/* * QEMU ETRAX System Emulator * * Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include #include "hw.h" #include "qemu-timer.h" #define D(x) void etrax_ack_irq(CPUState *env, uint32_t mask); #define R_TIME 0xb001e038 #define RW_TMR0_DIV 0xb001e000 #define R_TMR0_DATA 0xb001e004 #define RW_TMR0_CTRL 0xb001e008 #define RW_TMR1_DIV 0xb001e010 #define R_TMR1_DATA 0xb001e014 #define RW_TMR1_CTRL 0xb001e018 #define RW_INTR_MASK 0xb001e048 #define RW_ACK_INTR 0xb001e04c #define R_INTR 0xb001e050 #define R_MASKED_INTR 0xb001e054 uint32_t rw_intr_mask; uint32_t rw_ack_intr; uint32_t r_intr; struct fs_timer_t { QEMUBH *bh; unsigned int limit; int scale; ptimer_state *ptimer; CPUState *env; qemu_irq *irq; uint32_t mask; struct timeval last; }; static struct fs_timer_t timer[2]; static inline int timer_index(target_phys_addr_t addr) { int t = 0; if (addr >= 0xb005e000) t = 1; return t; } /* diff two timevals. Return a single int in us. */ int diff_timeval_us(struct timeval *a, struct timeval *b) { int diff; /* assume these values are signed. */ diff = (a->tv_sec - b->tv_sec) * 1000 * 1000; diff += (a->tv_usec - b->tv_usec); return diff; } static uint32_t timer_readb (void *opaque, target_phys_addr_t addr) { CPUState *env; uint32_t r = 0; env = opaque; D(printf ("%s %x pc=%x\n", __func__, addr, env->pc)); return r; } static uint32_t timer_readw (void *opaque, target_phys_addr_t addr) { CPUState *env; uint32_t r = 0; env = opaque; D(printf ("%s %x pc=%x\n", __func__, addr, env->pc)); return r; } static uint32_t timer_readl (void *opaque, target_phys_addr_t addr) { CPUState *env = opaque; uint32_t r = 0; int t = timer_index(addr); switch (addr) { case R_TMR0_DATA: break; case R_TMR1_DATA: D(printf ("R_TMR1_DATA\n")); break; case R_TIME: { struct timeval now; gettimeofday(&now, NULL); if (!(timer[t].last.tv_sec == 0 && timer[t].last.tv_usec == 0)) { r = diff_timeval_us(&now, &timer[t].last); r *= 1000; /* convert to ns. */ r++; /* make sure we increase for each call. */ } timer[t].last = now; break; } case RW_INTR_MASK: r = rw_intr_mask; break; case R_MASKED_INTR: r = r_intr & rw_intr_mask; break; default: printf ("%s %x p=%x\n", __func__, addr, env->pc); break; } return r; } static void timer_writeb (void *opaque, target_phys_addr_t addr, uint32_t value) { CPUState *env; env = opaque; D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc)); } static void timer_writew (void *opaque, target_phys_addr_t addr, uint32_t value) { CPUState *env; env = opaque; D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc)); } static void write_ctrl(struct fs_timer_t *t, uint32_t v) { int op; int freq; int freq_hz; op = v & 3; freq = v >> 2; freq_hz = 32000000; switch (freq) { case 0: case 1: printf ("extern or disabled timer clock?\n"); break; case 4: freq_hz = 29493000; break; case 5: freq_hz = 32000000; break; case 6: freq_hz = 32768000; break; case 7: freq_hz = 100000000; break; default: abort(); break; } printf ("freq_hz=%d limit=%d\n", freq_hz, t->limit); t->scale = 0; if (t->limit > 2048) { t->scale = 2048; ptimer_set_period(t->ptimer, freq_hz / t->scale); } printf ("op=%d\n", op); switch (op) { case 0: printf ("limit=%d %d\n", t->limit, t->limit/t->scale); ptimer_set_limit(t->ptimer, t->limit / t->scale, 1); break; case 1: ptimer_stop(t->ptimer); break; case 2: ptimer_run(t->ptimer, 0); break; default: abort(); break; } } static void timer_ack_irq(struct fs_timer_t *t) { if (!(r_intr & t->mask & rw_intr_mask)) { qemu_irq_lower(t->irq[0]); etrax_ack_irq(t->env, 1 << 0x1b); } } static void timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value) { CPUState *env = opaque; int t = timer_index(addr); D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc)); switch (addr) { case RW_TMR0_DIV: D(printf ("RW_TMR0_DIV=%x\n", value)); timer[t].limit = value; break; case RW_TMR0_CTRL: D(printf ("RW_TMR0_CTRL=%x\n", value)); write_ctrl(&timer[t], value); break; case RW_TMR1_DIV: D(printf ("RW_TMR1_DIV=%x\n", value)); break; case RW_TMR1_CTRL: D(printf ("RW_TMR1_CTRL=%x\n", value)); break; case RW_INTR_MASK: D(printf ("RW_INTR_MASK=%x\n", value)); rw_intr_mask = value; break; case RW_ACK_INTR: r_intr &= ~value; timer_ack_irq(&timer[t]); break; default: printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc); break; } } static CPUReadMemoryFunc *timer_read[] = { &timer_readb, &timer_readw, &timer_readl, }; static CPUWriteMemoryFunc *timer_write[] = { &timer_writeb, &timer_writew, &timer_writel, }; static void timer_irq(void *opaque) { struct fs_timer_t *t = opaque; r_intr |= t->mask; if (t->mask & rw_intr_mask) { qemu_irq_raise(t->irq[0]); } } void etraxfs_timer_init(CPUState *env, qemu_irq *irqs) { int timer_regs; timer[0].bh = qemu_bh_new(timer_irq, &timer[0]); timer[0].ptimer = ptimer_init(timer[0].bh); timer[0].irq = irqs + 0x1b; timer[0].mask = 1; timer[0].env = env; timer[1].bh = qemu_bh_new(timer_irq, &timer[1]); timer[1].ptimer = ptimer_init(timer[1].bh); timer[1].irq = irqs + 0x1b; timer[1].mask = 1; timer[1].env = env; timer_regs = cpu_register_io_memory(0, timer_read, timer_write, env); cpu_register_physical_memory (0xb001e000, 0x5c, timer_regs); cpu_register_physical_memory (0xb005e000, 0x5c, timer_regs); }