD_WINCON_BUF2_STAT: return 2; default: DPRINT_ERROR("Non-existent buffer index\n"); return 0; } } /* Updates specified window's MemorySection based on values of WINCON, * VIDOSDA, VIDOSDB, VIDWADDx and SHADOWCON registers */ static void fimd_update_memory_section(Exynos4210fimdState *s, unsigned win) { Exynos4210fimdWindow *w = &s->window[win]; target_phys_addr_t fb_start_addr, fb_mapped_len; if (!s->enabled || !(w->wincon & FIMD_WINCON_ENWIN) || FIMD_WINDOW_PROTECTED(s->shadowcon, win)) { return; } if (w->host_fb_addr) { cpu_physical_memory_unmap(w->host_fb_addr, w->fb_len, 0, 0); w->host_fb_addr = NULL; w->fb_len = 0; } fb_start_addr = w->buf_start[fimd_get_buffer_id(w)]; /* Total number of bytes of virtual screen used by current window */ w->fb_len = fb_mapped_len = (w->virtpage_width + w->virtpage_offsize) * (w->rightbot_y - w->lefttop_y + 1); w->mem_section = memory_region_find(sysbus_address_space(&s->busdev), fb_start_addr, w->fb_len); assert(w->mem_section.mr); assert(w->mem_section.offset_within_address_space == fb_start_addr); DPRINT_TRACE("Window %u framebuffer changed: address=0x%08x, len=0x%x\n", win, fb_start_addr, w->fb_len); if (w->mem_section.size != w->fb_len || !memory_region_is_ram(w->mem_section.mr)) { DPRINT_ERROR("Failed to find window %u framebuffer region\n", win); goto error_return; } w->host_fb_addr = cpu_physical_memory_map(fb_start_addr, &fb_mapped_len, 0); if (!w->host_fb_addr) { DPRINT_ERROR("Failed to map window %u framebuffer\n", win); goto error_return; } if (fb_mapped_len != w->fb_len) { DPRINT_ERROR("Window %u mapped framebuffer length is less then " "expected\n", win); cpu_physical_memory_unmap(w->host_fb_addr, fb_mapped_len, 0, 0); goto error_return; } return; error_return: w->mem_section.mr = NULL; w->mem_section.size = 0; w->host_fb_addr = NULL; w->fb_len = 0; } static void exynos4210_fimd_enable(Exynos4210fimdState *s, bool enabled) { if (enabled && !s->enabled) { unsigned w; s->enabled = true; for (w = 0; w < NUM_OF_WINDOWS; w++) { fimd_update_memory_section(s, w); } } s->enabled = enabled; DPRINT_TRACE("display controller %s\n", enabled ? "enabled" : "disabled"); } static inline uint32_t unpack_upper_4(uint32_t x) { return ((x & 0xF00) << 12) | ((x & 0xF0) << 8) | ((x & 0xF) << 4); } static inline uint32_t pack_upper_4(uint32_t x) { return (((x & 0xF00000) >> 12) | ((x & 0xF000) >> 8) | ((x & 0xF0) >> 4)) & 0xFFF; } static void exynos4210_fimd_update_irq(Exynos4210fimdState *s) { if (!(s->vidintcon[0] & FIMD_VIDINT_INTEN)) { qemu_irq_lower(s->irq[0]); qemu_irq_lower(s->irq[1]); qemu_irq_lower(s->irq[2]); return; } if ((s->vidintcon[0] & FIMD_VIDINT_INTFIFOEN) && (s->vidintcon[1] & FIMD_VIDINT_INTFIFOPEND)) { qemu_irq_raise(s->irq[0]); } else { qemu_irq_lower(s->irq[0]); } if ((s->vidintcon[0] & FIMD_VIDINT_INTFRMEN) && (s->vidintcon[1] & FIMD_VIDINT_INTFRMPEND)) { qemu_irq_raise(s->irq[1]); } else { qemu_irq_lower(s->irq[1]); } if ((s->vidintcon[0] & FIMD_VIDINT_I80IFDONE) && (s->vidintcon[1] & FIMD_VIDINT_INTI80PEND)) { qemu_irq_raise(s->irq[2]); } else { qemu_irq_lower(s->irq[2]); } } static