/* * QEMU ETRAX Ethernet Controller. * * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <stdio.h> #include "sysbus.h" #include "net/net.h" #include "etraxfs.h" #define D(x) /* Advertisement control register. */ #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */ #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */ #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */ #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */ /* * The MDIO extensions in the TDK PHY model were reversed engineered from the * linux driver (PHYID and Diagnostics reg). * TODO: Add friendly names for the register nums. */ struct qemu_phy { uint32_t regs[32]; int link; unsigned int (*read)(struct qemu_phy *phy, unsigned int req); void (*write)(struct qemu_phy *phy, unsigned int req, unsigned int data); }; static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req) { int regnum; unsigned r = 0; regnum = req & 0x1f; switch (regnum) { case 1: if (!phy->link) { break; } /* MR1. */ /* Speeds and modes. */ r |= (1 << 13) | (1 << 14); r |= (1 << 11) | (1 << 12); r |= (1 << 5); /* Autoneg complete. */ r |= (1 << 3); /* Autoneg able. */ r |= (1 << 2); /* link. */ break; case 5: /* Link partner ability. We are kind; always agree with whatever best mode the guest advertises. */ r = 1 << 14; /* Success. */ /* Copy advertised modes. */ r |= phy->regs[4] & (15 << 5); /* Autoneg support. */ r |= 1; break; case 18: { /* Diagnostics reg. */ int duplex = 0; int speed_100 = 0; if (!phy->link) { break; } /* Are we advertising 100 half or 100 duplex ? */ speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF); speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL); /* Are we advertising 10 duplex or 100 duplex ? */ duplex = !!(phy->regs[4] & ADVERTISE_100FULL); duplex |= !!(phy->regs[4] & ADVERTISE_10FULL); r = (speed_100 << 10) | (duplex << 11); } break; default: r = phy->regs[regnum]; break; } D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum)); return r; } static void tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data) { int regnum; regnum = req & 0x1f; D(printf("%s reg[%d] = %x\n", __func__, regnum, data)); switch (regnum) { default: phy->regs[regnum] = data; break; } } static void tdk_init(struct qemu_phy *phy) { phy->regs[0] = 0x3100; /* PHY Id. */ phy->regs[2] = 0x0300; phy->regs[3] = 0xe400; /* Autonegotiation advertisement reg. */ phy->regs[4] = 0x01E1; phy->link = 1; phy->read = tdk_read; phy->write = tdk_write; } struct qemu_mdio { /* bus. */ int mdc; int mdio; /* decoder. */ enum { PREAMBLE, SOF, OPC, ADDR, REQ, TURNAROUND, DATA } state; unsigned int drive; unsigned int cnt; unsigned int addr; unsigned int opc; unsigned int req; unsigned int data; struct qemu_phy *devs[32]; }; static void mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr) { bus->devs[addr & 0x1f] = phy; } #ifdef USE_THIS_DEAD_CODE static void mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr) { bus->devs[addr & 0x1f] = NULL; } #endif static void mdio_read_req(struct qemu_mdio *bus) { struct qemu_phy *phy; phy = bus->devs[bus->addr]; if (phy && phy->read) { bus->data = phy->read(phy, bus->req); } else { bus->data = 0xffff; } } static void mdio_write_req(struct qemu_mdio *bus) { struct qemu_phy *phy; phy = bus->devs[bus->addr]; if (phy && phy->write) { phy->write(phy, bus->req, bus->data); } } static void mdio_cycle(struct qemu_mdio *bus) { bus->cnt++; D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n", bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive)); #if 0 if (bus->mdc) { printf("%d", bus->mdio); } #endif switch (bus->state) { case PREAMBLE: if (bus->mdc) { if (bus->cnt >= (32 * 2) && !bus->mdio) { bus->cnt = 0; bus->state = SOF; bus->data = 0; } } break; case SOF: if (bus->mdc) { if (bus->mdio != 1) { printf("WARNING: no SOF\n"); } if (bus->cnt == 1*2) { bus->cnt = 0; bus->opc = 0; bus->state = OPC; } } break; case OPC: if (bus->mdc) { bus->opc <<= 1; bus->opc |= bus->mdio & 1; if (bus->cnt == 2*2) { bus->cnt = 0; bus->addr = 0; bus->state = ADDR; } } break; case ADDR: if (bus->mdc) { bus->addr <<= 1; bus->addr |= bus->mdio & 1; if (bus->cnt == 5*2) { bus->cnt = 0; bus->req = 0; bus->state = REQ; } } break; case REQ: if (bus->mdc) { bus->req <<= 1; bus->req |= bus->mdio & 1; if (bus->cnt == 5*2) { bus->cnt = 0; bus->state = TURNAROUND; } } break; case TURNAROUND: if (bus->mdc && bus->cnt == 2*2) { bus->mdio = 0; bus->cnt = 0; if (bus->opc == 2) { bus->drive = 1; mdio_read_req(bus); bus->mdio = bus->data & 1; } bus->state = DATA; } break; case DATA: if (!bus->mdc) { if (bus->drive) { bus->mdio = !!