/* * QEMU ETRAX Timers * * Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "hw.h" #include "sysemu.h" #include "qemu-timer.h" #define D(x) #define RW_TMR0_DIV 0x00 #define R_TMR0_DATA 0x04 #define RW_TMR0_CTRL 0x08 #define RW_TMR1_DIV 0x10 #define R_TMR1_DATA 0x14 #define RW_TMR1_CTRL 0x18 #define R_TIME 0x38 #define RW_WD_CTRL 0x40 #define R_WD_STAT 0x44 #define RW_INTR_MASK 0x48 #define RW_ACK_INTR 0x4c #define R_INTR 0x50 #define R_MASKED_INTR 0x54 struct fs_timer_t { CPUState *env; qemu_irq *irq; qemu_irq *nmi; target_phys_addr_t base; QEMUBH *bh_t0; QEMUBH *bh_t1; QEMUBH *bh_wd; ptimer_state *ptimer_t0; ptimer_state *ptimer_t1; ptimer_state *ptimer_wd; struct timeval last; int wd_hits; /* Control registers. */ uint32_t rw_tmr0_div; uint32_t r_tmr0_data; uint32_t rw_tmr0_ctrl; uint32_t rw_tmr1_div; uint32_t r_tmr1_data; uint32_t rw_tmr1_ctrl; uint32_t rw_wd_ctrl; uint32_t rw_intr_mask; uint32_t rw_ack_intr; uint32_t r_intr; uint32_t r_masked_intr; }; static uint32_t timer_rinvalid (void *opaque, target_phys_addr_t addr) { struct fs_timer_t *t = opaque; CPUState *env = t->env; cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", addr, env->pc); return 0; } static uint32_t timer_readl (void *opaque, target_phys_addr_t addr) { struct fs_timer_t *t = opaque; D(CPUState *env = t->env); uint32_t r = 0; /* Make addr relative to this instances base. */ addr -= t->base; switch (addr) { case R_TMR0_DATA: break; case R_TMR1_DATA: D(printf ("R_TMR1_DATA\n")); break; case R_TIME: r = qemu_get_clock(vm_clock) * 10; break; case RW_INTR_MASK: r = t->rw_intr_mask; break; case R_MASKED_INTR: r = t->r_intr & t->rw_intr_mask; break; default: D(printf ("%s %x p=%x\n", __func__, addr, env->pc)); break; } return r; } static void timer_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value) { struct fs_timer_t *t = opaque; CPUState *env = t->env; cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", addr, env->pc); } #define TIMER_SLOWDOWN 1 static void update_ctrl(struct fs_timer_t *t, int tnum) { unsigned int op; unsigned int freq; unsigned int freq_hz; unsigned int div; uint32_t ctrl; ptimer_state *timer; if (tnum == 0) { ctrl = t->rw_tmr0_ctrl; div = t->rw_tmr0_div; timer = t->ptimer_t0; } else { ctrl = t->rw_tmr1_ctrl; div = t->rw_tmr1_div; timer = t->ptimer_t1; } op = ctrl & 3; freq = ctrl >> 2; freq_hz = 32000000; switch (freq) { case 0: case 1: D(printf ("extern or disabled timer clock?\n")); break; case 4: freq_hz = 29493000; break; case 5: freq_hz = 32000000; break; case 6: freq_hz = 32768000; break; case 7: freq_hz = 100001000; break; default: abort(); break; } D(printf ("freq_hz=%d div=%d\n", freq_hz, div)); div = div * TIMER_SLOWDOWN; div >>= 10; freq_hz >>= 10; ptimer_set_freq(timer, freq_hz); ptimer_set_limit(timer, div, 0); switch (op) { case 0: /* Load. */ ptimer_set_limit(timer, div, 1); break; case 1: /* Hold. */ ptimer_stop(timer); break; case 2: /* Run. */ ptimer_run(timer, 0); break; default: abort(); break; } } static void timer_update_irq(struct fs_timer_t *t) { t->r_intr &= ~(t->rw_ack_intr); t->r_masked_intr = t->r_intr & t->rw_intr_mask; D(printf("%s: masked_intr=%x\n", __func__, t->r_masked_intr)); if (t->r_masked_intr) qemu_irq_raise(t->irq[0]); else qemu_irq_lower(t->irq[0]); } static void timer0_hit(void *opaque) { struct