void exynos4210_fimd_invalidate(void *opaque) { Exynos4210fimdState *s = (Exynos4210fimdState *)opaque; s->invalidate = true; } static void exynos4210_update_resolution(Exynos4210fimdState *s) { /* LCD resolution is stored in VIDEO TIME CONTROL REGISTER 2 */ uint32_t width = ((s->vidtcon[2] >> FIMD_VIDTCON2_HOR_SHIFT) & FIMD_VIDTCON2_SIZE_MASK) + 1; uint32_t height = ((s->vidtcon[2] >> FIMD_VIDTCON2_VER_SHIFT) & FIMD_VIDTCON2_SIZE_MASK) + 1; if (s->ifb == NULL || ds_get_width(s->console) != width || ds_get_height(s->console) != height) { DPRINT_L1("Resolution changed from %ux%u to %ux%u\n", ds_get_width(s->console), ds_get_height(s->console), width, height); qemu_console_resize(s->console, width, height); s->ifb = g_realloc(s->ifb, width * height * RGBA_SIZE + 1); memset(s->ifb, 0, width * height * RGBA_SIZE + 1); exynos4210_fimd_invalidate(s); } } static void exynos4210_fimd_update(void *opaque) { Exynos4210fimdState *s = (Exynos4210fimdState *)opaque; Exynos4210fimdWindow *w; int i, line; target_phys_addr_t fb_line_addr, inc_size; int scrn_height; int first_line = -1, last_line = -1, scrn_width; bool blend = false; uint8_t *host_fb_addr; bool is_dirty = false; const int global_width = (s->vidtcon[2] & FIMD_VIDTCON2_SIZE_MASK) + 1; const int global_height = ((s->vidtcon[2] >> FIMD_VIDTCON2_VER_SHIFT) & FIMD_VIDTCON2_SIZE_MASK) + 1; if (!s || !s->console || !ds_get_bits_per_pixel(s->console) || !s->enabled) { return; } exynos4210_update_resolution(s); for (i = 0; i < NUM_OF_WINDOWS; i++) { w = &s->window[i]; if ((w->wincon & FIMD_WINCON_ENWIN) && w->host_fb_addr) { scrn_height = w->rightbot_y - w->lefttop_y + 1; scrn_width = w->virtpage_width; /* Total width of virtual screen page in bytes */ inc_size = scrn_width + w->virtpage_offsize; memory_region_sync_dirty_bitmap(w->mem_section.mr); host_fb_addr = w->host_fb_addr; fb_line_addr = w->mem_section.offset_within_region; for (line = 0; line < scrn_height; line++) { is_dirty = memory_region_get_dirty(w->mem_section.mr, fb_line_addr, scrn_width, DIRTY_MEMORY_VGA); if (s->invalidate || is_dirty) { if (first_line == -1) { first_line = line; } last_line = line; w->draw_line(w, host_fb_addr, s->ifb + w->lefttop_x * RGBA_SIZE + (w->lefttop_y + line) * global_width * RGBA_SIZE, blend); } host_fb_addr += inc_size; fb_line_addr += inc_size; is_dirty = false; } memory_region_reset_dirty(w->mem_section.mr, w->mem_section.offset_within_region, w->fb_len, DIRTY_MEMORY_VGA); blend = true; } } /* Copy resulting image to QEMU_CONSOLE. */ if (first_line >= 0) { uint8_t *d; int bpp; bpp = ds_get_bits_per_pixel(s->console); fimd_update_putpix_qemu(bpp); bpp = (bpp + 1) >> 3; d = ds_get_data(s->console); for (line = first_line; line <= last_line; line++) { fimd_copy_line_toqemu(global_width, s->ifb + global_width * line * RGBA_SIZE, d + global_width * line * bpp); } dpy_update(s->console, 0, 0, global_width, global_height); } s->invalidate = false; s->vidintcon[1] |= FIMD_VIDINT_INTFRMPEND; if ((s->vidcon[0] & FIMD_VIDCON0_ENVID_F) == 0) { exynos4210_fimd_enable(s, false); } exynos4210_fimd_update_irq(s); } static