(bus->data & (1 << 15)); bus->data <<= 1; } } else { if (!bus->drive) { bus->data <<= 1; bus->data |= bus->mdio; } if (bus->cnt == 16 * 2) { bus->cnt = 0; bus->state = PREAMBLE; if (!bus->drive) { mdio_write_req(bus); } bus->drive = 0; } } break; default: break; } } /* ETRAX-FS Ethernet MAC block starts here. */ #define RW_MA0_LO 0x00 #define RW_MA0_HI 0x01 #define RW_MA1_LO 0x02 #define RW_MA1_HI 0x03 #define RW_GA_LO 0x04 #define RW_GA_HI 0x05 #define RW_GEN_CTRL 0x06 #define RW_REC_CTRL 0x07 #define RW_TR_CTRL 0x08 #define RW_CLR_ERR 0x09 #define RW_MGM_CTRL 0x0a #define R_STAT 0x0b #define FS_ETH_MAX_REGS 0x17 struct fs_eth { SysBusDevice busdev; MemoryRegion mmio; NICState *nic; NICConf conf; /* Two addrs in the filter. */ uint8_t macaddr[2][6]; uint32_t regs[FS_ETH_MAX_REGS]; union { void *vdma_out; struct etraxfs_dma_client *dma_out; }; union { void *vdma_in; struct etraxfs_dma_client *dma_in; }; /* MDIO bus. */ struct qemu_mdio mdio_bus; unsigned int phyaddr; int duplex_mismatch; /* PHY. */ struct qemu_phy phy; }; static void eth_validate_duplex(struct fs_eth *eth) { struct qemu_phy *phy; unsigned int phy_duplex; unsigned int mac_duplex; int new_mm = 0; phy = eth->mdio_bus.devs[eth->phyaddr]; phy_duplex = !!(phy->read(phy, 18) & (1 << 11)); mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128); if (mac_duplex != phy_duplex) { new_mm = 1; } if (eth->regs[RW_GEN_CTRL] & 1) { if (new_mm != eth->duplex_mismatch) { if (new_mm) { printf("HW: WARNING ETH duplex mismatch MAC=%d PHY=%d\n", mac_duplex, phy_duplex); } else { printf("HW: ETH duplex ok.\n"); } } eth->duplex_mismatch = new_mm; } } static uint64_t eth_read(void *opaque, hwaddr addr, unsigned int size) { struct fs_eth *eth = opaque; uint32_t r = 0; addr >>= 2; switch (addr) { case R_STAT: r = eth->mdio_bus.mdio & 1; break; default: r = eth->regs[addr]; D(printf("%s %x\n", __func__, addr * 4)); break; } return r; } static void eth_update_ma(struct fs_eth *eth, int ma) { int reg; int i = 0; ma &= 1; reg = RW_MA0_LO; if (ma) { reg = RW_MA1_LO; } eth->macaddr[ma][i++] = eth->regs[reg]; eth->macaddr[ma][i++] = eth->regs[reg] >> 8; eth->macaddr[ma][i++] = eth->regs[reg] >> 16; eth->macaddr[ma][i++] = eth->regs[reg] >> 24; eth->macaddr[ma][i++] = eth->regs[reg + 1]; eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8; D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma, eth->macaddr[ma][0], eth->macaddr[ma][1], eth->macaddr[ma][2], eth->macaddr[ma][3], eth->macaddr[ma][4], eth->macaddr[ma][5])); } static void eth_write(void *opaque, hwaddr addr, uint64_t val64, unsigned int size) { struct fs_eth *eth = opaque; uint32_t value = val64; addr >>= 2; switch (addr) { case RW_MA0_LO: case RW_MA0_HI: eth->regs[addr] = value; eth_update_ma(eth, 0); break; case RW_MA1_LO: case RW_MA1_HI: eth->regs[addr] = value; eth_update_ma(eth, 1); break; case RW_MGM_CTRL: /* Attach an MDIO/PHY abstraction. */ if (value & 2) { eth->mdio_bus.mdio = value & 1; } if (eth->mdio_bus.mdc != (value & 4)) { mdio_cycle(ð->mdio_bus); eth_validate_duplex(eth); } eth->mdio_bus.mdc = !!(value & 4); eth->regs[addr] = value; break; case RW_REC_CTRL: eth->regs[addr] = value; eth_validate_duplex(eth); break; default: eth->regs[addr] = value; D(printf("%s %x %x\n", __func__, addr, value)); break; } } /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom filter dropping group addresses we have not joined. The filter has 64 bits (m). The has function is a simple nible xor of the group addr. */ static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa) { unsigned int hsh; int m_individual = eth->regs[RW_REC_CTRL] & 4; int match; /* First bit on the wire of a MAC address signals multicast or physical address. */ if (!m_individual && !