fs_timer_t *t = opaque; t->r_intr |= 1; timer_update_irq(t); } static void timer1_hit(void *opaque) { struct fs_timer_t *t = opaque; t->r_intr |= 2; timer_update_irq(t); } static void watchdog_hit(void *opaque) { struct fs_timer_t *t = opaque; if (t->wd_hits == 0) { /* real hw gives a single tick before reseting but we are a bit friendlier to compensate for our slower execution. */ ptimer_set_count(t->ptimer_wd, 10); ptimer_run(t->ptimer_wd, 1); qemu_irq_raise(t->nmi[0]); } else qemu_system_reset_request(); t->wd_hits++; } static inline void timer_watchdog_update(struct fs_timer_t *t, uint32_t value) { unsigned int wd_en = t->rw_wd_ctrl & (1 << 8); unsigned int wd_key = t->rw_wd_ctrl >> 9; unsigned int wd_cnt = t->rw_wd_ctrl & 511; unsigned int new_key = value >> 9 & ((1 << 7) - 1); unsigned int new_cmd = (value >> 8) & 1; /* If the watchdog is enabled, they written key must match the complement of the previous. */ wd_key = ~wd_key & ((1 << 7) - 1); if (wd_en && wd_key != new_key) return; D(printf("en=%d new_key=%x oldkey=%x cmd=%d cnt=%d\n", wd_en, new_key, wd_key, new_cmd, wd_cnt)); if (t->wd_hits) qemu_irq_lower(t->nmi[0]); t->wd_hits = 0; ptimer_set_freq(t->ptimer_wd, 760); if (wd_cnt == 0) wd_cnt = 256; ptimer_set_count(t->ptimer_wd, wd_cnt); if (new_cmd) ptimer_run(t->ptimer_wd, 1); else ptimer_stop(t->ptimer_wd); t->rw_wd_ctrl = value; } static void timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { struct fs_timer_t *t = opaque; CPUState *env = t->env; /* Make addr relative to this instances base. */ addr -= t->base; switch (addr) { case RW_TMR0_DIV: t->rw_tmr0_div = value; break; case RW_TMR0_CTRL: D(printf ("RW_TMR0_CTRL=%x\n", value)); t->rw_tmr0_ctrl = value; update_ctrl(t, 0); break; case RW_TMR1_DIV: t->rw_tmr1_div = value; break; case RW_TMR1_CTRL: D(printf ("RW_TMR1_CTRL=%x\n", value)); t->rw_tmr1_ctrl = value; update_ctrl(t, 1); break; case RW_INTR_MASK: D(printf ("RW_INTR_MASK=%x\n", value)); t->rw_intr_mask = value; timer_update_irq(t); break; case RW_WD_CTRL: timer_watchdog_update(t, value); break; case RW_ACK_INTR: t->rw_ack_intr = value; timer_update_irq(t); t->rw_ack_intr = 0; break; default: printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc); break; } } static CPUReadMemoryFunc *timer_read[] = { &timer_rinvalid, &timer_rinvalid, &timer_readl, }; static CPUWriteMemoryFunc *timer_write[] = { &timer_winvalid, &timer_winvalid, &timer_writel, }; static void etraxfs_timer_reset(void *opaque) { struct fs_timer_t *t = opaque; ptimer_stop(t->ptimer_t0); ptimer_stop(t->ptimer_t1); ptimer_stop(t->ptimer_wd); t->rw_wd_ctrl = 0; t->r_intr = 0; t->rw_intr_mask = 0; qemu_irq_lower(t->irq[0]); } void etraxfs_timer_init(CPUState *env, qemu_irq *irqs, qemu_irq *nmi, target_phys_addr_t base) { static struct fs_timer_t *t; int timer_regs; t = qemu_mallocz(sizeof *t); if (!t) return; t->bh_t0 = qemu_bh_new(timer0_hit, t); t->bh_t1 = qemu_bh_new(timer1_hit, t); t->bh_wd = qemu_bh_new(watchdog_hit, t); t->ptimer_t0 = ptimer_init(t->bh_t0); t->ptimer_t1 = ptimer_init(t->bh_t1); t->ptimer_wd = ptimer_init(t->bh_wd); t->irq = irqs; t->nmi = nmi; t->env = env; t->base = base; timer_regs = cpu_register_io_memory(0, timer_read, timer_write, t); cpu_register_physical_memory (base, 0x5c, timer_regs); qemu_register_reset(etraxfs_timer_reset, t); }