void exynos4210_fimd_reset(DeviceState *d) { Exynos4210fimdState *s = DO_UPCAST(Exynos4210fimdState, busdev.qdev, d); unsigned w; DPRINT_TRACE("Display controller reset\n"); /* Set all display controller registers to 0 */ memset(&s->vidcon, 0, (uint8_t *)&s->window - (uint8_t *)&s->vidcon); for (w = 0; w < NUM_OF_WINDOWS; w++) { memset(&s->window[w], 0, sizeof(Exynos4210fimdWindow)); s->window[w].blendeq = 0xC2; exynos4210_fimd_update_win_bppmode(s, w); exynos4210_fimd_trace_bppmode(s, w, 0xFFFFFFFF); fimd_update_get_alpha(s, w); } if (s->ifb != NULL) { g_free(s->ifb); } s->ifb = NULL; exynos4210_fimd_invalidate(s); exynos4210_fimd_enable(s, false); /* Some registers have non-zero initial values */ s->winchmap = 0x7D517D51; s->colorgaincon = 0x10040100; s->huecoef_cr[0] = s->huecoef_cr[3] = 0x01000100; s->huecoef_cb[0] = s->huecoef_cb[3] = 0x01000100; s->hueoffset = 0x01800080; } static void exynos4210_fimd_write(void *opaque, target_phys_addr_t offset, uint64_t val, unsigned size) { Exynos4210fimdState *s = (Exynos4210fimdState *)opaque; unsigned w, i; uint32_t old_value; DPRINT_L2("write offset 0x%08x, value=%llu(0x%08llx)\n", offset, (long long unsigned int)val, (long long unsigned int)val); switch (offset) { case FIMD_VIDCON0: if ((val & FIMD_VIDCON0_ENVID_MASK) == FIMD_VIDCON0_ENVID_MASK) { exynos4210_fimd_enable(s, true); } else { if ((val & FIMD_VIDCON0_ENVID) == 0) { exynos4210_fimd_enable(s, false); } } s->vidcon[0] = val; break; case FIMD_VIDCON1: /* Leave read-only bits as is */ val = (val & (~FIMD_VIDCON1_ROMASK)) | (s->vidcon[1] & FIMD_VIDCON1_ROMASK); s->vidcon[1] = val; break; case FIMD_VIDCON2 ... FIMD_VIDCON3: s->vidcon[(offset) >> 2] = val; break; case FIMD_VIDTCON_START ... FIMD_VIDTCON_END: s->vidtcon[(offset - FIMD_VIDTCON_START) >> 2] = val; break; case FIMD_WINCON_START ... FIMD_WINCON_END: w = (offset - FIMD_WINCON_START) >> 2; /* Window's current buffer ID */ i = fimd_get_buffer_id(&s->window[w]); old_value = s->window[w].wincon; val = (val & ~FIMD_WINCON_ROMASK) | (s->window[w].wincon & FIMD_WINCON_ROMASK); if (w == 0) { /* Window 0 wincon ALPHA_MUL bit must always be 0 */ val &= ~FIMD_WINCON_ALPHA_MUL; } exynos4210_fimd_trace_bppmode(s, w, val); switch (val & FIMD_WINCON_BUFSELECT) { case FIMD_WINCON_BUF0_SEL: val &= ~FIMD_WINCON_BUFSTATUS; break; case FIMD_WINCON_BUF1_SEL: val = (val & ~FIMD_WINCON_BUFSTAT_H) | FIMD_WINCON_BUFSTAT_L; break; case FIMD_WINCON_BUF2_SEL: if (val & FIMD_WINCON_BUFMODE) { val = (val & ~FIMD_WINCON_BUFSTAT_L) | FIMD_WINCON_BUFSTAT_H; } break; default: break; } s->window[w].wincon = val; exynos4210_fimd_update_win_bppmode(s, w); fimd_update_get_alpha(s, w); if ((i != fimd_get_buffer_id(&s->window[w])) || (!