(sa[0] & 1)) { return 0; } /* Calculate the hash index for the GA registers. */ hsh = 0; hsh ^= (*sa) & 0x3f; hsh ^= ((*sa) >> 6) & 0x03; ++sa; hsh ^= ((*sa) << 2) & 0x03c; hsh ^= ((*sa) >> 4) & 0xf; ++sa; hsh ^= ((*sa) << 4) & 0x30; hsh ^= ((*sa) >> 2) & 0x3f; ++sa; hsh ^= (*sa) & 0x3f; hsh ^= ((*sa) >> 6) & 0x03; ++sa; hsh ^= ((*sa) << 2) & 0x03c; hsh ^= ((*sa) >> 4) & 0xf; ++sa; hsh ^= ((*sa) << 4) & 0x30; hsh ^= ((*sa) >> 2) & 0x3f; hsh &= 63; if (hsh > 31) { match = eth->regs[RW_GA_HI] & (1 << (hsh - 32)); } else { match = eth->regs[RW_GA_LO] & (1 << hsh); } D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh, eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match)); return match; } static int eth_can_receive(NetClientState *nc) { return 1; } static ssize_t eth_receive(NetClientState *nc, const uint8_t *buf, size_t size) { unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; struct fs_eth *eth = qemu_get_nic_opaque(nc); int use_ma0 = eth->regs[RW_REC_CTRL] & 1; int use_ma1 = eth->regs[RW_REC_CTRL] & 2; int r_bcast = eth->regs[RW_REC_CTRL] & 8; if (size < 12) { return -1; } D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], use_ma0, use_ma1, r_bcast)); /* Does the frame get through the address filters? */ if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6)) && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6)) && (!r_bcast || memcmp(buf, sa_bcast, 6)) && !eth_match_groupaddr(eth, buf)) { return size; } /* FIXME: Find another way to pass on the fake csum. */ etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1); return size; } static int eth_tx_push(void *opaque, unsigned char *buf, int len, bool eop) { struct fs_eth *eth = opaque; D(printf("%s buf=%p len=%d\n", __func__, buf, len)); qemu_send_packet(qemu_get_queue(eth->nic), buf, len); return len; } static void eth_set_link(NetClientState *nc) { struct fs_eth *eth = qemu_get_nic_opaque(nc); D(printf("%s %d\n", __func__, nc->link_down)); eth->phy.link = !nc->link_down; } static const MemoryRegionOps eth_ops = { .read = eth_read, .write = eth_write, .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 4, .max_access_size = 4 } }; static void eth_cleanup(NetClientState *nc) { struct fs_eth *eth = qemu_get_nic_opaque(nc); /* Disconnect the client. */ eth->dma_out->client.push = NULL; eth->dma_out->client.opaque = NULL; eth->dma_in->client.opaque = NULL; eth->dma_in->client.pull = NULL; g_free(eth); } static NetClientInfo net_etraxfs_info = { .type = NET_CLIENT_OPTIONS_KIND_NIC, .size = sizeof(NICState), .can_receive = eth_can_receive, .receive = eth_receive, .cleanup = eth_cleanup, .link_status_changed = eth_set_link, }; static int fs_eth_init(SysBusDevice *dev) { struct fs_eth *s = FROM_SYSBUS(typeof(*s), dev); if (!s->dma_out || !s->dma_in) { hw_error("Unconnected ETRAX-FS Ethernet MAC.\n"); } s->dma_out->client.push = eth_tx_push; s->dma_out->client.opaque = s; s->dma_in->client.opaque = s; s->dma_in->client.pull = NULL; memory_region_init_io(&s->mmio, ð_ops, s, "etraxfs-eth", 0x5c); sysbus_init_mmio(dev, &s->mmio); qemu_macaddr_default_if_unset(&s->conf.macaddr); s->nic = qemu_new_nic(&net_etraxfs_info, &s->conf, object_get_typename(OBJECT(s)), dev->qdev.id, s); qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); tdk_init(&s->phy); mdio_attach(&s->mdio_bus, &s->phy, s->phyaddr); return 0; } static Property etraxfs_eth_properties[] = { DEFINE_PROP_UINT32("phyaddr", struct fs_eth, phyaddr, 1), DEFINE_PROP_PTR("dma_out", struct fs_eth, vdma_out), DEFINE_PROP_PTR("dma_in", struct fs_eth, vdma_in), DEFINE_NIC_PROPERTIES(struct fs_eth, conf), DEFINE_PROP_END_OF_LIST(), }; static void etraxfs_eth_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); k->init = fs_eth_init; dc->props = etraxfs_eth_properties; } static const TypeInfo etraxfs_eth_info = { .name = "etraxfs-eth", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(struct fs_eth), .class_init = etraxfs_eth_class_init, }; static void etraxfs_eth_register_types(void) { type_register_static(&etraxfs_eth_info); } type_init(etraxfs_eth_register_types)