(old_value & FIMD_WINCON_ENWIN) && (s->window[w].wincon & FIMD_WINCON_ENWIN))) { fimd_update_memory_section(s, w); } break; case FIMD_SHADOWCON: old_value = s->shadowcon; s->shadowcon = val; for (w = 0; w < NUM_OF_WINDOWS; w++) { if (FIMD_WINDOW_PROTECTED(old_value, w) && !FIMD_WINDOW_PROTECTED(s->shadowcon, w)) { fimd_update_memory_section(s, w); } } break; case FIMD_WINCHMAP: s->winchmap = val; break; case FIMD_VIDOSD_START ... FIMD_VIDOSD_END: w = (offset - FIMD_VIDOSD_START) >> 4; i = ((offset - FIMD_VIDOSD_START) & 0xF) >> 2; switch (i) { case 0: old_value = s->window[w].lefttop_y; s->window[w].lefttop_x = (val >> FIMD_VIDOSD_HOR_SHIFT) & FIMD_VIDOSD_COORD_MASK; s->window[w].lefttop_y = (val >> FIMD_VIDOSD_VER_SHIFT) & FIMD_VIDOSD_COORD_MASK; if (s->window[w].lefttop_y != old_value) { fimd_update_memory_section(s, w); } break; case 1: old_value = s->window[w].rightbot_y; s->window[w].rightbot_x = (val >> FIMD_VIDOSD_HOR_SHIFT) & FIMD_VIDOSD_COORD_MASK; s->window[w].rightbot_y = (val >> FIMD_VIDOSD_VER_SHIFT) & FIMD_VIDOSD_COORD_MASK; if (s->window[w].rightbot_y != old_value) { fimd_update_memory_section(s, w); } break; case 2: if (w == 0) { s->window[w].osdsize = val; } else { s->window[w].alpha_val[0] = unpack_upper_4((val & FIMD_VIDOSD_ALPHA_AEN0) >> FIMD_VIDOSD_AEN0_SHIFT) | (s->window[w].alpha_val[0] & FIMD_VIDALPHA_ALPHA_LOWER); s->window[w].alpha_val[1] = unpack_upper_4(val & FIMD_VIDOSD_ALPHA_AEN1) | (s->window[w].alpha_val[1] & FIMD_VIDALPHA_ALPHA_LOWER); } break; case 3: if (w != 1 && w != 2) { DPRINT_ERROR("Bad write offset 0x%08x\n", offset); return; } s->window[w].osdsize = val; break; } break; case FIMD_VIDWADD0_START ... FIMD_VIDWADD0_END: w = (offset - FIMD_VIDWADD0_START) >> 3; i = ((offset - FIMD_VIDWADD0_START) >> 2) & 1; if (i == fimd_get_buffer_id(&s->window[w]) && s->window[w].buf_start[i] != val) { s->window[w].buf_start[i] = val; fimd_update_memory_section(s, w); break; } s->window[w].buf_start[i] = val; break; case FIMD_VIDWADD1_START ... FIMD_VIDWADD1_END: w = (offset - FIMD_VIDWADD1_START) >> 3; i = ((offset - FIMD_VIDWADD1_START) >> 2) & 1; s->window[w].buf_end[i] = val; break; case FIMD_VIDWADD2_START ... FIMD_VIDWADD2_END: w = (offset - FIMD_VIDWADD2_START) >> 2; if (((val & FIMD_VIDWADD2_PAGEWIDTH) != s->window[w].virtpage_width) || (((val >> FIMD_VIDWADD2_OFFSIZE_SHIFT) & FIMD_VIDWADD2_OFFSIZE) != s->window[w].virtpage_offsize)) { s->window[w].virtpage_width = val & FIMD_VIDWADD2_PAGEWIDTH; s->window[w].virtpage_offsize = (val >> FIMD_VIDWADD2_OFFSIZE_SHIFT) & FIMD_VIDWADD2_OFFSIZE; fimd_update_memory_section(s, w); } break; case FIMD_VIDINTCON0: s->vidintcon[0] = val; break; case FIMD_VIDINTCON1: s->vidintcon[1] &= ~(val & 7); exynos4210_fimd_update_irq(s); break; case FIMD_WKEYCON_START ... FIMD_WKEYCON_END: w = ((offset - FIMD_WKEYCON_START) >> 3) + 1; i = ((offset - FIMD_WKEYCON_START) >> 2) & 1; s->window[w].keycon[i] = val; break; case FIMD_WKEYALPHA_START ... FIMD_WKEYALPHA_END: w = ((offset - FIMD_WKEYALPHA_START) >> 2) + 1; s->window[w].keyalpha = val; break; case FIMD_DITHMODE: s->dithmode = val; break; case FIMD_WINMAP_START ... FIMD_WINMAP_END: w = (offset - FIMD_WINMAP_START) >> 2; old_value = s->window[w].winmap; s->window[w].winmap = val; if ((val & FIMD_WINMAP_EN) ^ (old_value & FIMD_WINMAP_EN)) { exynos4210_fimd_invalidate(s); exynos4210_fimd_update_win_bppmode(s, w); exynos4210_fimd_trace_bppmode(s, w, 0xFFFFFFFF); exynos4210_fimd_update(s); } break; case FIMD_WPALCON_HIGH ... FIMD_WPALCON_LOW: i = (offset - FIMD_WPALCON_HIGH) >> 2; s->wpalcon[i] = val; if (s->wpalcon[1] & FIMD_WPALCON_UPDATEEN) { for (w = 0; w < NUM_OF_WINDOWS; w++) { exynos4210_fimd_update_win_bppmode(s, w); fimd_update_get_alpha(s, w); } } break; case FIMD_TRIGCON: val = (val & ~FIMD_TRIGCON_ROMASK) | (s->trigcon & FIMD_TRIGCON_ROMASK); s->trigcon = val; break; case FIMD_I80IFCON_START ... FIMD_I80IFCON_END: s->i80ifcon[(offset - FIMD_I80IFCON_START) >> 2] = val; break; case FIMD_COLORGAINCON: s->colorgaincon = val; break; case FIMD_LDI_CMDCON0 ... FIMD_LDI_CMDCON1: s->ldi_cmdcon[(offset - FIMD_LDI_CMDCON0) >> 2] = val; break; case FIMD_SIFCCON0 ... FIMD_SIFCCON2: i = (offset - FIMD_SIFCCON0) >> 2; if (i != 2) { s->sifccon[i] = val; } break; case FIMD_HUECOEFCR_START ... FIMD_HUECOEFCR_END: i = (offset - FIMD_HUECOEFCR_START) >> 2; s->huecoef_cr[i] = val; break; case FIMD_HUECOEFCB_START ... FIMD_HUECOEFCB_END: i = (offset - FIMD_HUECOEFCB_START) >> 2; s->huecoef_cb[i] = val; break; case FIMD_HUEOFFSET: s->hueoffset = val; break; case FIMD_VIDWALPHA_START ... FIMD_VIDWALPHA_END: w = ((offset - FIMD_VIDWALPHA_START) >> 3); i = ((offset - FIMD_VIDWALPHA_START) >> 2) & 1; if (w == 0) { s->window[w].alpha_val[i] = val; } else { s->window[w].alpha_val[i] = (val & FIMD_VIDALPHA_ALPHA_LOWER) | (s->window[w].alpha_val[i] & FIMD_VIDALPHA_ALPHA_UPPER); } break; case FIMD_BLENDEQ_START ... FIMD_BLENDEQ_END: s->window[(offset - FIMD_BLENDEQ_START) >> 2].blendeq = val; break; case FIMD_BLENDCON: old_value = s->blendcon; s->blendcon = val; if ((s->blendcon & FIMD_ALPHA_8BIT) != (old_value & FIMD_ALPHA_8BIT)) { for (w = 0; w < NUM_OF_WINDOWS; w++) { fimd_update_get_alpha(s, w); } } break; case FIMD_WRTQOSCON_START ... FIMD_WRTQOSCON_END: s->window[(offset - FIMD_WRTQOSCON_START) >> 2].rtqoscon = val; break; case FIMD_I80IFCMD_START ... FIMD_I80IFCMD_END: s->i80ifcmd[(offset - FIMD_I80IFCMD_START) >> 2] = val; break; case FIMD_VIDW0ADD0_B2 ... FIMD_VIDW4ADD0_B2: if (offset & 0x0004) { DPRINT_ERROR("bad write offset 0x%08x\n", offset); break; } w = (offset - FIMD_VIDW0ADD0_B2) >> 3; if (fimd_get_buffer_id(&s->window[w]) == 2 && s->window[w].buf_start[2] != val) { s->window[w].buf_start[2] = val; fimd_update_memory_section(s, w); break; } s->window[w].buf_start[2] = val; break; case FIMD_SHD_ADD0_START ... FIMD_SHD_ADD0_END: if (offset & 0x0004) { DPRINT_ERROR("bad write offset 0x%08x\n", offset); break; } s->window[(offset - FIMD_SHD_ADD0_START) >> 3].shadow_buf_start = val; break; case FIMD_SHD_ADD1_START ... FIMD_SHD_ADD1_END: if (offset & 0x0004) { DPRINT_ERROR("bad write offset 0x%08x\n", offset); break; } s->window[(offset - FIMD_SHD_ADD1_START) >> 3].shadow_buf_end = val; break; case FIMD_SHD_ADD2_START ... FIMD_SHD_ADD2_END: s->window[(offset - FIMD_SHD_ADD2_START) >> 2].shadow_buf_size = val; break; case FIMD_PAL_MEM_START ... FIMD_PAL_MEM_END: w = (offset - FIMD_PAL_MEM_START) >> 10; i = ((offset - FIMD_PAL_MEM_START) >> 2) & 0xFF; s->window[w].palette[i] = val; break; case FIMD_PALMEM_AL_START ... FIMD_PALMEM_AL_END: /* Palette memory aliases for windows 0 and 1 */ w = (offset - FIMD_PALMEM_AL_START) >> 10; i = ((offset - FIMD_PALMEM_AL_START) >> 2) & 0xFF; s->window[w].palette[i] = val; break; default: DPRINT_ERROR("bad write offset 0x%08x\n", offset); break; } } static uint64_t exynos4210_fimd_read(void *opaque, target_phys_addr_t offset, unsigned size) { Exynos4210fimdState *s = (Exynos4210fimdState *)opaque; int w, i; uint32_t ret = 0; DPRINT_L2("read offset 0x%08x\n", offset); switch (offset) { case FIMD_VIDCON0 ... FIMD_VIDCON3: return s->vidcon[(offset - FIMD_VIDCON0) >> 2]; case FIMD_VIDTCON_START ... FIMD_VIDTCON_END: return s->vidtcon[(offset - FIMD_VIDTCON_START) >> 2]; case FIMD_WINCON_START ... FIMD_WINCON_END: return s->window[(offset - FIMD_WINCON_START) >> 2].wincon; case FIMD_SHADOWCON: return s->shadowcon; case FIMD_WINCHMAP: return s->winchmap; case FIMD_VIDOSD_START ... FIMD_VIDOSD_END: w = (offset - FIMD_VIDOSD_START) >> 4; i = ((offset - FIMD_VIDOSD_START) & 0xF) >> 2; switch (i) { case 0: ret = ((s->window[w].lefttop_x & FIMD_VIDOSD_COORD_MASK) << FIMD_VIDOSD_HOR_SHIFT) | (s->window[w].lefttop_y & FIMD_VIDOSD_COORD_MASK); break; case 1: ret = ((s->window[w].rightbot_x & FIMD_VIDOSD_COORD_MASK) << FIMD_VIDOSD_HOR_SHIFT) | (s->window[w].rightbot_y & FIMD_VIDOSD_COORD_MASK); break; case 2: if (w == 0) { ret = s->window[w].osdsize; } else { ret = (pack_upper_4(s->window[w].alpha_val[0]) << FIMD_VIDOSD_AEN0_SHIFT) | pack_upper_4(s->window[w].alpha_val[1]); } break; case 3: if (w != 1 && w != 2) { DPRINT_ERROR("bad read offset 0x%08x\n", offset); return 0xBAADBAAD; } ret = s->window[w].osdsize; break; } return ret; case FIMD_VIDWADD0_START ... FIMD_VIDWADD0_END: w = (offset - FIMD_VIDWADD0_START) >> 3; i = ((offset - FIMD_VIDWADD0_START) >> 2) & 1; return s->window[w].buf_start[i]; case FIMD_VIDWADD1_START ... FIMD_VIDWADD1_END: w = (offset - FIMD_VIDWADD1_START) >> 3; i = ((offset - FIMD_VIDWADD1_START) >> 2) & 1; return s->window[w].buf_end[i]; case FIMD_VIDWADD2_START ... FIMD_VIDWADD2_END: w = (offset - FIMD_VIDWADD2_START) >> 2; return s->window[w].virtpage_width | (s->window[w].virtpage_offsize << FIMD_VIDWADD2_OFFSIZE_SHIFT); case FIMD_VIDINTCON0 ... FIMD_VIDINTCON1: return s->vidintcon[(offset - FIMD_VIDINTCON0) >> 2]; case FIMD_WKEYCON_START ... FIMD_WKEYCON_END: w = ((offset - FIMD_WKEYCON_START) >> 3) + 1; i = ((offset - FIMD_WKEYCON_START) >> 2) & 1; return s->window[w].keycon[i]; case FIMD_WKEYALPHA_START ... FIMD_WKEYALPHA_END: w = ((offset - FIMD_WKEYALPHA_START) >> 2) + 1; return s->window[w].keyalpha; case FIMD_DITHMODE: return s->dithmode; case FIMD_WINMAP_START ... FIMD_WINMAP_END: return s->window[(offset - FIMD_WINMAP_START) >> 2].winmap; case FIMD_WPALCON_HIGH ... FIMD_WPALCON_LOW: return s->wpalcon[(offset - FIMD_WPALCON_HIGH) >> 2]; case FIMD_TRIGCON: return s->trigcon; case FIMD_I80IFCON_START ... FIMD_I80IFCON_END: return s->i80ifcon[(offset - FIMD_I80IFCON_START) >> 2]; case FIMD_COLORGAINCON: return s->colorgaincon; case FIMD_LDI_CMDCON0 ... FIMD_LDI_CMDCON1: return s->ldi_cmdcon[(offset - FIMD_LDI_CMDCON0) >> 2]; case FIMD_SIFCCON0 ... FIMD_SIFCCON2: i = (offset - FIMD_SIFCCON0) >> 2; return s->sifccon[i]; case FIMD_HUECOEFCR_START ... FIMD_HUECOEFCR_END: i = (offset - FIMD_HUECOEFCR_START) >> 2; return s->huecoef_cr[i]; case FIMD_HUECOEFCB_START ... FIMD_HUECOEFCB_END: i = (offset - FIMD_HUECOEFCB_START) >> 2; return s->huecoef_cb[i]; case FIMD_HUEOFFSET: return s->hueoffset; case FIMD_VIDWALPHA_START ... FIMD_VIDWALPHA_END: w = ((offset - FIMD_VIDWALPHA_START) >> 3); i = ((offset - FIMD_VIDWALPHA_START) >> 2) & 1; return s->window[w].alpha_val[i] & (w == 0 ? 0xFFFFFF : FIMD_VIDALPHA_ALPHA_LOWER); case FIMD_BLENDEQ_START ... FIMD_BLENDEQ_END: return s->window[(offset - FIMD_BLENDEQ_START) >> 2].blendeq; case FIMD_BLENDCON: return s->blendcon; case FIMD_WRTQOSCON_START ... FIMD_WRTQOSCON_END: return s->window[(offset - FIMD_WRTQOSCON_START) >> 2].rtqoscon; case FIMD_I80IFCMD_START ... FIMD_I80IFCMD_END: return s->i80ifcmd[(offset - FIMD_I80IFCMD_START) >> 2]; case FIMD_VIDW0ADD0_B2 ... FIMD_VIDW4ADD0_B2: if (offset & 0x0004) { break; } return s->window[(offset - FIMD_VIDW0ADD0_B2) >> 3].buf_start[2]; case FIMD_SHD_ADD0_START ... FIMD_SHD_ADD0_END: if (offset & 0x0004) { break; } return s->window[(offset - FIMD_SHD_ADD0_START) >> 3].shadow_buf_start; case FIMD_SHD_ADD1_START ... FIMD_SHD_ADD1_END: if (offset & 0x0004) { break; } return s->window[(offset - FIMD_SHD_ADD1_START) >> 3].shadow_buf_end; case FIMD_SHD_ADD2_START ... FIMD_SHD_ADD2_END: return s->window[(offset - FIMD_SHD_ADD2_START) >> 2].shadow_buf_size; case FIMD_PAL_MEM_START ... FIMD_PAL_MEM_END: w = (offset - FIMD_PAL_MEM_START) >> 10; i = ((offset - FIMD_PAL_MEM_START) >> 2) & 0xFF; return s->window[w].palette[i]; case FIMD_PALMEM_AL_START ... FIMD_PALMEM_AL_END: /* Palette aliases for win 0,1 */ w = (offset - FIMD_PALMEM_AL_START) >> 10; i = ((offset - FIMD_PALMEM_AL_START) >> 2) & 0xFF; return s->window[w].palette[i]; } DPRINT_ERROR("bad read offset 0x%08x\n", offset); return 0xBAADBAAD; } static const MemoryRegionOps exynos4210_fimd_mmio_ops = { .read = exynos4210_fimd_read, .write = exynos4210_fimd_write, .valid = { .min_access_size = 4, .max_access_size = 4, .unaligned = false }, .endianness = DEVICE_NATIVE_ENDIAN, }; static int exynos4210_fimd_load(void *opaque, int version_id) { Exynos4210fimdState *s = (Exynos4210fimdState *)opaque; int w; if (version_id != 1) { return -EINVAL; } for (w = 0; w < NUM_OF_WINDOWS; w++) { exynos4210_fimd_update_win_bppmode(s, w); fimd_update_get_alpha(s, w); fimd_update_memory_section(s, w); } /* Redraw the whole screen */ exynos4210_update_resolution(s); exynos4210_fimd_invalidate(s); exynos4210_fimd_enable(s, (s->vidcon[0] & FIMD_VIDCON0_ENVID_MASK) == FIMD_VIDCON0_ENVID_MASK); return 0; } static const VMStateDescription exynos4210_fimd_window_vmstate = { .name = "exynos4210.fimd_window", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(wincon, Exynos4210fimdWindow), VMSTATE_UINT32_ARRAY(buf_start, Exynos4210fimdWindow, 3), VMSTATE_UINT32_ARRAY(buf_end, Exynos4210fimdWindow, 3), VMSTATE_UINT32_ARRAY(keycon, Exynos4210fimdWindow, 2), VMSTATE_UINT32(keyalpha, Exynos4210fimdWindow), VMSTATE_UINT32(winmap, Exynos4210fimdWindow), VMSTATE_UINT32(blendeq, Exynos4210fimdWindow), VMSTATE_UINT32(rtqoscon, Exynos4210fimdWindow), VMSTATE_UINT32_ARRAY(palette, Exynos4210fimdWindow, 256), VMSTATE_UINT32(shadow_buf_start, Exynos4210fimdWindow), VMSTATE_UINT32(shadow_buf_end, Exynos4210fimdWindow), VMSTATE_UINT32(shadow_buf_size, Exynos4210fimdWindow), VMSTATE_UINT16(lefttop_x, Exynos4210fimdWindow), VMSTATE_UINT16(lefttop_y, Exynos4210fimdWindow), VMSTATE_UINT16(rightbot_x, Exynos4210fimdWindow), VMSTATE_UINT16(rightbot_y, Exynos4210fimdWindow), VMSTATE_UINT32(osdsize, Exynos4210fimdWindow), VMSTATE_UINT32_ARRAY(alpha_val, Exynos4210fimdWindow, 2), VMSTATE_UINT16(virtpage_width, Exynos4210fimdWindow), VMSTATE_UINT16(virtpage_offsize, Exynos4210fimdWindow), VMSTATE_END_OF_LIST() } }; static const VMStateDescription exynos4210_fimd_vmstate = { .name = "exynos4210.fimd", .version_id = 1, .minimum_version_id = 1, .post_load = exynos4210_fimd_load, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(vidcon, Exynos4210fimdState, 4), VMSTATE_UINT32_ARRAY(vidtcon, Exynos4210fimdState, 4), VMSTATE_UINT32(shadowcon, Exynos4210fimdState), VMSTATE_UINT32(winchmap, Exynos4210fimdState), VMSTATE_UINT32_ARRAY(vidintcon, Exynos4210fimdState, 2), VMSTATE_UINT32(dithmode, Exynos4210fimdState), VMSTATE_UINT32_ARRAY(wpalcon, Exynos4210fimdState, 2), VMSTATE_UINT32(trigcon, Exynos4210fimdState), VMSTATE_UINT32_ARRAY(i80ifcon, Exynos4210fimdState, 4), VMSTATE_UINT32(colorgaincon, Exynos4210fimdState), VMSTATE_UINT32_ARRAY(ldi_cmdcon, Exynos4210fimdState, 2), VMSTATE_UINT32_ARRAY(sifccon, Exynos4210fimdState, 3), VMSTATE_UINT32_ARRAY(huecoef_cr, Exynos4210fimdState, 4), VMSTATE_UINT32_ARRAY(huecoef_cb, Exynos4210fimdState, 4), VMSTATE_UINT32(hueoffset, Exynos4210fimdState), VMSTATE_UINT32_ARRAY(i80ifcmd, Exynos4210fimdState, 12), VMSTATE_UINT32(blendcon, Exynos4210fimdState), VMSTATE_STRUCT_ARRAY(window, Exynos4210fimdState, 5, 1, exynos4210_fimd_window_vmstate, Exynos4210fimdWindow), VMSTATE_END_OF_LIST() } }; static int exynos4210_fimd_init(SysBusDevice *dev) { Exynos4210fimdState *s = FROM_SYSBUS(Exynos4210fimdState, dev); s->ifb = NULL; sysbus_init_irq(dev, &s->irq[0]); sysbus_init_irq(dev, &s->irq[1]); sysbus_init_irq(dev, &s->irq[2]); memory_region_init_io(&s->iomem, &exynos4210_fimd_mmio_ops, s, "exynos4210.fimd", FIMD_REGS_SIZE); sysbus_init_mmio(dev, &s->iomem); s->console = graphic_console_init(exynos4210_fimd_update, exynos4210_fimd_invalidate, NULL, NULL, s); return 0; } static void exynos4210_fimd_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); dc->vmsd = &exynos4210_fimd_vmstate; dc->reset = exynos4210_fimd_reset; k->init = exynos4210_fimd_init; } static TypeInfo exynos4210_fimd_info = { .name = "exynos4210.fimd", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(Exynos4210fimdState), .class_init = exynos4210_fimd_class_init, }; static void exynos4210_fimd_register_types(void) { type_register_static(&exynos4210_fimd_info); } type_init(exynos4210_fimd_register_types)